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ABSTRACT

The following thesis covers the two main research projects the author participated
in for the completion of the MS Mechanical Engineering degree. Chapter 1 covers
the analysis performed in support of calibrating an acoustic doppler current profiler.
Chapter 2 discusses Schlieren photographs of evaporating thin liquid films and the
trends of the observable physical wavelengths of the instabilities in the images. Chap-
ter three provides an overview of efforts made in extracting wavelengths in the images
automatically. Finally, chapter 4 discusses the behavior of the critical wavenumber
in a one-sided evaporation model and corrects and assumption used in related work.
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1. CALIBRATION OF AN ACOUSITC DOPPLER CURRENT
PROFILER

1.1 ADCP Project Overview

This project was in support of South Florida Water Management District’s (SFWMD)
use of Acoustic Doppler Current Profilers (ADCPs) to monitor and control the flow of
water from Lake Okeechobee through the Everglades and eventually to the Atlantic
Ocean. Flow control is important to provide irrigation to the vibrant agricultural
areas of south Florida and also to mitigate flooding from hurricanes and heavy rain
and also drought. The ADCP is one of the main monitoring devices used by SFWMD
however the error associated with the device is not known. The purpose of this project
is to determine the bias and uncertainty of measurements taken with an ADCP.

An ADCP is a device used to gather bathymetric data in oceans, lakes and rivers.
To obtain a velocity profile, a series of ultrasonic pulses are emitted from its four sensor
faces and the resulting signal reflections are recorded by the instrument. The time of
the pulse between emitting and recording determines the depth of the measurement
and the change in pulse frequency determines the water velocity based on the Doppler
effect. The four sensors allow for three dimensional imaging and a verification by the
fourth sensor.

This project is a joint senior design/graduate research project. The main task
of the senior design team is to design and implement a calibration system for the
ADCP. The graduate portion of the project is to analyze the data gathered by the
senior design team. A very detailed discussion of the design and implementation of
the testing systems can be found in the senior design team’s report. [4] The work
presented here is the graduate portion of the project involving the data analysis.

A data set from the ADCP consists of velocity measurements in two spatial di-
mensions: depth and position along the ADCP’s scan of the water body of interest.
Collectively, this data set is referred to as a transect. The velocities are reported at
each depth along the transect in bins to form a velocity profile cross section.

The testing strategy is to provide the ADCP with a controlled and known flow
where the velocity is uniform. This should result in a uniform distribution of velocity
bins in the transect. The differences between data bins to the mean flow are then
analyzed. Two different systems were used for the testing. The first involved a boat
that would push a large, open ended tube through water on a lake. The second
method involved towing a raft in a small pond at a constant velocity. Both methods
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assume still water such that all of the velocity is due to the motion of the testing
vessel.

1.2 Analysis Method for ADCP Reported Results

The data from both the timed velocities of the raft and ADCP measured velocities
are statistically analyzed to determine the validity of the reference measurement and
the bias and variability of the ADCP. These results are discussed and compared to
similar past works. The results of the open tunnel testing performed on the pontoon
boat are also presented and discussed.

The velocity in each bin is actually sampled hundreds of times by the ADCP, the
result of which is averaged and reported. The ADCP acquires and reports the tran-
sect data through a software program called WinRiver�that is designed specifically
for use with the ADCP. The way the ADCP and WinRiver�software condition and
process the signals is beyond the scope of this investigation. As such, the ADCP
/ WinRiver�software system is considered as a “black box” to be calibrated with
known a velocity flow in and reported velocity bins out.

The velocity magnitudes for each bin as reported in the WinRiver�results file are
collected into an Excel�file for each run. Bad bins are not considered. Bad bins are
generated when the ADCP can not achieve internally acceptable agreement between
the four transducers. The acceptable data is then entered into a Matlab code that
subtracts the average velocity determined by the timing method (described in the
next section) from each ADCP measured velocity to determine the error of each bin
velocity. These errors are then tracked on X and Rm control charts.

X and Rm control charts are used to track the average value and variability of
individual measurements. The X chart for this study plots the error of each bin
versus the sample number. A mean error is then calculated for k samples by:

X̄ =

∑k
i=1Xi

k
(1.1)

Typically, an R chart is used to obtain the variance of a set of data. Each point
on an R chart represents the range of a measurements in a sample. Since the data
points in this analysis only contain a single measurement the Rm (moving range)
chart is used in place of the standard R chart. Each bin velocity is considered to
be independent in space and time. The run samples are divided into overlapping
subgroups and the range of each subgroup is plotted on the Rm chart. It is important
for the size of the subgroups to be small. This analysis uses a subgroup size n = 3.
For k samples with subgroup size n, the Rm chart contains (k − n + 1) data points.
The average sample moving range is calculated by:

R̄m =

∑k−n+1
i=1 Rmi

k − n+ 1
(1.2)
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The standard deviation for the error of the run is then estimated by:

σ̂X =
R̄m

d2

(1.3)

where d2 is a constant corresponding to a sample size of 3. Finally the variance
for the run is calculated as the standard deviation squared. The control limits are
determined by the standard deviation. [3]

It should be noted again that bad bins are not considered here. This analysis only
considers what the ADCP deems good data and the bad bins are simply passed over
since the analysis assumes that each sample is independent.

1.3 Analysis of Time Based Velocity Measurements

The experimental setup is such that the ADCP measured velocities are correlated
against the speed of a raft on which it is mounted. The raft is driven at a constant
speed by reeling in a tow line using an electric motor governed by a variable speed
controller. The speed is calculated by measuring the time the raft takes to travel
between two markers set 50 ft apart. The technician recording the time starts and
stops the timer as a common point on the raft passes each marker.

To determine the uncertainty associated with this method a simple uncertainty
analysis for product functions can be implemented. Many functions can be expressed
as the product of primary dimensions:

R = xa1
1 x

a2
2 . . . xan

n (1.4)

Performing the partial differentiations and rearranging terms gives:

ωR
R

=

[∑(
aiωxi

xi

)2
] 1

2

(1.5)

This is the general uncertainty equation for product functions where ωR is the uncer-
tainty on R and ωxi is the absolute uncertainty on xi. [6] This general formulation
can be applied to analyze the velocity measurements. For:

V = xt−1 (1.6)

The partial derivatives are:

∂V

∂x
=

1

t

∂V

∂t
= − x

t2
(1.7)
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These partial derivatives can be used derive a specific form of the general uncertainty
equation:

∂V =

√(
∂x
∂V

∂x

)2

+

(
∂t
∂V

∂t

)2

∂V =

√(
∂x

1

t

)2

+
(
−∂t x

t2

)2

∂V =

√(
∂x

1

t

(x
x

))2

+
(
−∂t x

t2

)2

∂V

V
=

√(
∂x

x

)2

+

(
−∂t
t

)2

(1.8)

Notice that ωR and R are replaced by δV and V respectively where δV
V

is the relative
uncertainty of the measurement.

This form can be used to determine the velocity uncertainty, ∂V , based on the
resolutions of the distance and time measurands, ∂x and ∂t respectively, and also the
measured values of V, x and t.

The time was recorded with a timer accurate to 0.1 seconds over a constant dis-
tance of 50 ft with a tape measure accurate to 1/16 in (0.0052 ft). In the first run, the
raft took 20.1 seconds to travel the 50 ft resulting in an average constant velocity of
2.49 ft/s. This information is used in the above equation to determine the uncertainty
of the velocity measurement:

∂V = V

√(
∂x

x

)2

+

(
−∂t
t

)2

∂V = 2.49 ft/s

√(
0.0052 ft

50 ft

)2

+

(
− 0.1 s

20.1 s

)2

∂V = 1.24× 10−2 ft/s (1.9)

Therefore, the velocity for the first run is 2.49 ± 0.0124 ft/s. The average uncer-
tainty for all of the runs, based on the resolution of the measurement instruments, is
± 0.0146 ft/s.

The time measurement has an additional source of error since each recorded time
is based on a person starting and stopping the timer. Since the decision to start and
stop the timer is a bit subjective and the reaction time of the operator can affect the
result, it is prudent to consider this source of error from a statistical standpoint.

For the raft testing, two sets of ten runs were performed at the different speed
settings. All of the time measurements for each speed setting are grouped together
and analyzed using X and Rm charts. Table 1.1 shows the resulting statistics.
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Raft Speed Statistics
Speed Setting Average Time (sec) Variance (sec)

6 19.845 0.451
7 17.49 0.268

Table 1.1. Raft Speed Statistics

It can be seen that with the second speed setting, the variance of the time mea-
surement improved. This could be attributed to increased operator experience. Re-
gardless, the variance of the time measurement is greater than the resolution of the
stopwatch so this value should be used to determine the overall velocity uncertainty.

∂V = V

√(
∂x

x

)2

+

(
−∂t
t

)2

∂V = 2.49 ft/s

√(
0.0052 ft

50 ft

)2

+

(
−0.451 s

20.1 s

)2

∂V = 5.59× 10−2 ft/s (1.10)

1.4 Results of Open Tunnel Testing

The data presented in this section comes from the senior design team’s first attempt
to create a calibration system. The system consisted of a six foot long, thirty inch
diameter aluminum tunnel lined with neoprene. The tunnel was submerged and
attached to a custom built pontoon boat such that the tunnel would move horizontally
through still water. In this way a relative constant flow cross section would be seen by
the ADCP which was mounted on the side of the tube looking inward. The neoprene
served to prevent reflection of the acoustic signal so that only signal from moving
particulate in the water returned to the transducers. The size of the tunnel diameter
was necessary to account for the blanking distance of the ADCP. The distance from
the transducer faces to the depth of the first observable bin is the blanking distance.
Since the ADCP can not instantaneously send and recive an acoustic signal a time
delay must occur between these modes of operation and so no data can be captured
immediatly in front of the unit.

The transect data for the open tunnel testing resulted in a series of ensembles
only one bin deep. This is due to the blanking distance taking up most of the domain
inside the tunnel. The transect data is presented in Figure 1.1.

This small piece of the entire transect was considered since it is the longest set
of relatively continuous ensembles, that is, there are relatively few bad bins over this
section of the data compared to the entire transect. Analyzing this data using the
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Figure 1.1. Open Tunnel Testing Transect

method described above results in the statistical control chart presented in Figure
1.2.

Comparing the control chart with Figure 1.1, it can be seen that towards the end of
the set, the error and range fall outside the control limits. It should be reiterated here
that bad bins are not considered and so it seems that good bins which fall around bad
bins tend to have more error associated with them even though the ADCP considers
them good. In short, more bad bins in the set translate to more error in the good
data.

If the data set is truncated so the out of control points are not included, the bias
error drops slightly but the variance statistic improves as shown in Figure 1.3.
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Figure 1.2. Open Tunnel Testing Error Charts
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Figure 1.3. Open Tunnel Testing Truncated Error Charts
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1.5 Results of Raft Testing

Since the open tunnel testing method proved difficult to produce repeatable data,
the decision was made to change to a raft calibration design. These results proved to
be repeatable. Four sets of 10 runs of data were performed using varying the speed
and configuration setting between two choices each. Transect 1.0 is shown in Figure
1.4. The corresponding control charts for this run is shown in Figure 1.5. This same
analysis was performed on each of the 40 transects. The results of the analysis is
complied into Table 1.2.

A complete set of control charts is provided in Appendix B. Appendix A provides
the Matlab code used to analyze the data and produce the control charts. The raft
data appears to be consistent and repeatable. Table 1.3 shows the results in a more
concise form along with the settings for each set. For a set speed, the variance is
slightly reduced for configuration 2. Also, the bias error increases with velocity given
a constant configuration setting.
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Figure 1.4. Raft Test Transect 1.0

Figure 1.5. Raft Transect 1.0 Error Charts
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Table 1.2. Raft Testing Data

Set 1
run average error variance
1.0 -1.323 0.499
1.1 -1.072 0.548
1.2 -1.349 0.525
1.3 -1.051 0.978
1.4 -1.169 0.696
1.5 -1.414 0.431
1.6 -1.380 0.528
1.7 -1.433 0.385
1.8 -1.279 0.577
1.9 -1.031 0.509

Set Average -1.250 0.567

Set 2
run average error variance
2.0 -1.460 0.305
2.1 -1.439 0.327
2.2 -1.544 0.428
2.3 -1.474 0.366
2.4 -1.632 0.314
2.5 -1.569 0.335
2.6 -1.233 0.613
2.7 -1.609 0.349
2.8 -1.579 0.289
2.9 -1.590 0.394

Set Average -1.513 0.372

Set 3
run average error variance
3.0 -1.588 0.600
3.1 -1.701 0.437
3.2 -1.611 0.606
3.3 -1.673 0.290
3.4 -1.616 0.505
3.5 -1.793 0.375
3.6 -1.604 0.475
3.7 -1.656 0.516
3.8 -1.647 0.462
3.9 -1.773 0.491

Set Average -1.666 0.475

Set 4
run average error variance
4.0 -1.721 0.249
4.1 -1.651 0.380
4.2 -1.849 0.455
4.3 -1.787 0.411
4.4 -2.035 0.343
4.5 -1.933 0.439
4.6 -2.055 0.269
4.7 -1.989 0.260
4.8 -1.984 0.188
4.9 -1.890 0.299

Set Average -1.889 0.329

Table 1.3. Raft Test Settings and Results

Set Speed Setting Configuration Setting Average Error Variance
1 6 1 -1.250 0.567
2 7 1 -1.513 0.372
3 6 2 -1.666 0.475
4 7 2 -1.889 0.329
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1.6 Conclusions

For all of the data analyzed in this report, the bias error is always less than the
actual velocity. This is explained by Mueller et al. [9] who shows that the ADCP
will always register slower speeds due to downward flow at the forward transducer
face and upward flow at the rearward transducer face. For this reason, future testing
should include hydrodynamic fairings on the test setup to reduce the flow deflection
around the ACDP as much as possible.

These results show a much larger bias error compared to similar tow tank testing.
Oberg [10] details tow tank testing performed by the United States Geological Survey
and SFWMD at the Naval Center for Surface Warfare in the David Taylor Model
Basin in West Bethesda, Maryland. For a 600 kHz ADCP at similar velocities, this
study saw a difference of only -0.23 cm/s , a much smaller bias error. There may be
several reasons for this including unknown flows in the testing pond, flow anomalies
from the raft geometry or towing methods or inappropriate configuration settings for
the test.



2. WAVELENGTH TRENDS OF INSTABILITY STRUCTURES IN
EVAPORATING LIQUID FILMS

2.1 Introduction to Instability

The stability of a system is determined by its response to a disturbance as it is per-
turbed from steady state. A system may be classified as stable, unstable, neutral
or nonlinearly unstable. A stable system will return to its original steady state re-
gardless of the perturbation. An example of this would be a pendulum. A neutrally
stable system will change from its original state given some perturbation but the per-
turbation will not grow and the system will achieve new steady state. An unstable
system will deviate from its original steady state with the onset of any perturbation.
The perturbation amplitude will continue to grow in the absence of any damping
mechanisms. A nonlinearly unstable system may exhibit stable states for certain
disturbances while become unstable for other, larger disturbances. [8]

For the instability studies considered the disturbance shall be described by Eqn
(2.1):

u(x, t) = û(y)eikx+imz+σt (2.1)

where û(y) is the complex amplitude, k and m are real components of the wavenumber
and σ, the eigenvalue, is complex as described by σ = σr + iσi.[8] The time constant
of Eqn 2.1, σr, determines the stability state:

σr > 0 −→ unstable

σr < 0 −→ stable

σr = 0 −→ neutrally stable

When σr = 0 the system is said to be in the marginal state if it is just between sta-
ble and unstable states. With respect to thin films, a small change in flow properties
can push the system to the unstable state.

2.2 Experiments

Researchers at the University of Washington have performed experiments to study
the instability mechanisms in evaporating thin liquid films. Researchers at Michigan
Technological University contributed to the project with analysis of the experimental
data and image processing of the Schlieren photographs. The experimental setup

jsa
Sticky Note
really a "growth rate" with units of 1/sec
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Figure 2.1. Schlieren photograph of instability structures in a thin evaporating film
of dichloromethane [7]

consists of a thin liquid film placed on a heated copper block. The film is allowed
to evaporate but not boil. The vapor is contained above the film where temperature
and pressure are maintained for steady evaporation. Figure 2.1 is an example of the
experimental images.[7]

At the onset of instability in the film, the convective cells form. The horizontal
distance across each cell is the physical wavelength relating to the fastest growing
(critical) wavenumber of the perturbed system.[1] Developing relationships of the
critical wavenumber and the other fluid and flow properties is crucial in understanding
the phenomenon of evaporating film instabilities.

The images are Schlieren photographs taken at a regular interval to capture density
gradients in the film through time. Before presenting more of these photographs, it
is prudent to explain how Schlieren works in order to account for visual artifacts in
the images.

Many flow phenomena are unobservable to the naked eye but can still be imaged
due to the fact that regions of different density affect the local index of refraction
in the flow. This bending of light is the basis of the Schlieren family of imaging
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techniques. These techniques fall in to three main categories: direct shadow, Schlieren
and interferometry.

The most basic imaging technique based on variations of refractive index is the
direct shadow method. Images are achieved by simply passing light through a flow
field of interest and observing the resulting image. Undisturbed light will simply pass
through the flow field and image at its nominal intensity. Refracted light however will
cast shadows and bright spots on the imaging screen as light passing through areas
of higher refractive index will travel more slowly. The observable effects of the direct
shadow technique are a function of the second derivative of density. [5]

Schlieren is an extension of direct shadow as this technique serves to separate
the refracted light from the undisturbed light by inserting a knife edge at the focal
plane before the imaging lens. The knife edge is aligned perpendicular to the density
gradient of interest and inserted into the light path to block the undisturbed light.
As the undisturbed light is blocked, the overall illumination of the image will be
noticeably reduced. At the same time, lines and areas of changing index of refraction
show up in striking contrast. The observable effects of the Schlieren technique are a
function of the first derivative of density (density gradient). [5]

In Figure 2.1 hexagonal convective cells can be seen here but one should also notice
the shadows in each cell. These shadows are an artifact of the Schlieren technique.
In fact, the vertical edge of the shadows indicate the orientation of the knife edge as
it blocks the undisturbed light. Techniques to remove these shadows are presented
further in the thesis.

The convective cells shown in Figure 2.1 are representative of a certain time (film
thickness) during the evaporation. As the liquid evaporates and the film thickness
decreases, these cell shapes shift about and evolve. Figure 2.2 presents a typical
progression of convective structures in the evaporating films. In Figure 2.2a, the
evaporating film is relatively thick and just starting to organize into regular cell
shapes. As evaporation continues and the film thins, the cells shrink in size and take
on a more hexagonal shape as seen in figure 2.2b and figure 2.2c. Near frame 13500,
the small wave length begins to appear as ring structures centered about various points
shown in figure 2.2d. At this transition a large increase in wave length is observed in
the long wave length cell centers and the short wave length structures become more
dominate. This continues until the cell centers dissipate and the short wave length
remains, as seen in figures 2.2e and 2.2f. The short wave length continues until the
film become too thin for the Schlieren to resolve the density gradients. Eventually
film rupture occurs. [7]

This trend is common to several different fluids tested. A rather interesting event
was captured during an experimental run with methanol as shown in Figure 2.3.
The convection cells begin as they did with dichloromethane being rather randomly
shaped and dispersed. As the cells shrink in size and become ordered, a transient
disturbance occurs in the upper left corner of the image as seen in figure 2.3c. This
is likely due to a condensed drop falling onto the evaporating film or a short burst



2. Wavelength Trends of Instability Structures in Evaporating Liquid Films 16

(a) Frame 3000 (b) Frame 8000

(c) Frame 12000 (d) Frame 13500

(e) Frame 16000 (f) Frame 17000

Figure 2.2. Images from Dichloromethane [7]
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of boiling at the edge of film. Interestingly, the disturbance decays quickly and the
system seems to recovers to its previous state.
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(a) Frame 1500 (b) Frame 6000

(c) Frame 9000 (d) Frame 10000

(e) Frame 11100 (f) Frame 15000

Figure 2.3. Images from Methanol [7]
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2.3 Manually Determining Wavelengths

To extract wavelength information from images where large cells are dominate, the
distance between adjacent cell centers is measured manually in Matlab�using the
imtool command. An example of this is shown below in Figure 2.4. This method
suffers in accuracy as estimating the cell centers and trying to randomly pick adjacent
cells is somewhat subjective. Nevertheless, wavelengths become quantifiable in time
and some striking trends appear as seen in Figure 2.5.

To reduce the error imposed by manually gathering the wavelength data, the
following guidelines were followed:

• Measure at least four pairs of cells for each image. The four samples were then
averaged together to report a wavelength for the image.

• Sample the most well defined adjacent cell pairs.

• When possible select samples over the entire image.

• If differences in cell size exist, sample from both large and small cell pairs.

• When possible, sample different cell pairs in successive images.

Figure 2.5 shows the results of large wavelength tracking on dichloromethane,
images of which can be found in Figure 2.2. The wavelengths decrease as is observed
in the images until the dominate structures transition from hexagonal cells to ring
structures. The wavelength attributed to the centers of these structures dramatically
increases through the transition. This trend continues until the short wavelength
becomes entirely dominate.
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Figure 2.4. Example of manual distance measurement

Figure 2.5. Manual wavenumber tracking of dichloromethane



3. IMAGE PROCESSING OF INSTABILITY STRUCTURES IN
EVAPORATING LIQUID FILMS

The goal of the image processing is to extract the fastest growing wavelength of
instability of an evaporation liquid film. This is found by determining the distance
from center to center of neighboring cells in the image. As shown previously, one can
manually measure this distance. However, to track this value between many cells per
image and over several hundred images is an arduous task. Aside from the tedious
nature of doing this manually, picking the exact center of each cell consistently is
impossible. The methods aimed at automating the extraction of cell centers and
distances are discussed.

3.1 Principle Component Analysis

As an artifact of the Schlieren technique, shadows exist within the pseudo-Bnard
cells that hamper the image processing. In an effort to remove these shadows while
preserving the cell boundaries, principle component analysis (PCA) is applied. PCA
aims to discover what elements of a data set contain interesting dynamics by using
the covariance matrix of the data and its corresponding eigenvectors and eigenvalues.
The largest eigenvalue of the covariance matrix, with its corresponding eigenvector,
represent the first principle component of the data. All subsequent principle compo-
nents are orthogonal to both the first principle component and each other.[13]

To illustrate how this works, consider a two dimensional point cloud of data points
as shown in Figure 3.1a below. This particular point cloud comes from a two dimen-
sional fast Fourier transform of one of the evaporation images being studied. By
using PCA, all of the data points are collapsed onto a line in the direction of the
most variance. In other words, if one were to draw an ellipse around the point cloud,
the data would all collapse onto the major axis of the ellipse.

The first step in PCA is to arrange the data in a matrix where columns will
represent dimensions of data and rows represent observations. Since this is a two
dimensional point cloud, it is convenient to arrange a 2 by n matrix where the columns
are the x and y coordinate and each row is a data point. The matrix must also be
centered about zero. This is done for each column by subtracting the column average
from each value within the column.

The next step is to calculate the covariance matrix from PCA data matrix. The
eigenvalues and corresponding eigenvectors of the covariance matrix are then calcu-
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(a) Before PCA (b) After PCA

Figure 3.1. Data point cloud linearized along first principle component

lated. The largest eigenvalue and eigenvector represent the first principle component.
The next largest eigenvalue and eigenvector indicates the second principle component
and so on. Each principle component is orthogonal to the rest which means in this ex-
ample, the second principle component represents the minor axis of the hypothetical
ellipse bounding the data. Also, since this example started with only two dimensions
in the PCA data matrix, only two principle components will result.

The intention is to collapse the data onto a line. Therefore only one of the prin-
ciple components, the first, will be kept. The eigenvector belonging to the largest
eigenvalue becomes the feature matrix or rather the feature vector since only one
principle component is retained.

The reduced data is calculated by equation 3.1:

[Reduced Data Matrix] = [Feature Matrix] ∗ [Original PCA Data Matrix]′ (3.1)

The reduced data matrix must then be converted back to the original space by equa-
tion 3.2:

[Final Data Matrix] = [Feature Matrix]′ ∗ [Reduced Data Matrix] (3.2)

All that is left is to take the transpose of this matrix and de-center the data by adding
the respective column average back to each value. A plot of the resulting points should
reveal all of the data collapsed onto a line representing the first principle component
as shown in Figure 3.1b:

The basic strategy described above can be applied to a series of images to extract
features that are common between them. This is referred to as sequence principle
component analysis (SPCA) in this report. In SPCA, the extraction of principle
components is the same as in PCA however the setup of the original data matrix is
different. Each image is rearranged into a single vector by moving to the right across
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Figure 3.2. Original image (left) and the second principle component of the same
image (right)

the photograph and stacking each column of pixel data below the previous column.
This is done for a series of images captured close in time and each image vector
becomes a dimension (column) in the PCA data matrix. The number of images used
determines the number of principle components that can be extracted.

Once the images have been rearranged and assembled into the PCA data matrix,
the data matrix is centered and run through the analysis described above. The desired
principle components are selected that produce the best image of cell boundaries only
and the images are rebuilt from the resulting final principle component data matrix.
The principle components used in the feature matrix are selected by trial and error
method. The number of images used in the SPCA affect which components to extract.

An example of the results of this technique along with the original image is shown
below in Figure 3.2. The cell boundaries are preserved with the second principle
component of the image while the shadows, along with much of the noise, are reduced
or eliminated.

The cell boundaries which are the features of interest, are preserved while elimi-
nating much of the shadows and noise. This simplified image will be much easier to
use in further image processing techniques.

3.2 Wavelength Extraction in the Frequency Domain

To extract the wave number automatically, Matlab�code has been written that com-
bines two dimensional fast Fourier transforms with two dimensional principle com-
ponent analysis. The following steps are used to extract the frequencies from an
image:

1. A gray-scale image of interest is loaded into the program workspace. needs to
be a gray scaled intensity image.
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2. The image is windowed and transformed via two-dimensional Fast Fourier Trans-
form. The resulting data is shifted so the zero frequency is located in the center.

3. The amplitudes are scaled by the log of the absolute value. An adjustable
threshold is defined as a percentage of the max amplitude. Any data falling
below this threshold is ignored. This energy filter converts the FFT image to
binary.

4. Two-dimensional principle component analysis is performed on the resulting
point cloud to collapse the data onto the first principle component. This iden-
tifies the direction accounting for the largest variance in the point cloud.

5. The Euclidean distance of each point on the first principle component is deter-
mined.

6. The number of points at each distance (frequency) is determined and plotted.

7. The highest occurring frequency is extracted from the plot.

Figure 3.3 shows the results of this process. The reported frequency for this image
is 26.5 pixels. Figure 2 shows a comparison of this result to pixel measurements
performed on the original image.
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Figure 3.3. Example result of automated wavelength extraction

Figure 3.4. Manual measurement of same image processed in Figure 3.3
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3.3 Results of Image Processing

The goal of the image processing work was to create a program that would auto-
matically extract wave length information from Schlieren images of an evaporating
film. The approach taken was to use two dimensional fast Fourier transform (FFT) to
identify features of interest in the frequency domain. This effort was met with mixed
success. Images of the film where large cells, random or ordered, were dominant did
not produce enough repeating features in any one direction to be detectable by the
two dimensional FFT method. As the smaller wave lengths become prevalent, that is,
when the ring structures form and become dominate, the FFT picks up these highly
repeating structure quite well.

To extract the wave lengths from the large cell patterns, dedicated image pro-
cessing software may be needed. The SPCA method applied to the images greatly
reduces the large Schlieren shadows in the center of the cells and highlights the cell
boundaries. This will aid image processing in other third party software.



4. BEHAVIOR OF THE CRITICAL WAVENUMBER IN A ONE
SIDED EVAPORATION MODEL

4.1 The Rayleigh Bénard Problem

One of the most well known instability problems in thin film fluid mechanics is the
Bénard Problem. The experiment, conducted by Henri Bénard in 1900, involved heat-
ing a thin film from below to create a thermal gradient resulting in cooler, top heavy
fluid above the warmer fluid layers. Ordered hexagonal convection cells developed
with the onset of the instability once the temperature gradient became sufficiently
large. A sketch of the problem is shown in Figure 4.1. In 1916, Lord Rayleigh defined
a non-dimensional ratio of fluid properties where, at a critical value of this ratio, the
convective cells observed by Bénard develop.[8] This ratio, known as the Rayleigh
Number.

Ra =
gαΓd4

κν
∼ Buoyancy Force

Viscous Force
(4.1)

where g is the acceleration due to gravity, α is the coefficient of thermal expansion,
Γ = −dT̄ /dz is the vertical temperature gradient of the initial state, d is the depth of
fluid at the initial state, κ is the thermal diffusivity and ν is the kinematic viscosity.
[8] Convective cells observed by Bénard’s experiments are driven by surface tension
variations due to temperature.

In the next section, the discussion considers the validity of an assumption on the
critical wavenumber in Padate’s thesis[12] therefore it is important to establish a

Figure 4.1. Unstable initial conditions which will lead to convection
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foundation of its derivation and implication to film instability. Kundu’s derivations
of Bénard convection will be followed to accomplish this.

Kundu begins with the Boussinesq approximation of the continuity, momentum
and heat equation governing the fluid behavior. These equations are shown below as
Eqn 4.2.

Continuity:
∂ũi
∂x̃i

= 0

Momentum:
∂ũi
∂t

+ ũj
∂ũi
∂xj

= − 1

ρ0

∂p̃

∂xi
− g[1− α(T̃ − T0)]δi3 + ν∇2ũi (4.2)

Energy:
∂T̃

∂t
+ ũj

∂T̃

∂xj
= κ∇2T̃

The Boussinesq approximation is such that density, ρ, is treated as a constant in
all terms except the external force term.[1] The dimensional variables represent the
variables in the initial state in the manner of Kundu.[8] Density is given by the
equation of state Eq(4.3) :

ρ̃ = ρ0[1− α(T̃ − T0)] (4.3)

The full derivation of the evolution equation has been presented in chapter 11 of
Kundu.[8] The momentum variables are represented as a base state plus a pertur-
bation which is applied to the model presented in Figure 4.1. The equations are
linearized and the Prandlt number, Rayleigh number and wavenumber appear as key
parameters in the dimensionless linearized equantions which constitute an eigenvalue
problem for the time constant σ.

Solving this problem for the flow between two rigid plates, as shown in Figure
4.1 yields an eigenvalue problem of a sixth order. The solution to this problem
yields a relationship between Ra and K where a minimum value for Ra exists at the
onset of instability. This critical Rayleigh Number, Racr, has a corresponding critical
wavenumber, Kcr. (K =

√
k2 + l2). For this case Racr = 1708 and Kcr = 3.12.[8]

If the boundary conditions are changed, the critical Rayleigh Number and corre-
sponding critical wavenumber will change as well. For the case of a slip boundary
condition, where two fluids of different density are superposed between the plates,
the heavier on the bottom, the critical Rayleigh number for the heavier fluid and cor-
responding critical wavenumber become Racr = 657 and Kcr = π/

√
2 respectively.[8]

This relationship is shown in Figure 4.2.
The value of Kcrit will change if the boundary conditions of the system are also

changed.
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Figure 4.2. Stable and unstable regions for Bénard convection with free surface
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4.2 A One Sided Evaporation Model and the Critical Wave Number

The previous section followed Kundu’s formulation [8] of the Bénard problem where
the film is bounded below with a no slip surface on top by a free surface. The so-
lution produced a stability relationship between the wavenumber and the Rayleigh
number. With a basic understanding of film instability established, the discussion
moves to validate or revise the assumption that for a given evolution equation, the
critical wavenumber stays constant. The one sided evaporation model was proposed
by Davis [2] for film rupture studies and investigated further by Padate [12] with
numerical simulation in which he solved multipule cases, turning terms off and on in
the evolution equation. The previous section inferred that if the boundary conditions
change, so will the critical wavenumber for the classical Rayleigh-Bénard problem.
The following discussion will analytically show that changes in fluid and flow proper-
ties can change the critical wavenumber.

The one sided evolution equation for an evaporating liquid film proposed by Davis
[2] and studied by Padate [12] is shown in Eqn 4.4:

0 = ht +
Eh

h+K
+ S(h3hxxx)x (4.4)

+

{[
Ah−1 −Gh3 + E2D−1

(
h+K−1

)
h3 +

KMh2

P (h+K)

]
hx

}
x

where S is the non-dimensional surface tension. Other non-dimensional terms include
A, accounting for van der Waals attractions; P , the Prandtl number; E, the evapo-
ration number; D, the density ratio; M , accounting for thermo capillary flows; K, a
measure of non-equilibrium at the interface; and G, the gravitational number. The
reader is referred to Padate for details.[12].

Linearization of this equation about h = 1 yields Eqn 4.5. It should be noted that
EH
h+K

is not 0 when h = 1 so no bifurcation presents if E O(1). If E is sufficiently

small, this term is dropped [11] yet the E2

D
term is retained because it bay be O(1).

0 =
δH

δt
+ βH ′′ + SH ′′′′ (4.5)

where β is defined by

β = A−G+
E2

D (1 +K)
+

KM

P (1 +K)2

Substituting in the perturbation as an initial condition (Eqn 4.6)

H(X,T ) = H0e
ωT+iqX (4.6)

jsa
Sticky Note
"bay" should be "may"
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where ω and q are the perturbation time constant and wavenumber respectively and
are equivalent to Kundu’s[8] σ and k. This gives the characteristic equation:

0 = ω + Sq4 − βq2 (4.7)

The E term here is very small so it is dropped from the equation [11] yet the E2 term
in β must be retained giving Eqn 4.8:

ω = q2
(
β − Sq2

)
(4.8)

Padate[12] showed a similar result for an isothermal thin liquid film where:

β

S
= 1 (4.9)

and so
ω = q2

(
1− q2

)
(4.10)

The neutral stability curve for this isothermal case is presented in Figure 4.3.
Padate used this critical wavenumber, derived from the isothermal case for all cases

tested numerically. The following scaling analysis shows how, for the isothermal case,
the β S ratio equals one.

Arbitrary scaling factors are assigned for the x and t variables:

x̄ = λx t̄ = Ωt (4.11)

The partial derivatives are then derived:

δ

δt
=
δt̄

δt

δ

δt̄

δ

δx
=
δx̄

δx

δ

δx̄
(4.12)

δ

δt
= Ω

δ

δt̄

δ

δx
= λ

δ

δx̄
(4.13)

Substituting this into the linearized evolution equation for the isothermal case[12]
gives:

ΩHt̄ + βλ2Hx̄x̄ + Sλ4Hx̄x̄x̄x̄ = 0 (4.14)

For the coefficients of Hx̄x̄ and Hx̄x̄x̄x̄ to be equal gives:

βλ2 = Sλ4 (4.15)

β = Sλ2 (4.16)

so

βλ2 =
β2

S
= Sλ4 (4.17)

and 4.14 becomes
ΩS

β2
Ht̄ +Hx̄x̄ +Hx̄x̄x̄x̄ = 0 (4.18)
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Figure 4.3. Neutral stability curve for the isothermal case
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Figure 4.4. Neutral stability curve where β
S = 1

so Ω is choosen to be

Ω =
β2

S
(4.19)

and finally
Ht̄ +Hx̄x̄ +Hx̄x̄x̄x̄ = 0 (4.20)

This shows that the isothermal case can be scaled such that the β S ratio is
one. So long as this ratio is preserved, the critical wave number will not change as
illustrated in Figure 4.4.

The investigation can not stop here however. Turning terms in β on and off will
clearly change β however, with respect to given fluid, S will hardly change at all.
This means that the β S ratio equal to one will not hold beyond the isothermal case.
The effects of this changing ratio are illustrated in Figure 4.5.

Clearly, the assumption that the critical wavenumber of 1√
2
, derived from the

isothermal case, applies to any case based from the general evolution Eqn 4.4 does
not hold. For each case, β must be calculated to determine the appropriate critical
wavenumber.

jsa
Sticky Note
not sure what "this" references and it would seem that you've shown that \Omega scales as one, not \beta/S.

jsa
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should start a new sentence here
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Figure 4.5. Neutral stability curve where β
S changes
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4.3 Conclusions and Remarks

While working on completing a master of science in mechanical engineering, this
author has worked on many different projects and has gained much research expe-
rience. The author conducted research on two different projects: calibration of an
acoustic Doppler current profiler and investigations of the critical wave number in
unstable evaporating thin films. The nature of the work contained herein is widely
varied involving experimental setups, data acquisition, statistical analysis, analyti-
cal investigation, literature review and computational analysis. The common theme
with all of the project work is the investigation and research on thermo fluids with
accompanying statistical and analytical analysis.

A notable point about this research is the mixed amount of success and closure
of the different tasks. This speaks to the nature of research. The ADCP project is
a clear example of the challenges that arise and adaptations that must take place
in experimental work. The pontoon driven tunnel system had limited success so
the setup was changed to a towed raft design. While still not perfect, this design
change significantly improved the data. It also shows that a carefully designed and
constructed experiment is every bit as important to the results as the analysis.

In the thin film instability work, the author was able to correct the assumption
that the critical wavenumber used in Padate’s analysis [12] is not constant. While a
conclusive result was found for the analytical work, a complete program for wavenum-
ber extraction was not fully implemented. Incremental advances toward this goal were
however achieved in the application of principle component analysis and two dimen-
sional FFT. In research, some problems can be solved directly with the application
of theory and cleverness while others require incremental advancements and much
adaptation.

The author hopes that this work helps to advance the research he took part in as
well as provides examples of the experience and knowledge gained during his time as
a master student at Michigan Technological University.
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A.1 ADCP - Analysis Matlab Code

%ADCP Analysis
%11/14/08
clear, clc, close all
A = xlsread('data 1 0.xls',1,'A1:A150');

5 B = xlsread('data 1 0.xls',1,'B1:B150');
C = A − B;
k = length(C);
C bar = sum(C)/k;
C bar p = ones(k,1) .* C bar;

10 n = 3;
m = 0;
for i = 1:k−2

sample = [C(2−1+m),C(2+m),C(2+1+m)];
R m(i) = max(sample) − min(sample);

15 m = m+1;
end
R m bar = sum(R m)/(k−n+1);
R m bar p = ones((k−n+1),1) .* R m bar;
R m UCL = 2.575 * R m bar;

20 R m UCL p = ones((k−n+1),1) .* R m UCL;
stdev = R m bar/1.693;
C UCL = C bar + (3*stdev);
C UCL p = ones(k,1) .* C UCL;
C LCL = C bar − (3*stdev);

25 C LCL p = ones(k,1) .* C LCL;
disp('The Average Error is:')
C bar
disp('Plus or Minus')
(stdevˆ2)

30 subplot(2,1,1)
sample no = [1:1:k];
plot(sample no,C,'−ob',sample no,C bar p,'−.r',sample no,C UCL p,'−−g',

sample no,C LCL p,'−−g')
%ylim([−0.25 0.25])
title('Velocity Error Chart')

35 xlabel('Sample Number')
ylabel('Error')
legend('Data','Average Error','Control Limit','Location','BestOutside')
subplot(2,1,2)
sample no = [1:1:(k−n+1)];

40 plot(sample no,R m,'−ob',sample no,R m bar p,'−.r',sample no,R m UCL p,'
−−g')

%ylim([0 0.3])
title('Velocity Error Range Chart')
xlabel('Sample Number')
ylabel('Range of Error')

45 legend('Data','Average Error Range','Control Limit','Location','
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BestOutside')
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A.2 ADCP - Raft Testing Data Set Control Charts

Figure A.1. Raft Testing Control Chart - Set 1



A. ADCP Appendicies 41

Figure A.2. Raft Testing Control Chart - Set 2
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Figure A.3. Raft Testing Control Chart - Set 3



A. ADCP Appendicies 43

Figure A.4. Raft Testing Control Chart - Set 4



B. THIN FILM INSTABILITY APPENDICIES
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B.1 Full Image Processing Code with Supporting Functions

%% Code Header

% filename: EvapCodeTest.m
% author: Eric W. Kalenauskas

5 % date created: 4/7/09
% last modified: 5/26/09

% Code Summary:
%This code is designed to extract the critical wavenumber from a

sequence
10 % of schlieren images.

%This code employes user created functions to load images,
% implement Sequence Principle Component Analysis (SPCA), further

process
% the resulting component images, perform transform to frequency space

and
15 % implement an energy filter on the resulting point cloud. The code

will
% then use 2−D PCA to collapse the data on the first principle component
% direction and determine frequencies of high signal density to extract

the
% critical wave number from the image.

20 % This code is the first adaptation of previous investigative work to
% handle full sequences of images.

%% Start Code

25 % clear workspace, command window, and close figures
clear, clc, close all

% set code start time
tic

30

%% Load Files

% create structure of image file names
files = dir('*.JPG');

35

% determine number of images loaded
f length = length(files);

% determine image size
40 imsize = size(imread(files(1).name));

% load images to matrix
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numload = 0;
Img = zeros(imsize(1),imsize(2),f length,'uint8');

45 display('Loading Images...')
for i = 1:f length

Img(:,:,i) = imread(files(i).name);
numload = numload + 1;
display(num2str(numload))

50 end
display('...Image Loading Complete')
clear numload imsize files f length i

%% Image Sequence Principle Component Analysis
55 Img = SPCA(Img,6,3);

%% Pre FFT Processing
Img = PreFFTProcessing(Img);

60 %% 2D FFT
%Img = ImgFFT(Img,2,0.70);

%% Point Cloud PCA & Frequency Identification
% will be adapted to sequence work from older code ... in progress

65 % display('Running Point cloud PCA & Frequency Identifaction...')
% freq dist = PointCloudPCA(Img);
% display('... Frequencies Extracted')
%% Outputs
% will be adapted to sequence work from older code

70

display('***Master Code Complete***')
toc

function [Img SPCA] = SPCA(Img,seq length,PC num)

imsize = size(Img);

5 % build images into SPCA data matrix
SPCA data in = zeros((imsize(1)*imsize(2)),imsize(3));
display('Building Sequence PCA Data Matix...')
for k = 1:imsize(3)

I = double(Img(:,:,k));
10 a = 1;

b = imsize(1);
for j = 1:imsize(2)

Iv(a:b) = I(:,j);
a = a + imsize(1);

15 b = b + imsize(1);
end
SPCA data in(:,k) = Iv;
clear a b Iv I

end
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20 display('...Complete')

% preallocate SPCA data out
SPCA data out = zeros((imsize(1)*imsize(2)),imsize(3));

25 display('SPCA Running...')
% SPCA loop
for a = 1:(imsize(3) − seq length)

SPCA short in = SPCA data in(:,a:(a+(seq length−1)));
for b = 1:seq length

30 SPCA short in(:,b) = SPCA short in(:,b) − mean(SPCA short in(:,b
));

end
SPCA cov = cov(SPCA short in);
[SPCA evect,SPCA eval] = eig(SPCA cov);
SPCA comp vect = (SPCA evect(:,seq length−PC num+1))';

35 SPCA short out = SPCA comp vect' * (SPCA comp vect * SPCA short in')
;

for b = 1:seq length
SPCA short out(:,b) = SPCA short out(:,b) + mean(SPCA short in

(:,b));
end
SPCA data out(:,a) = SPCA short out(1,:);

40 end
display('...SPCA Complete')

display('Extracting Images...')
% extract images from SPCA data matrix

45 Img SPCA = zeros(imsize(1),imsize(2),imsize(3));
for k = 1:imsize(3)

a = 1;
b = imsize(1);
for j = 1:imsize(2)

50 Img SPCA(:,j,k) = SPCA data out(a:b,k);
a = a + imsize(1);
b = b + imsize(1);

end
end

55 Img SPCA = uint8(Img SPCA);
Img SPCA = Img SPCA(:,:,1:imsize(3)−seq length);
display('...Images Extracted')

function [Img] = PreFFTProcessing(Img)

display('Running Pre FFT Image Processing...')
imsize = size(Img);

5

for k = 1:imsize(3)
I = Img(:,:,k);
I = imadjust(I,[0 1],[0.5 1]);
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J(:,:,k) = I;
10 end

for k = 1:imsize(3)
I = J(:,:,k);
I = im2bw(I,0.54);

15 Img(:,:,k) = I;
end

Img = logical(Img);
display('...Pre FFT Image Processing Complete')

function [FFTPointCloud] = ImgFFT(Img,HPfiltsize,PME)

display('Running ImgFFT...')
imsize = size(Img);

5 height = imsize(1);
width = imsize(2);

for a = 1:imsize(3)

10 J = fftshift(fft2(Img(:,:,a)));

ycenter = height / 2;
xcenter = width / 2;
filtsize = HPfiltsize;

15

for i = 1:height
for j = 1:width

if sqrt((abs(i − ycenter)ˆ2) + (abs(j − xcenter)ˆ2)) ≤

filtsize
J(i,j) = 0;

20 end
end

end

A = log(abs(J));
25 maxfreq = max(max(A));

freqlog = zeros(imsize(1),imsize(2));
k = 1;

for i = 1:height
30 for j = 1:width

if A(i,j) ≥ (maxfreq * PME) % <−− Percent Max Energy
freqlog(i,j) = 1;

end
end

35 end

FFTPointCloud(:,:,a) = freqlog(:,:);
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end
display('...ImgFFT Complete')

function [frequency log] = PointCloudPCA(Img)

imsize = size(Img);

5 for c = 1:imsize(3)

% clear matrix A for reuse
clear A B xmean ymean orig data

10 % redefine point cloud image and extract size info
I = Img(:,:,c);
I = im2bw(I);
I size = size(I);

15 % determine X and Y coordinates of point cloud and build PCA data
matrix

k = 1;
for i = 1:I size(1)

for j = 1:I size(2)
if I(i,j) == 1

20 Ax(k) = j;
Ay(k) = i;
k = k+1;

end
end

25 end

A(:,1) = Ax;
A(:,2) = Ay;

30

% center point cloud about (0,0)
xmean = mean(A(:,1));
ymean = mean(A(:,2));

35 B(:,1) = A(:,1) − xmean;
B(:,2) = A(:,2) − ymean;

% calculate covariance matrix
Cov matrix = cov(B);

40

% calculate eigenvectors and eigenvalues
[E vect,E val] = eig(Cov matrix);

maxeval = 0;
45 maxevectnum = 0;
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for i = 1:length(E val)
j = E val(:,i);
if max(j) > maxeval

50 maxeval = max(j);
maxevectnum = i;

end
end

55 E vect max = E vect(:,maxevectnum);

% build feature vector with 1st principle component
feature vect = [E vect max];
feature vect = feature vect';

60 B = B';

% calculate transformed matrix
final data = feature vect * B;

65 % convert back to XY space
orig data = (feature vect' * final data);

% uncenter data
%orig data(1,:) = orig data(1,:) + xmean;

70 %orig data(2,:) = orig data(2,:) + ymean;

orig data = orig data';

% calculate distance of each data point along 1st principle
component

75 freq dist = sqrt((orig data(:,1).ˆ2) + (orig data(:,2).ˆ2));

%%
% clear variable A for reuse
clear A

80

% redefine 1st PC point cloud
A = freq dist;

% set range for density criteria
85 D width = 0.5;

% count points occuring at each freq
data size = length(A);

90 for i = 1:data size
D(i) = 0;
for j = 1:data size

if (i − D width) < A(j) && A(j) < (i + D width)
D(i) = D(i) + 1;

95 end
end
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end

% find limits of the data
100 j = 1;

for i = 1:data size
if D(i) 6= 0

mark(j) = i;
j = j + 1;

105 end
end

% limit range to data limits
D = D(min(mark):max(mark));

110 data size = length(D);
maxval = max(D);

% find the highest occuring frequency
for i = 1:data size

115 if D(i) == maxval
freq = i;

end
end

120 % determine max freq distance from data center (0 Hz)
%freq = abs(freq − (data size/2))

frequency log(c) = freq;
125

end
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