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ABSTRACT

The area of microfluidics has increased in popularity with such fields as MEMS, mi-
croreactors, microscaleheat exchangers, etc. A comprehensive understanding of dis-
sipation mechanisms for fluid flow in microchannels is required to accurately predict
the behavior in these small systems. Tests were perform using a constant pressure
potential created by two immiscible fluid juxtaposed in a microchannel. This study
focused on the flow and dissipation mechanisms in round and square microchannels.
There are four major dissipation mechanisms in slug flow; wall shear, dissipation at
the contact line, menisci interaction and the stretching of the interface. A force bal-
ance between the internal driving potential, viscous drag and interface stretching was
used to develop a model for the prediction of the velocity of a bislug in a microchan-
nel. Interface stretching is a dissipation mechanism that has been included due to
the unique system properties and becomes increasingly more important as the bislug
decreases in length.
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1. INTRODUCTION

Research for this paper focused on the behavior of a system consisting of two immisci-
ble fluids in a microchannel. The original goal of the project was testing the feasibility
of a micropump using the spontaneous capillary motion of the two immiscible fluids.
After the micropump was found to be feasible to scope of the research changed to the
study of dissipation mechanism in microchannels.

1.1 bislug Definition

Figure 1.1. Bislug in a round mi-
crochannel, the dyed liquid is ethy-
lene glycol and the non-dyed fluid is
silicone oil.
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Figure 1.2. Schematic of a bislug.

A bislug is defined as two slugs of immiscible liquid in contact in a microchannel.
Figure 1.1 is an image of a bislug in a round channel, the darker fluid is ethylene
glycol and the light-colored fluid is silicone oil. The subscripts used in the discussion
are based on the definitions from Figure 1.2, the front liquid will be labeled “A”
and the trailing liquid “B”. Slug lengths are measured at the center of one meniscus
to the other. Properties at the different interfaces are labeled “A” for air-liquid A,
“B” for air-liquid B, and “AB” for the liquid-liquid interface. A pressure potential is
created over the menisci due to a change in the surface tension, a description of the
mechanisms for spontaneous flow can be found in the Background, Chapter 2. The
bislug flows in the direction from right to left relative to figures 1.1 and 1.2.

1.2 Motivation

1.2.1 Passive Micropump

The original goal of the research was a feasibility study for the design of micropump
using the properties of a bislug system. The pressure potential from the bislug can
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Figure 1.3. Schematic of passive pump

be balanced by manipulating the geometry of the channel, see figure 1.3. Chapter 2
has an in depth discussion of spontaneous flow in microchannel. A passive pump is
created by the tapered endpiece of the channel. The leading slug will change its radius
of curvature until the pressure potential is balanced and the flow is stopped. If fluid is
drained from the cone the radius of curvature is changed and the bislug will move to
the balanced position. It has been see from experiments that the response in a round
channel my be too slow for a proper fluid pump. A square channel, because of the
geometry, may provide for a faster response time, resulting in a feasible micropump.

1.2.2 Energy Dissipation

The constant pressure potential created from the bislug may provide an ideal way for
studying dissipation mechanisms in a microchannel. From test to test the pressure
potential will remain constant as long as the channel and fluid properties remain
constant. There are four main dissipation mechanisms in a microchannel; viscous
shear, contact line dissipation, menisci interaction and the energy associated with
stretching an interface. Interface stretching is included as an energy term in this work
due to the properties of the bislug, more discussion in the Chapter 2 and Chapter ??.
A model based on the viscous drag and the interface stretching has been developed
for predicting the velocity of a bislug in both round and square microchannels.



2. BACKGROUND

2.1 Capillary Systems

Spontaneous flow of bislugs occurs in microchannels, where the gravitational affect on
the interface shape is minimized. The capillary regime will be discussed in detail to
bring the reader up to speed. A common example of capillarity is a simple capillary
tube placed in a container of fluid. Because of a pressure imbalance at the meniscus
the fluid will rise in the channel, if it is wetting, or recede if the fluid is non-wetting,
Figure 2.1.

To determine whether the system is in the capillary range, where gravitational
affects on the interface are minimal, the Bond number is used. The Bond number is
the ratio of gravitational to surface tension forces.

Bo ≡ ∆ρgL2

σ
(2.1)

where ∆ρ is the density difference accross the meniscus, σ is the surface tension of
the meniscus, and g is the local gravitational acceleration.

A useful variation of the Bo number is the capillary length or Laplace contant,
Lc. The Laplace constant is found by setting the Bo number equal to one and solving
for the characteristic length, Lc =

√
σ/ρg. This length is the transition between

surface tension and gravity dominated systems. A Bo � 1 is often used to describe
systems where gravity can be ignored when describing the interfacial shape. Though
the interfacial shape of the system may not be affected by gravity, gravity is still

Figure 2.1. A wetting fluid rises in a capillary while a non-wetting fluid will recede
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Figure 2.2. Configureation of a liquid drop on a solid surrounded by a gas, the
intersection of the three materials create the contact line.

acting on the entire body. A common misconception is the bulk system is not
affected by gravity but a couple of examples will prove otherwise. First, a drop from
a cloud or a faucet can easily have a Bo � 1 but it will still fall towards the earth.
Second, a sponge has pores that are in the capillary range for water and water will
wick into the sponge which results in a partially saturated sponge having the bulk of
the water at the bottom due to gravity.

Interfacial shapes in a capillary system are dominated by the surface tension of the
fluid(s). Surface tension, σ, is the molecular cohesion forces acting at the interface
between two fluids and is unique for a given fluid pair. The interfacial shape is
determined by surface tension, a surface energy, which tries to minimize the overall
surface area, this produces a spherical shape in simple configurations, figure 2.2. The
shape of a fluid on a solid surface is a function of the interaction at the contact line.
For simplicity, a drop of liquid will be placed on a solid with a gas as the surrounding
fluid, Figure 2.2. The contact line is the intersection of the three materials, gas, liquid
and solid. Each of the surface energies, gas-liquid, gas-solid, liquid-gas, determine the
final shape of the liquid. At the contact line the interaction is quantified using the
contact angle. The contact angle, θ, is measured from the solid to the tangent at the
surface of the liquid at the contact line, figure 2.3. A liquid is considered wetting if
θ < 90o and non-wetting if θ > 90o.

A pressure differential is caused by the curvature of the fluid’s interfacial shape
and can be calculated using the Laplace-Young equation.

∆p = σk (2.2)

k = 1/r1+1/r2 Where r1 and r2 are the principle radii of curvature, which are normal
to the menisci. For a round channel this reduces to ∆P = 2σ

R
, where R = a

cosθ
, a is the

radius of the channel and θ is the contact angle. For a perfectly wetting fluid, θ = 0,
∆P = 2σ

R
. Conclusions about the affect that the material and geometric properties

of a channel have on the pressure drop are:

1. The radius of curvature changes with contact angle and radius of the channel
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Figure 2.3. A wetting system has a contact angle < 90o, water on clean glass, and a
non-wetting system has a contact angle > 90o, water on wax coated glass.ref

2. Fluids with differing surface tensions will have different pressure drops in the
same channel

The pressure drop from the curvature of a fluid is the reason why a fluid will wick
into a capillary tube or napkin. The radius of curvature in the capillary, R = a

cosθ
,

is smaller than the curvature on the surface, R ≈ ∞. This produces a net pressure
drop and the fluid is pushed in the capillary until the pushing force is balanced by
gravitational forces. Washburn (1921) formulated the first widely reconized predictive
equation for the rise time in both a horizontal and vertical oriented channel.

Velocites in microchannels are frequently represented in a non-dimensional form
called the Capillary number, Ca ≡ µV/σ, where µ is the viscosity of the fluid, V is
the velocity of the fluid and σ is the surface tension. The Capillary number is the
ratio of viscous forces with surface tension. Velocities can also be represented using
the Weber number, We = ρV 2l/σ, where ρ is the density, V is the velocity, l is the
characteristic length of the fluid and σ is the surface tension. This is the ratio of fluid
inertia to surface tension.

Edward, W.Washburn, The Physical Review, The Dynamics of Capillary Flow.
1921 Vol. XVII, No3

2.2 Spontaneous Flow

Fluid flow in microchannels is the result of a pressure differential across the length of
the channel. Generally the pressure difference is the result of an externally supplied
force, for example a channel attached to a syringe pump, constant flow, or a slug of
fluid being pushed by a plunger, constant displacement.

Spontaneous flow in microchannels occurs through a pressure imbalance accross
the menisci of a slug. Figure 2.4 shows three different configurations that will cause
spontaneous motion. Each of which is a manipulation of the Laplace-Young equa-
tion 2.2. A difference in surface tension across a slug will cause flow in the direction
of the fluid with the highest surface 2.4(a). A change in channel geometry, such as
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q 2q 1
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Figure 2.4. Spontaneous flow induced in a microchannel from a pressure imbalanced
caused by a (a) difference in surface tension, (b)change in channel dimensions, and/or
(c) change in contact angle.??

an increase or decrease in radius, will change the radius of curvature in the system,
which results in flow towards the smaller radius of curvature 2.4(b). Changing the
contact angle also changes the radius of curvature, producing flow towards the smaller
contact angle 2.4(c).

When two immiscible fluids are in contact, a net pressure drop is produced due
to the change in surface tension resulting in spontaneous motion. The motion will
be towards the fluid with the highest surface tension. This assumes that the ra-
dius of the channel and the contact angles of the two fluids are equal. In the case
of differing properties the flow is induced in the direction of the menisci with the
largest pressure drop. This phenomenom was first studied in great detail by Bico
and Quéré(2002). Their work focused only on bislug flow in round channels, square
channels are mentioned during the concluding remarks.

2.3 Coating Flows

When two immiscible fluids travel down a channel a thin film of fluid is left on the
walls. This can be seen with a classic example of a bubble displacing a fluid in a
channel ??. As the bubble moves forward the fluid is pushed out of the channel but
leaves behind a thin film of fluid. This film acts a lubricating layer for the bubble to
travel on, producing bubbles that travel faster than the liquid film??.

Previous research involving coating flows has been directed towards oil recovery
enhancement. Water forms a lubricating layer that the oil can travel over, since oil
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U

Figure 2.5. Schematic of a bislug during flow, both fluids A and B leave a thin film
behind.

and water are immiscible they can be easily seperated. A comprehensive comparison
of data to old and new theory can be found in Bai(1992). Essentially, based on
flow rates of the two fluids, different instabilities are formed in the pipes. This is of
extreme importance as the amount of energy required changes for the different flow
regimes??Jeff’s Paper. Any increase in energy requirements to push the fluids would
mean a large increase in expenditure for oil recovery, due to the large volumes of water
used??. An empirical formula for the film thickness was developed by Bretherton
(1961),

h/r = .634(3Ca)(2/3) (2.3)

, the film thickness can be estimated by knowing the Ca number of the system and
radius of the channel.

Bislug flow produces a constant pressure drop over the meniscus only, the film
does not experience a pressure potential from the menisci. This differs from common
annulus flow experiments, where a pressure drop is supplied to both fluids. If the
pressure is supplied over the entire radius of the channel the film experiences an
external force, which produces flow. As a bislug travels down the channel it leaves
a film of fluid A which fluid B travels over, figure 2.5. The film left by A subjected
to drag from core B, and the fluid is dragged along, similar to Couette flow. Fluid B
also deposits a small film over the film of fluid A. Solutions for the flowrate for both
cases can be found in BOOK. The flowrate was in final form for the Couette film flow
and could not be used for this study.

F. P. bretherton, Motion of Long bubbles in tubes, J, Fluid Mech. (1961), 10:
166-188

Middleman, Stanley, Modeling Axisymmetric Flows: Dynamics, Films, Jets, and
Drops, Academic Press, San Diego,1995. Developes a model for pressure driven an-
nular flow, has flow rationship for film being sheared out of the channel, no useful

Lubricated pipeling: stability of core-annular flow. Part 5. Experiments and com-
parison with theory, J. Fluid Mech (1992) vol 240 pp 97-132, Runyuan bai, Kangping
Chen and D.D. Joseph. Fluid-fluid flow vertical flow, water lubricating oil, oil recov-
ery. Found stability regions for fluid fluid being pumped.

Fairbrother, F. and Stubbs, A.E., 1935. Studies in electroendosmosisVI. The
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bubble tube method of measurement. Journal of Chemical Society 1, pp. 527529.
Energy Demands on Water resources, Report to Congress on the interdependency

of energy and water, December 2006 U.S. Department of Energy.

2.4 Corners

To test the feasibility of the bislug micropump, two different cross-sectional mi-
crochannels were used. From previous experiments(??) it has been shown that a
bislug will flow in round channels. However, square channels, or channels of non-
circular cross-sections had not been tested. A uniform film thickness is deposited
on the walls of a round microchannel when coated with wetting liquid. A square
microchannel exhibits a different form of coating. As a fluid slug traverses a square
microchannel it leaves a thin film on the walls similar to the round channels, but it
may also deposit a thicker film in the corners, Figure 2.6. Whether or not the fluid is
retained in the corners is dependent on the Concus-Finn criteria (?). The criteria for
corner wicking is a function of the contact angle of the fluid and the surface, θ, and
the half angle of the corner, α, Figure 2.7.

θ ≤ π

2
− α (2.4)

h P
R R

Figure 2.6. Coating profiles of liq-
uid films in different channel geome-
tries.

2 a

q

Figure 2.7. Spontaneous
wicking of a fluid into a cor-
ner satisfying the Concus-
Finn Criteria.

For the test setup both fluids are perfectly wetting to the glass and the square
microchannels have corners with half angles of 45o. For any fluid in a square channel
θ ≤ 45o. Fluids with contact angles between 45o and 135o are partially wetting in
square microchannels; that is, the fluid behaves like it would in a round channel. Any
channel with corners can have fluid spontaneously wick into the corners if it satisfies
the Concus-Finn criteria. The spontaneous flow of the fluid is induced by a difference
in curvature. This curvature difference causes a net pressure imbalance in the same
manner as Figure 2.4(b). Figure 2.8 represents fluid in a wedge, the wedge is one
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Figure 2.8. The schematic of a wedge with spontaneous corner wicking.

of the four corners of a square channel, the radius of curvature reduces from left to
right. The reduction in curvature can theoretically occur to infinity, resulting in an
infinite flow potential. The smallest radius of curvature is limited by either the scale
required to continue coating is smaller than the thickness of a molecule of the fluid or
the more likely, a channel defect. The channel defect can be a result of “dirt” in the
corner which provides a location to pin and stop the flow or a manufacturing defect,
such as rounded corners. The radius of the rounded corner is the smallest radius the
fluid can have, limiting the overall distance for the spontaneous flow. The “finger”,
fluid displaced from the meniscus, which is produced from the corner flow can be
characterized by H ??. H is the length of the displaced from fluid from the meniscus
to the end of the fluid.

Taylor 1961 Cerro Kolb Shape of meniscus, attempts at solving the velocity profile.
bubble flow.

Weislogel: Flow in the core. Include some of the writeup. Capillary FLow in
an interior corner, Nasa Technical Memorandum 107364, 1996, Mark M. Weislogel
Calculated flowrate of fluid in an interior corner, based on geometry of the wedge,
calculated a height from the meniscus where the fingers start.

Bubble-Train Flow in Capillaries of Circular and Square Cross section, T. C.
Thulasidas, M. A. Abraham, R. L. Cerro. Chemical Engineering Science, Vol 50,
No 2, pp 183-199, 1995 Bubble train flow in round and square crossection monolith
reactors, determine optimal flowrates of gas and liquids, bubble size and shape. Good
summary of previous work with bubble flow in channels, found a flowrate around the
bubbles as long as it was gravity driven



3. EXPERIMENTAL SETUP

Video of the bislug was recorded using standard image capturing techniques. A
Panasonic GP-KS152 color CCD camera was attached to an optics port on a Nikon
SMZ1500 microscope. The microscope was attached to boom stand, a stand that has
six degrees of freedom, for course microscope adjustment. The boom stand was setup
on a x-y translation stand which allows for fine adjustment in the x-y directions and
the microscope focusing adjusted in the z-direction. A video capture card, Epix model
PIXCI SV5 , was used to record the image sequences from the camera to a computer.
The Epix board had a working frame rate of approximately 30 frames per second(fps).
Image files were saved using a .tiff format to retain pixel information which may be
lost using other standard image file formats. Capturing of a crisp interface required
a fast shutter speed and proper lighting. The shutter speed was set to 1/1000 of
a second. A faster shutter speed captures a crisp interface at the menisci reducing
the blurring caused by fast slug flow. As the shutter speed increases the amount of
light needed also increases. The first attempt at lighting used a ring light attached
to the microscope lens. This provided enough light but also produced flares where
the light crossed the glass channels. To remove the flares diffused light was used, this
required a transmitted illumation setup. For the diffused lighting the channel test
fixture was made from glass. Microscope covers were glued onto a microscope slip with
enough space to set the microchannel into place. Using this setup the aligment of the
microchannels could be maintained for all test runs; the microchannels were placed
in the same direction and maintained the same focal distance. Also, the scaling was
kept constant between test runs because the magnification was not changed. Images
of the experimental setup can be seen in Figures 3.1, 3.2.

Ethylene glycol and silicone oil were used for the immiscible fluid pair. These are
the same fluid pair used by Bico (?) in the original bislug experiments. Properties for
the fluids were taken from Bico (?) and are listed on Table 3.1. For better contrast,
the ethylene glycol was dyed using red food coloring, which is a mixture of coloring,
propylene glycol, and water. Only a small amount of coloring was used to minimize
the affect the food coloring would have on the ethylene glycol properties. The silicone
oil was not dyed because the contrast between the ethylene glycol and silicone oil was
sufficient enough for image processing.

Round and square micro-channels made from boroscilicate glass were used for the
test sections. These channels were chosen to be consistent with previous work and the
fluids are perfectly wetting to the glass; therefore the low contact angle satisfies the
Concus-Finn criteria for square microchannels. The round microchannels are 40µL
yellow band disposable pipets manufactured by Drummond Scientific. The channels
are drawn with an average innner diameter of approximately 0.938 mm, which was
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Figure 3.1. Experimental setup. Figure 3.2. Bislug test fixture.

calculated from knowing the volume and calibrated fill length of the channel. The
square channels had an inner side dimensions of 1 mm square and were manufactured
by Vitrocom. Microchannels with hydraulic diameters close to 1 mm were chosen for
optical clarity. As the channel diameters decrease a higher magnification is needed
to view the menisci, the higher magnification decreases the viewable working area of
the microchannel. A large working area is prefered to increase the amount of time
the bislug remains in the field of view. This decreases the amount of error in the data
processing. Smaller diameter channels also produce longer slugs than large diameter
channels for the same fluid volume which creates difficulties when trying to control
slug lengths.

The bislug was created using two different methods. To create the bislug using the
first method, a channel was dipped into a vial containing ethylene glycol. Ethylene
glycol was drawn into the microchannel by capillary forces. To prewet the channel,
the tubes were inverted and gravity pushed the slug of ethylene glycol down the
channel; thus coating the channel walls with a film of liquid. The slug of ethylene
glycol could be adjusted by wicking some fluid out using a paper towel. The prewet
channel was then dipped into the silicone oil allowing capillary forces to draw fluid
in. Keeping the channel vertical prevented long slugs of silicone oil from forming,
the length of silicone oil depended on the length of the ethylene glycol, to increase
the length of either slug the channel could be tilted, positioned between vertical and
horizontal, to reduce the effect of gravity. For test runs requiring nonprewet channels,
the ethylene glycol slug was inserted into the silicone oil vial after adjusting the slug
length. After the bislug was formed the microchannel was set unto the test setup.
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A second method, for generating bislugs used syringes to accurately control the
lengths of the slugs. Thin needles were attached to both push and screw style syringes.
The screw style provided tighter control over the volume being inserted. Ethylene
glycol could be accurately deposited in the microchannels but prewetting the system
was difficult. To prewet, the channels had to removed from the setup, turned vertical
and realigned after the prewetting was complete. Longer slugs, when tipped vertical,
would drain because the force of gravity was larger than the capillary forces. To
make longer slugs the microchannel was filled with a small slug and inverted to wet,
the microchannel was realligned and the syringe was used to increase the size of the
slug. After injection of the ethylene glycol a syringe with silicone oil was used to
create the bislug. This procedure, though more precise, was not practical due to
the spontaneous nature of the bislug flow. As soon silicone oil was deposited the
bislug began to flow. This prevented the deposition of long silicone oil slugs. Bubbles
could also be trapped in the system due to the shape of the meniscus. Without
gravity pushing the slug down, like in the previous method, the meniscus was curved
which created a gap between the meniscus and the microchannel end. In a square
microchannel the ethylene glycol would migrate down the channel to balance the
pressure gradient caused by the corner flow. This did not allow for the silicone oil to
be deposited without an air bubble. Different techniques were attempted to prevent
the bislug from moving, but each attempt was unsuccessful. This technique proved
to be too cumbersome and the first method was used.

Spotlight, an image tracking software developed at the NASA Glenn Research
Center by B. Kilmek and T. Wright, was used for measuring the bislug systems (?).
An interface tracking Area-of-Interest(AOI) was setup to track both the front and rear
menisci. Lines produced by the NTSC video were smoothed to produce an average
interface and a low pass filter was used to create a sharp tracking edge. The software
recorded the change of position with time, values for the length and framerate were
used for scaling. Spotlight outputs an ascii file containing the information regarding
scaling and the values from the tracking AOI. These text files were imported to
Lotus 123, Excel, and MATLAB for data processing. Acceleration and velocity of
the bislug were determined by using a least square polynomial fit of the position and
time. Errors from the data collection were determined to be ±2 pixels for the length
measurements and ±2 fps for the time measurement. The value of 2 pixels is the
measurement error for the length of a slug. Measurements in Spotlight are accurate
to a pixel in both the x and y directions, the decimal values are from the norm of the
components. Video captured using the CCD camera is interlaced, half of the frame
updates every 1/(2fps), this value was chosen for the error that can occur between
frames.

Inconsistencies in both the prewet and dry data may be attributed to the quality
of the microchannel used. The round and square microchannels are manufactured by
drawing glass over a mandrel. Imperfections in the process can produce channels with
fluctuatations in the radius over the length of channel, these fluctuations will cause
a change in the instantaneous velocity. This process also produces square channels
with rounded corners, this limits the pressure developed in the corners from the
spontaneous fluid flow.
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Table 3.1. Test parameters for ethylene glycol and silicone oil in circular and noncir-
cular microchannels, the round channel has a radius of 0.469 mm and the square has a
hydraulic radius of .5 mm.

ethylene silicone
glycol oil

parameter (A – air) (B – air) (A – B)
ν [cSt] 16 1

∆ρ [kg/m3] 1113 963 150
µ [kg/ms] 0.0178 0.0096
σ [mN/m] 47.7±0.1 20.3±0.1 18.0±0.2

Lc [mm] 2.09 1.47 3.50
Bo 0.050 - 0.057 0.10 - 0.12 0.018 - 0.020



4. NUMERICAL MODELING

Numerical modeling of the bislug system was performed in two steps. First, the flow
profiles for fluid A and fluid B were determined. The velocity at the transition from
film A and core B was also found. Second, an integration of the shear stress over the
surface area in which it acts found drag force in the three flow profiles.

To model the flows in both the round and square channels common flow profiles
were assumed. For the core the slugs, where the menisci pressure potential acts, a
classic Hagen-Poiseuille flow profile was assumed. A Couette flow profile was used
for the film. This was chosen due to the only motion that produces the flow was in
the core. A boundary of equal velocity and shear was used for the transition from
the core to the film. Figure 4.1 shows the profiles used for the core and the film,
UAB is the velocity at the transition and Umax is the centerline velocity. The full
derivation for the round channels is in Appendix B and the square channel derivation
is in Appendix C.

4.1 Velocity Profiles

4.1.1 Round

As mentioned above a Hagen-Poiseuille flow was used in the core and a Couette profile
was used in the film. The boundary conditions used were: no-slip at the wall, a line of
symmetry in the core, and a no-slip condition at the film. When a film is not present,
the case for the front slug, a Hagen-Poiseuile profile was used over the entire channel
width. Solutions for the velocity profiles are presented below, see Appendix B for the
full derivation:

uCoreA = Umax

[
1−

( r

R

)2
]

(4.1)

uFilmA = UAB

ln
(

R
r

)
ln
(

R
R−hA

) (4.2)

uCoreB = (Umax − UAB)

(
1− r2

(R− hA)2

)
+ UAB (4.3)

where

UAB =
Umax

1 + 1
2

µA

µB

1

ln
“

R
R−hA

” (4.4)

The solution for the velocity in the thin film, equation 4.2, matches the solution from
previous derivations of concentric cylinders with the inner cylinder moving??white’s
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Figure 4.1. Assumed flow profiles of the Core and film used in the derivation of the
models.

book. Since the boundary conditions were no slip at the transition between the film
of fluid A and core of fluid B the equation for the transition velocity contains elements
of both profiles and introduces a logarithmic term to the Hagen-Poiseuille profile. For
modeling purposes the domain was examined at the upper and lower limits for the
Ca number of the experimental data because the film thickness is calculated using
the equation 2.3 . Both the flow for the prewet and dry test runs were modeled using
the derived equations.

Table 4.1. Parameters for Round graphs

Test Runs Ca Umax(mm/s) ho(µm)
Dry Round Low Ca fig 4.2(a) 4E-5 0.1072 0.7822
Dry Round High Ca fig 4.2(b) 2E-4 0.5360 2.2871

Prewet Round Low Ca fig 4.4(a) 2E-4 0.5360 2.2871
Prewet Round High Ca fig 4.4(b) 3E-4 0.8039 2.9969

Flow profiles for both the dry and prewet channels are presented in figures 4.2
and 4.4, respectively. The flow profile for Core A (no-immiscble film) and Core B/Film
A are plotted on the same graphs. The channel radius is non-dimensionalized using
ζ = r/R, where R is the radius of the channel and r is the current position relative
to the center of the channel. The x-axis is the non-dimensional velocity, U/Umax,
where Umax is the centerline velocity and U is the calculated velocity at position r.
Table 4.1 has the information for each test run.

Both flow profiles appear to overlap oneanother for each graph and its not until
the magnification is increased near the wall that the divergence appears, figures ??
and 4.5. Couette flow in the film has little effect on the overall flow profiles. The
films, calculated from the Bretheron (1961) relationship, are small compared to the
radius and the natural log term for UAB and uFilmA is approximately zero.
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Figure 4.2. Flow profiles for the dry channels.

4.1.2 Square

Relationships for the velocity profiles in the square channels were found in the same
manner as the round channel. The same equations were used for the solution of the
round channels with the exception of the radius term. A relationship for the distance
from the center of the square channel to any point was used, producing a sudo radius
term, s.

s =
√

x2 + y2 (4.5)

Using s for the radial term the equations for the velocities in the square channels are:

uCoreA = Umax

[
1− s2

So
2

]
(4.6)

uFilmA = UAB

ln
(

So

s

)
ln
(

So

Sf

) (4.7)

uCoreB = (Umax − UAB)

(
1− s2

Sf
2

)
+ UAB (4.8)

UAB =
Umax(

1 + 1
2

µA

µB

1

ln So
Sf

) (4.9)
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Figure 4.3. zoomed flow profiles for the dry channels.

Full derivation of the equations are in Appendix C.
Velocity profiles for the square channels were calculated at varying points along

the channel due to the dependence of the equations on two variables. The position
on the wall was held constant at various points and the other variable was varied
over the test range. Figure 4.6 has the geometry of the square channel used for the
calculations. The channel consists of eight symmetric regions, the models use a single
region shown in the right picture in figure 4.6. The schematic shows the distances in
non-dimensional form, σ = s/R where R is hydraulic radius of the channel, half of
the wall length for a square. The o and f subscripts indicate the distance to the wall
and the transition from film to core, respectively. The transition is broken into two
parts, the flat region has film thickness of ho and the corner has a radius of Rc and a
film thicknes of hc.

Plots of the slug profiles are split between the lead and trailing slugs due to the
amount of information presented. Profiles for the leading slug are plotted in figure 4.11
for the hich Ca number and figure 4.16 for the low Ca number. Each of the figure
sets consists of the flow in Core A (without film), Core B and Film A, the location
of the profiles in the channel and the velocity of the transition. The non-prewet
channel was not modeled because of the erratic data obtained during eperimentation.
Because of the corner flow the channel is never truly dry and amount of fluid pumped
into the corners depends on the time between the trailing slug introduction, channel
defects, and channel orientation during experimental setup. Both the profiles in Core
A and Core B/Film A have the same general shape but the affects of the film can
be seen clearly which differs from the round channels where the Couette flow had
little affect. Since the film was a constant height in the flat region the solutions for
the profiles are merely stretched or enlongated from profile to profile in the direction
from the center to the wall until the transition into the corner. The film velocities
are no longer constant in the corner due to the changing film thickness which is now
dependent on the profile’s position in the channel. If the Concuss-Finn criteria had
not been met then the film thickness would remain constant along the channel. The
films were calculated using the Bretherton relationship, the increase effect from the
Couette flow may be attributed to the order of magnitude increase in Ca number
from round prewet to square prewet.

From the pressure differential caused by the geometry fluid is pumped into the
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Figure 4.4. Flow profiles for the prewet channels.

Table 4.2. Parameters for Square graphs

Test Runs Ca Umax(mm/s) ho(µm)
Prewet Square Low Ca (a) 2E-3 5.3596 10.615
Prewet Square High Ca (b) 4E-3 10.7191 16.851

corners away from the meniscus. This pumping changes the flow profiles in the film.
A complex flow profile is produced from the interaction of Hagen-Poiseuille profile
produced from the corner pumping and the Couette profile formed from the drag. For
the front meniscus the two are flowing in the same direction while the trailing slug
has Couette flow in the direction of bislug and pumping in the opposite direction.
Weislogel has a derivation for calculating the flowrate from the meniscus in the corners
and will be added into the flow equations in later work.

The radius of the film in the corner was estimated to be 10% of the channel width
based on figure 5.6 in Chapter 5. Kolb developed a relationship for calculating the
radius but the properties for this setup resulted in a negative number. Kolb used
higher flowrates which results in Ca numbers that are larger than those in these
experiments. Also, the extrapolation of the presented graph also results in a negative
number for the low Ca numbers.
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Figure 4.5. zoomed flow profiles for the prewet channels.

Figure 4.6. Geometry for the square channels. The square profile has eight symmetric
sections, each of the sections has the profile on the right

4.2 Force Balance

4.2.1 Round

The force balace is the summation of the pressure force, drag force and interface
stretching terms. The pressure potential is calculated using the Laplace-Young equa-
tion 2.2 and the force can be calculated by multiplying this over the area of the
menisci. The drag force is the result of the shear stress and is applied to the surface
area in which it acts. The interface stretching term is the result of the destruction
and creation of the thin films as the bislug moves down the channel. Bico and quere
used it to justify that the pressure potential resulted from the surface tensions, it is
included in this work as a term that adds and removes energy from the system.

To study the dissipation mechanisms present in slug flow a model based on the
force balance between the pressure potential, drag force and the energy needed to
stretch the interface in the area near the menisci has been developed. The pressure
potential of a bislug system is dependent on the differences in surface tensions of the
three interfaces and the radius of the channel(equation 4.10).

∆P =
2(σA − σAB − σB)

R
(4.10)

The net drag force is comprised of three seperate components: (i) the drag in the core
of slug A, (ii) the drag in the core of slug B, and (iii) drag in the thin film of fluid A
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that is under slug B. A thin layer of ethylene glycol, fluid A, is deposited on the walls
of the microchannels before fluid B is introduced for prewet test runs or a thin fluid is
deposited over the dry channel as the bislug traverses the channel. Since fluid A and
fluid B are immiscible the thin film of fluid A remains intact under the slug of fluid B.
Flow in both the cores of slug A and slug B are model as Hagen-Poiseuille flow due
to the constant pressure potential between the menisci. Couette flow was assumed
for the thin film; there is a no slip condition at the wall and a constant velocity at
the interface between film A and slug B. The total drag force is the sum of all three
of these components.

Fdrag = FcoreA + FfilmA + FcoreB (4.11)

The resulting equation for the drag force is equation 4.12,

Fdrag ≈ 4πσALACaA

[
1 + 2

1

M

(
LB

LA

)]
, Ca ≤ 10−3 (4.12)

where the velocity has been non-dimensionalized using the Ca number for the leading
slug, CaA = UmaxµA/σA and M is the viscosity ratio, µA/µB. The full derivation can
be found in Appendix B.

As a bislug of fluid travels down a prewet microchannel, the front meniscus de-
stroys the thin film, prewet air-film A interface; absorbing energy. At the same time
meniscus AB and meniscus B create new interfaces on the wall, which requires energy
and reduces the overall potential for flow in the system. Flow in a single slug has
only two menisci. The amount of energy restored from the destruction at the front
meniscus is removed with the creation of the interface at the rear meniscus for a net
energy creation or destruction to be approximately zero. In a bislug system there
are three different surface tensions at the different menisci resulting in a non zero
energy exchange. For this setup there are two interface creations and one destruction
which, depending on the surface tensions, produces a net energy change in the system.
Equation 4.13 is the final form of the solution and it is based on the summation of
the three stretching terms across the the bislug.

Fstretch = σPe,coat = 2πR

[(
1− hA

R

)
(σAB + σB − σA)− σB

hB

R

]
(4.13)

where Pe,coat is the perimeter of the film cross-section. Equation ?? is the final form
of the model and has been non-dimensionalized using the Capillary number. The
full derivation can be found in Appendix B. From the model it can be seen that the
Capillary number is a function of the surface tensions of the two fluids, the radius of
curvature, and the lengths of the slugs. The final form of the model is equation 4.14.

Camax ≈
[
1−

(
σAB + σB

σA

)](
R

LA

)(
1

1 + 2µB

µA

LB

LA

)
, for Ca < 10−3 (4.14)

The drag force in round channels has been solved for the Core B and Film A as
a function of film thickness. Values for the drag force are the coefficient multiplied
by the centerline velocity and the slug length. Both the drag from the film and core
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Figure 4.17. Drag forces in a round channel, because of the small change in surface
area the drag forces overlap.

plotted one the figure, left plot in figure 4.17. The values overlap showing that the
amount of drag of in the core is dependent on the amount of shear in the film, which
is dependent on the shear stress on the the wall. The shear stresses are equal because
it was assumed that the local shear stresses of the core and film at the transition are
equal. The areas that the shear stresses act over are approximately the same due to
the small film thickness, resulting in the same shear stress numerically.

4.2.2 Square

The summation of forces in a the square channels used the same approach as the
round. A balance between the motive, drag and stretching forces was used. Though
the channel is square the menisci of the slugs have a sperical shape, this produces
the same pressure potential resulting in teh same equation as the round channels,
equation 4.10. Where R is the hydraulic radius, which for a square is half of the side
wall length.

As with the round geometry the square channels also have interface destruction
and creation as the bislug travels down the channel. Each of the menisci have a two
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part profile, a flat and curve section, figure 4.6.

Fstretch = 8(Fstretchflat + Fstretchcorner) = 8σ(Peflat + Pecorner) (4.15)

The multiplier of eight is used because the channel was broken into eight symmetric
parts, figure 4.6. The final form of the stretching term is

2πR

[(
1− hA

R

)
(σAB + σB − σA)− xf

R
(σAB + σB)− σB

hB

R

]
+8xf (σAB+σB) (4.16)

The full derivation is in section C.1.1 of the Appendix.
The summation of the forces for the square channels does not result in a closed

form solution like the round channels. The drag term requires numerical integration
for solution due to the complex form of the shear stresses. The term that is numer-
ically integrated is dependent on the viscosity ratio which depends on the system
properties. Results for the drag are unique for each fluid pair. Equations for the
drag in the three regions of bislug are below. The results for the drag in Film A and
Core B are combined and the numerical value from the integration is contained in the
variable α. A closed form solution is available for Core A but the variable β was used
to keep the equations consistent. Table 4.3 has the coefficients from the integration
at the two boundary Ca numbers. The drag force in the channels decrease as the
film thickness increases, figure 4.18. This is expected because the simple form of the
shear stress in the film is dependent on the thickness of the film. Differing from the
round geometry there is a clear separation between the shear stress in the film and
the fluid core. This is due to the change in geometry from the flat film to the corner,
which decreases the active area for the shear stress in fluid B to act over.

FdragCoreA = βµAUmaxLA

FdragCoreB + FdragF ilmA = αUmaxLB

(4.17)

Table 4.3. Coefficients for Fdrag in the square channels

Ca Number ho (µm) α (kg/m s) β
2 E-3 10.6 0.52567 14.1020
4 E-3 16.9 0.51926 14.1020

The resulting model from the force balance is equation 4.18. The velocity has been
non-dimensionalized using the Ca number with respect to fluid A. The film thickness
for fluid A, hAis approximated from the Bretherton relationship, the film for fluid B
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4. Numerical Modeling 26

was assumed to be close to zero, this has a minimal effect on the model.

CaAmax =
UmaxµA

σA

=

2πR

LA

[(
σAB+σB

σA

) (
2− hA

R

)
+

xf

R

(
1− 4

π

) (
σAB+σB

σA

)]
(

α
µA

LB

LA
+ β

) (4.18)

A model was also developed without the inclusion of the stretching term. The
results will be used to compare the role of the stretching term.

CaAmax =
2πR

LA

1−
(

σAB+σB

σA

)
α

µA

LB

LA
+ β

(4.19)



5. RESULTS AND DISCUSSION

Bislug flow in round channels was reproduced to verify the work done by Bico (??).
Tests used both prewet and dry test runs and were performed in round and square
microchannels over various slug lengths.

5.1 Round Microchannels

Velocities for both the prewet and dry microchannel test runs were non-dimensionalized
using the capillary number with reference to the ethylene glycol (equation 5.1). A
non-dimensionalized length scale LA/R is used where R is the radius of the channel.
For the data discussed R=0.469 mm.

Ca =
µAV

σA

(5.1)

Data from both the prewet and dry test runs are plotted on Figure 5.1. There is
a noticable difference in velocity between the prewet and dry microchannels. Bislug
flow in a prewet channel is approximately 2-3 times faster than the dry channel. The
average capillary number for dry and prewet tests are 1·10−4 and 2·10−4 , respectively.
Differences in velocity can be attributed to energy dissipation associated with the
dragging of the contact line across a dry surface. A prewet channel has a thin layer
of fluid deposited on the walls before the bislug is created as described earlier. This
coating reduces the energy dissipation with the moving contact line. In both systems
the pressure difference between the two menisci is the same, ∆P = 40.1 Pa. As such,
this type of experiment may provide a way to study energy dissipation near a moving
contact line if a proper model can be developed.

Bislug flow was previously modeled as classic Hagen-Poiseuille flow (??). This
model, to compare to the model produced in this work, has been non-dimensionalized
into equation 5.2.

Ca =
µAV

σA

=
R

4LA

(
σ∗

A

1 + M∗L∗

)
(5.2)

Where σ∗
A = 1−σAB/σA−σB/σA, M∗ = µB/µA and L∗ = LB/LA. This equation over

predicts the values for the Ca number calculated using the data collected from this
investigation. Another equation was developed from the same authors that includes
the dissipation from the moving contact line. This new equation uses a V∗ term
to represent the maximum velocity of the bislug. The value for V∗ could not be
reproduced using the data from the paper. V∗ may be an empirical fit for the data
and would vary with channel geometry and fluid pairs.
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Figure 5.1. The prewet and non-prewet round data.

Bislug flow in round channels can be used to study the energy dissipation mech-
anism of slug flows. There are three primary dissipation mechanisms in slug flow;
hydrodynamic interaction of proximate menisci, moving contact line, and wall shear
stress. The wall shear stress was modeled based on Hagen-Poiseuille flow. As the
slug grows in length, the wall drag will begin to dominate the dissipation mecha-
nisms. The shear stress in the long slugs will dominate other dissipation mechanisms
and this may provide a means of isolating this particular energy dissipation mech-
anism. A short slug is dominated by menisci interaction. As the slug shortens the
recirculation present at each menisci will begin to interact with each other and dis-
sipate energy. The final dissipation mechanism can be divided into two parts, the
dragging of the contact line across the channel and the stretching of the interface at
the menisci. Both of these dissipation mechanism are present at each menisci as the
bislug flows down a microchannel.

The moving contact line dissipation is present in all slug flow, energy is lost as
the menisci moves across the channel. As the slug moves down the channel, fluid is
deposited from the menisci to the walls. This produces recirculation around the area
where the meniscus contacts the wall reducing the energy in the system. As the front
meniscus flows down the prewet microchannel the air-Fluid A thin film interface is
destroyed. Energy is transfered from the stretched interface into the system as the
front meniscus and thin film form a continuous interface. The amount of energy
recovered is a function of the surface tension and the stretched area. The middle
and rear menisci create new interfaces as the bislug travels down the channel. The
middle meniscus produces the same thin film interface that is destroyed by the front
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meniscus. In a single slug system the front and rear menisci have the same surface
tension and the net energy exchange is zero but the difference in surface tension
between the front and middle menisci in a bislug system produces a non-zero energy
term. The rear menisci of Fluid B creates a thin over the existing thin film of Fluid A.
This stretching term is normally neglected in single slug flows but it has a significant
effect on the bislug system.

5.1.1 Comparison of Experimental Data & Model

0 . 0 0 0 1

0 . 0 0 1

0 . 0 1

0 . 1

1 0 1 0 0
T o t a l  L e n g t h  ( L A + L B ) / R

Ca

D a t a
M o d e l ,  e q u a l  l e n g t h s
m o d e l , 2  L a ,  1 L b
m o d e l ,  1  L a  2 L b

Figure 5.2. Ca numbers for both the model and the Prewet data, the model is based
on equation ?? using a ratio of LB/LA = .5, 1, 2

There is a magnitude or more difference in the values for the Ca numbers between
the model and the data collected in the lab. Experimental data is plotted against
the model in Figure 5.2, the plot uses values of 1/2, 1, and 2 for the ratio of the slug
lengths. The differences between the model values and the actual Ca numbers can
be attributed to the additional dissipation terms that are not present in the model.
Menisci interactions begin to dominate the system as the slugs decrease in length
and drag force decreases. Energy dissipation at the contact line is present in all slug
flow and will produce an offset to the data set. As the slugs for both Fluid A and
Fluid B increase in length the experimental data will approach the values predicted
by the model. The model cannot predict the Ca number of short bislugs due to the
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Figure 5.3. Bislug in a square chan-
nel.

Figure 5.4. Fluid retention in the
corner of a prewet square microchan-
nel.

magnitude of the hydrodynamic interactions. A better understanding of this energy
dissipation mechanism is needed; visualization data is needed near the menisci to
accurately model this phenomenom.

5.2 Square Microchannels

Initially both dry and prewet cases were examined for bislug flow in square microchan-
nels. Data from the dry microchannel test were found to be erratic. Since the mi-
crochannels satisfy the Concus-Finn criteria for corner flow, dry channels could not
be maintained. When the ethylene glycol was introduced to the square microchan-
nels, flow occured spontaneously in the corners, the fluid retention in the corners
can be seen on the right side of Figure 5.4. This, in effect, prewetted the corners
and partially wetted the walls of microchannels. The partially prewet microchannels
produced data having a large scatter which can be seen in Figure 5.5. It was later
decided to focus the attention on prewet flow in square microchannels, which is the
scenario that would be used in a micropump.

Velocities for bislug flow in square microchannels are presented in terms of velocity
and Ca number, the velocities were non-dimensionalized using the same equation used
for round tests, equation 5.1. Figures (5.7-5.8) have the Capillary numbers for the
ethylene glycol as a function of the ethylene glycol and silicone oil slug lengths, the
term L/R is a ratio of slug length to the radius of the channel, R=0.5mm.

Data is presented for the Capillary number for both the front and rear menisci,
Figures (5.7-5.8). As the bislug moves, fluid is deposited on the walls of the channel
and in the corners. Relative velocities for the front mensicus are slower than the
velocities for the rear due to the volume of fluid being deposited. The coating thickness
of the ethylene glycol has a maximum thickness in the corners and gradually decreases
in thickness as it approaches the center of the sidewall. Using a darkfield lighting
technique the amount of sidewall that is affected by the corner can be seen. The
light was adjusted until the distance between the two dark bands remained constant,
Figures 5.6(a-c). The volume of the fluid that is deposited can be determined by
knowing the before and after lengths of the slug and the distance traveled. The film
thickness can be estimated from the volume deposited and the length measured from
darkfield images.

Bislug flow in square microchannels have a faster response time when compared
with channels of circular cross-section, Figures 5.1, 5.7, and 5.8. The Capillary num-
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Figure 5.5. Graph of Ca for square dry channel
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Figure 5.6. Images used to estimated the film thickness on the walls of a square
microchannel. (a) Used for scaling images. (b) and (c) Used for measuring the amount
of fluid retained in the corner and the width of the flat region of the prewet film.
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ber in a prewet square microchannel is at least an order of magnitude greater than
in round microchannels. Both systems have approximately the same pressure poten-
tial, the round was ∆P=40.1 Pa and the square ∆=37.6 Pa. The square channels
have a hydraulic diameter of 1 mm, which results in a lower pressure because of the
larger radius of curvature, and should exhibit a slower response, but the affects of the
corners dominate the system(equation 4.10).

Fluid retention in the corners act like “rails” for the slugs to travel on. Energy
dissipation associated with a moving contact line is reduced in this region from the
increase in fluid thickness in and near the corners. Shear stress is also decreased in
the system because the retained fluid reduces the effective area for the shear stress
to act over. The losses associated with menisci interaction are still unknown and a
reduction of energy dissipation in the this area cannot be determined.

The velocity of the bislug system has a dependency on the length of ethylene
glycol while the length of silicone oil produces secondary effects. Figures 5.7 and 5.8
are the Ca numbers of the front and rear menisci as a function of slug lengths. From
these figures, a correlation between slug length and speed can be seen for ethylene
glycol. However, there is not a dependency between the silicone oil slug length and
Ca number. This is due to the different fluid properties, the kinemative viscosity
of the ethylene glycol is 16 times greater than that of the silicone oil. The viscous
dissipation in the silicone oil slug is negligible compared to the ethylene glycol. The
plots show the ratio between µB and σB is small enough that the velocity term has
little effect on the Capillary number for the silicone oil. The plots also show the same
data that is presented in figures 5.7 and 5.8.

A model was developed to predict the response of a bislug in a square microchan-
nel. An understanding of the energy dissipation in the system is needed to develop a
working model. Moving contact line, menisci interaction, and shear stress at the wall
are the primary forms of energy dissipation found in microchannel flow. Dissipation
at the contact line is caused by the menisci being dragged across the channel wall. It
has a constant affect on the system and is independent of slug length. As a slug gets
longer shear stress becomes the dominant energy dissipation mechanism due to the
increase in wall area. Short slugs, less than 3 diameters, have interactions between
menisci. As the slug decreases in length the affect of of the shear stress decreases.
Figures 5.9 and 5.10 show the three different regions of dissipation. Zone 1 is affected
by contact line and menisci interations, Zone 2 is affected by all three dissipation
mechanisms, and Zone 3 is affected by contact line and shear stress. It may be pos-
sible to study each of these mechanisms using bislug flow and a flow visualization
technique, a force balance similar to the one developed for flow in a round channel
will be developed.

Figure 5.11 compares the Capillary numbers from the expirimental data to the
Capillary numbers predicted from the developed model. Predictions from the two
different models, without and with the stretching terms, were calculated using the
low and high Capillary numbers from the data set. The models are dependent on
the film thickness of A which is dependent on the Capillary number, this differs from
the models for round channels where the thin film was assumed to be close to zero.
The film in the corners, for fluid A, gets thicker due to the Concuss-Finn criteria and
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Figure 5.7. Ca number of ethylene glycol based on the front meniscus and the ratio
of the slug length to the radius.
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Figure 5.9. The different energy dissipation zones present in bislug system based on
the data collected from the front meniscus.
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Figure 5.10. The different energy dissipation zones present in bislug system based on
the data collected from the rear meniscus.
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can no longer be assumed to be small. The upper set of data, 5 and 2, includes
the interface stretching term, the lower set of data, 4 and ©, is the predictions
without the interface stretching terms. As the slug decreases in length the role of the
interface stretching increases, as the slugs get longer the predictions begin to collapse
to a single line. This is expected as the drag will begin to dominate the system as
the slug increases, the drag has a dependence on length.

For prewet square channels, fluid is retained in the corners of channel. This can
be seen in Figure 5.4. A result of the spontaneous nature of the corner flow, the
slug of ethylene glycol will begin to traverse the channel with the introduction of the
second fluid. The slug will come to rest close to the middle of the channel when
the pressure from the corners are balanced on both sides of the menisci. To produce
a bislug the force of gravity is used to push the slug to one, silicone can be drawn
into the glass through capillary forces. This may be a possible reason for the faster
response in the microchannels and some inconsistencies in the data. A channel that
was inverted longer during prewetting may produce a faster response than a channel
that was inverted for a shorter period of time because of the amount of fluid that may
have drained from the corners. When the tube is realligned horizontally, the pressure
imbalance in the corners may help drive the flow for faster response.

B. G. Cox (1964). An experimental investigation of the streamlines in viscous fluid
expelled from a tube. Journal of Fluid Mechanics Digital Archive, 20, pp 193-200 ,
hagen-poissueill is valid upto 1.5 times the diameter to the menisci.

T.C. Thulasida, M.A. Abraham, R.L. Cerro, Dispersion during bubble-train flow
in capillaries. Chemical Engineering science, 54, 1999, 61-76 Mention that when
Ca < 10−4 corner flow from gravity is much larger than the flow in the film.

Could be a reason why data is inconsistent in some spots, too much drainage
from the corners, results in a higher flow rate in the front mensicus, the length is
much longer and the flowrate can increase.(check weislogel equation to verify). The
length will decrease which is will lesson the drag force but increase the hydrodyamic
interactions.



6. FORCE TERMS

The derivation was performed using a force balance between the motive force the drag
force and the interface stretching. There are other force terms that reduce the overall
speed of the bislug. These include the hydrodynamic interaction between menisci of
short slugs and the energy dissipation at the contact line.

Dynamics of A liquid-liquid Interface in a capillary, Fermigier, M. , Jenffer, P.,
Ann Phys. ,13, 37-42 found that cox(1986)’s empirical formula for dynamic contact
angle for air-liquid displacement matched data when a fluid-fluid pair had a small
viscosity ratio 2/1, and some instances did not work at all. This zhou and sheng
(1990) compare firmigier and said true contact angle depends on contact line speed.

6.1 Hydrodynamic Interaction

Hydrodynamic interactions occur when a slug is small, less than two diameters. need
reference A short slug has undeveloped streamlines and the menisci interfere with
the velocity distribution??. Slow moving slugs, Ca1/2 < .5 produce vortices inside of
the slugs. When two menisci are close the vortices interact with oneanother. This
interaction shifts streamlines and dissipates energy in the form of viscous heating.
more More understanding is needed to develop a model for the dissipation.

T.C. Thulasidas, M.A. Abraham and R.L Cerro, Flow patterns in liquid slugs
during bubble train flow inside capillaries, Chemical Engineering Scince, Vol 52, no
17, pp 2947-2962, 1997.

6.2 Contact Line

Energy dissipation associated with the moving contact line was not included in the
force balance due the complexity of the interactions at the interface. A problem
that arises at the contact line is a singularity that is formed when assuming a no-
slip boundary condition, the shear stress goes to infinity. Dussan(1976) removed the
singularity by assuming a slip boundary condition, assuming the no-slip condition
at the wall may no longer be valid. Ludviksson(1968) removed the singularity by
assuming the channel was precoated by an advancing film ahead of the contact line.
Using either assumption removes the physics from the local area and introduces new
values that need numerical approximations or experimentally found values.

Contact line dissipation has been modelled using a dynamic contact angle ap-
proach. As a fluid moves across an interface, solid or fluid, the viscous stresses at the
contact line distort the interface. This distortion changes the contact angles for the
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system, the front increases and the rear decreases. In principle the local energy dissi-
pation is captured by the dynamic contact angle, θd. Cox(1986) provides a model for
the dynamic contact angle for a liquid displacing a gas. Fermigier et al(1988) verified
that the model could also be used for a liquid-liquid pair that had a small viscosity
ratio. Van Der Zanden et al (1994) provides a model for moving liquid-liquid contact
lines with small viscosity ratios. There work is limited by a critical Ca number, a
solution is not possible over this value. Though the physics at the contact line can be
represented by the dynamic contact angle, it does not capture the true dissipation.
The force balance for the bislug is a priori and does not include empirically found
formulations.

Dynamics of A liquid-liquid Interface in a capillary, Fermigier, M. , Jenffer, P.,
Ann Phys. ,13, 37-42 1988

R. G. Cox (1986). The dynamics of the spreading of liquids on a solid surface.
Part 1. Viscous flow. Journal of Fluid Mechanics Digital Archive, 168, pp 169-194

A. J. J. Van Der Zanden and A. K. Chesters, An approximate solution of the
hydrodynamic problem associated with moving liquid-liquid contact lines. Int. J.
Multiphase Flow, Vol 20, No 4., pp 789-798, 1994

E. B. Dussan V., The moving contact line: slip boundary condition, 1976, J. Fluid
Mech, col 77, part 4, pp 665-684

Ludviksson, V. and Lightfoot, E. N, Deformation of advaning menisci, 1968
A.I.Ch.E J 14, 674

6.3 Non-Poiseuille flow

The flow profile for the slugs were assumed to be Classic Hagen-Poiseuille but there
is evidence that the stream lines are not purely parabolic. Taylor(1961) presented
sketches of possible streamlines in pressure driven bubble-train flow. When the
Ca1/2 > .5 the velocity streamlines bipass the bubble completely. If the Ca1/2 < .5
recirculation vortices form in the slug. The velocity profiles are no longer classic
Hagen-Poisseuille flow but are now treadlike. Prothero et al(1961) injected ink into
slugs of liquid and noted that the ink travel the length of the slug after the slug had
traveled two lengths. This was later verified by Thulasidas et al(1997) who noted
the same time interval for a particle to travel one length of the slug. Also, micro-
PIV images were included that proved the flow patterns predicted by Taylor(1961)
were correct. The flow in a slug is not poissueulle but treadlike. Dussan et al(1974)
showed treadlike flows in a drop rolling along a solid. This same idea can be can be
extrapulated to a drop in a microchannel with substrate on all sides.

The Ca numbers for these experiments result in a Ca1/2 < .5, this suggests that
bislug flow has internal treadlike profiles. These internal circulations would destroy
energy in the slugs through viscous heating(need reference to book). Bruno (?), using
µPIV in square microchannels, reports the flow to be treadlike and not classic Hagen-
Poseuille flow as previously suggested, but the experimental results are preliminary.
Further investigation is needed for developement of a flow profile resembling those
found in the slugs.



6. Force Terms 39

Figure 6.1. Recirculation caused by faster centerline velocity relative to the menisci,
faster velocity is required to satisfy the conservation of mass for the system.

The treadlike flow profile my be the result of the conservation of mass in a 3-
D configuration. The centerline velocity has to be faster than the menisci velocity
to maintain the conservation of mass on the surface. As the green particles, from
figure 6.1, are traced right to left the particles moves from the center to the menisci
and is lastly deposited on the wall. FINISH

G.I. Taylor, Deposition of a viscous fluid on the wall of a tube, 1961, J, Fluid
Mech. ,10 pp 161-65

E.B. Dussan V. and S.H. Davis, The motion of a fluid-fluid interface, 1974, J.
Fluid Mech. vol 65, part 1, pp71-95. Found a treadlike rolling of a drop on a solid
substrate, can be similar to flow in channels.

T.C. Thulasidas, M.A. Abraham and R.L Cerro, Flow patterns in liquid slugs
during bubble train flow inside capillaries, Chemical Engineering Scince, Vol 52, no
17, pp 2947-2962, 1997.

Prothero and Burton 1961 biophysics ,1, 565-575. The physics of blood flow in
capillaries-I the nature of motion.

6.4 Corner Flow

The velocity profile for the thin film in the square channels were assumed to be couette
or linear. Weislogel(1996) provides data and equations that quantify the amount of
liquid being pumped into the corners from the meniscus. Pumping from the mensicus
was verified by the use of a laser scanning confocal microscope at Sandia National
Labs, Appendix A. Figure A.1 shows excited particles in a slug of ethylene glycol, as
the slug remains stationary, fluid is pumped from the meniscus to the corner.

Couette flow was assumed for the film but a pumping force from the center minis-
cus in the opposite direction will produce a different profile in the film. For the leading
meniscus, fluid is being pumped ahead of the mensicus as it travels down the channel.
This may increase the velocity of the overall system. When the bislug was produced
the channel was first dipped in ethylene glycol and inverted to coat the channel. The
amount of time the channel was inverted may have added an uncertainty to the prob-
lem. The amount of fluid drained from the corners may have changed from test run
to test run, see Chapter 5. This additional flowrate, along with the thicker film in
the corners, may be the reason for the faster flows in microchannels that have corners
and satisfy the Concus-Finn criteria.
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Spontaneous bislug flow can occur in microchannels of circular and non-circular cross-
sections. Microchannels with corners are subject to the Concus-Finn criteria. Fluid
retention in the corners reduces the energy dissipation associated with the moving
contact line and shear stress. The thicker fluid in the corners act like lubricating
“rails” for the fluid to travel along.

A model has been developed that uses a balance of the pressure difference over
of the menisci with the drag force and the force associated with the stretching of
the interfaces at the menisici. Values for the experimental data are lower than those
calculated using the model. The difference between the model and the data can be
attributed to the energy dissipation mechanisms absent from the model; the additional
mechanisms can be studied using this model and additional data. Bislug flow is a
constant pressure system which will provide a repeatable test condition. The three
major energy dissipation mechanisms can be studied using this technique. Short slugs
will provide information on menisci interation, long slugs will verify models for shear
stress at the wall, and contact line dissipation can be studied from the transition from
long to short slug lengths. The interface stretching term is important for shorter slugs.

A bislug in a square microchannel has a fast enough response time to be used for
a micropump. To increase the response time a channel with corners should be used.
The larger the corner angle the more fluid that can be retained which will decrease
the amount of dissipation in the system. A micropump similar to the one in Figure ??
can be built using two immiscible fluids with known properties that are wetting to
microchannel. The capillary pressures can be adjusted by changing the radius of
curvature or surface tension. Adjusting the radius of curvature is preferred because
of the limited number of working fluid pairs. The radius of curvature, in the viewing
section, will be maintained provided the bislug spans the appropriate sections of the
channel.
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A. CONFOCAL IMAGING OF CORNER FLOW

A.1 Sandia

As previously discussed, the response time of the bislug is an important factor when
designing a micropump. Microchannels of square cross-section produce a faster bislug
flow than microchannels of round cross-section. To properly predict the reponse of
the system, an understanding of the energy dissipation is needed. Visualization of
the flow fields in a slug is hindered by the meniscus. The meniscus acts like a lens
diverting light as it passes through. The menisci curvature prevents the viewing of
the center line of the slug near the menisci. This region is of interest for studying
dissipations caused by both the contact line and menisci interation. To visualize flow
in this area a confocal microscope may be used. A graduate student, J. Hernandez,
was sent to Sandia National Laboratory in Albuquerque, New Mexico to determine
whether a laser scanning confocal microscope (LSCM) could be used to study the
flow patterns and the dissipation mechanism in bislug flow.

The LSCM uses a laser to excite a sheet of fluorescent particles. The light is
collected through a pinhole that scans across a CCD sensor. The system at Sandia
was capable of exciting and recording at two different light frequencies. Fluorescent
coated polystyrene beads with a diameter of 15 µm (Duke Scientific) and excitation
frequencies of 468 nm and 542 nm, and emitting frequences of 508 nm and 612 nm,
were mixed in the ethylene glycol and silicone, respectively. Larger beads were used
to decrease the system’s dependency on lighting. As the beads decrease in diameter
the amount of light emitted also decreases. Using larger beads avoided the potential
problems associated with decreased light emittance. An ultrasonic water bath was
used to break up the mircobeads to produce a uniform dispersion; clumps of beads
were still present after treatment and can be seen in Figure A.1. 100 cst silicone oil
was used in place of the of 1 cst silicone oil to slow down the bislug, the LSCM has
frame rate on the 0 of 1 fps which is too slow for the faster moving slugs.

Smaller square microchannels were used due to the optical limitations of the mi-
croscope. The depth of the 1 mm microchannels were outside the range of the mi-
croscope, so 500 and 300 µm square channels were used. To control the slug lengths
and trigger the flow, gates where made from Poly-DiMethyl Siloxane (PDMS). The
primary design had a long central channel for the microchannel to fit into and two
smaller channels branching off at the other end. Two syringes containing the working
fluids were attached to the channels that branched off while a third needle, attached
to a valve which opened to a syringe full of air or atmospheric pressure, was attached
to the end of the long channel. The microchannel was prewet before being inserted
into the PDMS. The branching channels were filled with fluid and the bislug was
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Figure A.1. Corner flow captured using a LSCM.

formed in the microchannel. The syringe full of air was used to break the bislug free
and the system was then opened to atmospheric pressure. This method was only used
a couple of times due to problems with the PDMS bonding. The dipping method,
described earlier, was used instead.

Due to time contraints and system properties the data was recorded for visual
purposes only, the slow frame rate and the linescanning image capture method pro-
duced images that were skewed. Images of the spontaneous flow in the corners were
recorded. Figure A.1 shows a single frame. The flow was slower and could be accu-
rately captured by the LSCM. Fluid flowed from the center of the meniscus to the
corners. This may explain why the slug of ethylene glycol would traverse towards the
middle of the channel. The slug would move as the fluid was being pulled from the
center to the corners. Another issue with the LSCM is evident in Figure A.1 at the
top of the channel. The gain for the camera had to be adjusted so beads were large
enough to be seen but not too large that the beads appeared outside of the channel,
which is what happened in this case. To prevent this a trial and error method was
used to adjust the size of the beads for practicle recording. A LSCM is capable of
capturing the flow near a moving bislug meniscus but the slow frame rate produces
images that are not quantifiable. The images captured were skewed and had too large
of a distance traveled between particles for tracking accurately.



B. ROUND DERIVATION

B.1 Derivation of Force Terms

Three terms are included in the force balance; the motive force, the drag force and
the force associated with the stretching of the interface at the menisci.

Fmotive = Fdrag + Fstretch (B.1)

B.1.1 Pressure Force

The motive force is caused by a pressure imbalance across the three menisci.

Fmotive = ∆PAcross =
2(σA − σB − σAB)

R

(
πR2

)
(B.2)

Where Across is the projected cross-sectional area of the menisci.

B.1.2 Interface Stretching

The stretching force was defined as the surface tension σ multiplied by the coated
perimeter Pe. This occurs across each of three menisci in the bislug system.

Fstretch = σPe (B.3)

As the bislug flows in a prewet round channel there is a continuous destruction of the
interface at A and the creation of one at AB and B. The creation at AB is done over
the thin film hA.

Destruction of A-air interface : −σA2π(R− hA)

Creation of A-B interface : σAB2π(R− hA)

Creation of B-air interface : σB2π(R− hA − hB) (B.4)

Fstretch = 2πR

[
−σA

(
1− hA

R

)
+ σAB

(
1− hA

R

)
+ σB

(
1− hA

R
− hB

R

)]
= 2πR

[(
1− hA

R

)
(σAB + σB − σA)− σB

hB

R

]
(B.5)
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B.1.3 Drag Force

The drag force is divided into 3 terms, the core of slug A, the thin film of A beneath
core B, and the core of B.

F = FcoreA + FfilmA + FcoreB (B.6)

Core A

Core A is modeled using the lubrication approximation.

0 = −∂P

∂x
+

µ

r

∂

∂r

(
r
∂u

∂r

)
(B.7)

The pressure potential, ∂P/∂x, is treated as a constant, K, which physically repre-
sents the pressure imbalance across the slug divided by the bislug length.

K

µ
=

1

r

∂

∂r

(
r
∂u

∂r

)
(B.8)

Integrating twice to find the velocity and applying the no-slip condition at the wall
and a symmetry condition at the centerline:

u = Umax

[
1−

( r

R

)2
]

(B.9)

where

Umax = −KR2

4µ
(B.10)

The shear stress at the wall is:

τwA
= µ

∂u

∂r

∣∣∣∣
r=R

= −2µAU

R
(B.11)

Film A

Film A can be modeled as Couette flow. There is a no-slip condition on the wall and
a moving boundary driven by Core B. Starting with lubrication approximation B.7,
with ∂P/∂x being equal to zero and the µ/r being constants, the working form
becomes:

0 =
∂

∂r

(
r
∂u

∂r

)
(B.12)

Integrating twice

0 =

∫
∂

∂r

(
r
∂u

∂r

)
u = C0 ln r + C1

(B.13)
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Applying the boundary conditions:

at r = R, u = 0

at r = R− hA, u = UAB

(B.14)

Results in:

u = C0 ln
( r

R

)
C0 =

UAB

ln (R− ha)

u = UAB

ln
(

R
r

)
ln
(

R
R−hA

) (B.15)

The final form B.15 matches the previously derived solution for a set of concentric
cyclinders with the center cylinder in motion ??. The shear stress for the film can be
found be taking the derivative of the velocity w.r.t the radius of the channel.

τ = − µAUAB

r ln
(

R
R−hA

) (B.16)

Core B

Core B is modeled using the lubrication approximation in the same fashion as Core
A B.7.

u =
K

4µ
r2 + F (x) ln(r) + g(x) (B.17)

Applying the boundary condition at r = 0

r = 0, symmetry

0 =
∂u

∂r

∣∣∣∣
r=0

=
2Kr

4µ
+ F ′(x)

1

r

∣∣∣∣
r=0

F ′(x) = 0 → F (x) = 0

u = Umax

g(x) = Umax

u =
k

4µB

r2 + Umax (B.18)

Applying boundary condition at r = R− hA

u = UAB, atr = R− hA

UAB =
k

4µB

(R− hA)2 + Umax

Umax = UAB −
k

4µB

(R− ho)2 (B.19)
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Solving for the velocity in terms of UAB, combining equations B.18 and B.19:

u = − k

4µB

(R− hA)2

(
1− r2

(R− hA)2

)
u = (Umax − UAB)

(
1− r2

(R− hA)2

)
+ UAB (B.20)

The shear stress is:
τ = −2µB(Umax − UAB)

r

(R− hA)2
(B.21)

B.1.4 Final Velocity Equations

UAB can be found from the boundary condition present at the film. The velocities
and shear stresses are equal for both the film and the Core by assigning a zero slip
boundary condition at a local point.

ufilmA = uCoreB = UAB

τfilmA|r=R−hA
= τCoreB|r=R−hA

(B.22)

This results in the solutions for film A at the boundary being:

ufilmA = UAB

τfilmA = − µAUAB

(R− hA) ln
(

R
R−hA

) (B.23)

Solutions for Core B are:

uCoreB = UAB

τCoreB = −2µB(Umax − UAB)

R− hA

(B.24)

Setting equations B.23 and B.24 equal, UAB can be solved.

UAB =
Umax

1 + 1
2

µA

µB

1

ln
“

R
R−hA

” (B.25)

The final form for the velocities and shear stress are:

ufilmA = Umax

ln
(

R
r

)
ln
(

R
R−hA

)
+ 1

2
µA

µB

τfilmA = − µAUmax

r
(
ln
(

R
R−hA

)
+ 1

2
µA

µB

)
uCoreB = Umax

1− 1

1 + 1
2

µA

µB

1

ln
“

R
R−hA

”
(1− r2

(R− hA)2

)

τCoreB = −2µBUmax
r

(R− hA)2

1− 1

1 + 1
2

µA

µB

1

ln

„
R

(R−hA)2

«

 (B.26)
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Total Drag

When completing the final drag term, hA and hB are small and are ignored.
Fluid A:

Core(LA) : τw = −2µAUmax

R
(B.27)

Film(LB) : τw = − µAUmax

R
(
ln
(

R
R−hA

)
+ 1

2
µA

µB

)
(B.28)

Fluid B:

Core(LAB)τw = −2µBUmax

R− hA

1− 1

1 + 1
2

µA

µB

1

ln
“

R
(R−hA)

”
 (B.29)

The total drag force is the sum of the drag forces from fluid A and fluid B.

Fdrag = τwA
ACoreA

+ τwFilmAFilmA + τwBACoreB (B.30)

= τwFilm(2πRLA) + τwFilm(2πRLB) + τwB(2π(R− hA)LB)

= −µAUmax(2π)

2(LA) +
(LB)

ln
(

R
R−hA

)
+ 1

2
µA

µB

+ 2
µB

µA

1− 1

1 + 1
2

µA

µB

1

ln
“

R
(R−hA)

”
 (LB)


= −µAUmax(2π)

2(LA) +
(LB)

ln
(

1
1−δ

)
+ 1

2
µA

µB

+ 2
µB

µA

1− 1

1 + 1
2

µA

µB

1

ln( 1
(1−δ))

 (LB)


= −µAUmax(2π)

2(LA) +
(LB)

ln
(

1
1−δ

)
+ 1

2
µA

µB

+ 2
µB

µA

1−
ln
(

1
(1−δ)

)
ln
(

1
(1−δ)

)
+ 1

2
µA

µB

 (LB)


= −4πLAµAUmax

1 +
µB

µA

LB

LA

+
1

2

LB

LA

1

ln
(

1
1−δ

)
+ 1

2
µA

µB

− µB

µA

LB

LA

ln
(

1
(1−δ)

)
ln
(

1
(1−δ)

)
+ 1

2
µA

µB


= −4πLAµAUmax

(
1 +

µB

µA

LB

LA

+
LB

LA

1

ln
(

1
1−δ

)
+ 1

2
µA

µB

(
1

2
− µB

µA

ln

(
1

(1− δ)

)))
(B.31)

δ can be found by using the Bretherton relationship (?).

δ =
hA

R
= 1.34Ca

2
3 (B.32)

Assuming δ is small because the Ca number is small. Therefore, δ � 1 and all the ln
terms go to zero resulting in the final form of the drag.

Fdrag = −4πLAµAUmax

(
1 + 2

µB

µA

LB

LA

)
(B.33)

for Ca < 10−3.
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B.1.5 Final Form

Finally the pressure force is set equal to the drag force and the stretching force.

Fmotive = Fdrag + Fstretch

2(σA − σB − σAB)

R

(
πR2

)
= Fdrag + σAB

(
1− hA

R

)
2πR +

σB

(
1− hA + hB

R

)
2πR− σA

(
1− hA

R

)
2πR

(σA − σB − σAB) =
Fdrag

2πR
+ (σB + σAB − σA)

(
1− hA

R

)
− σB

hB

R(
1− σB

σA

− σAB

σA

)
=

Fdrag

2πRσA

+

(
σB

σA

+
σAB

σA

− 1

)(
1− hA

R

)
− σB

σA

hB

R

Fdrag

2πRσA

=

(
1− σB

σA

− σAB

σA

)
+

(
1− σB

σA

− σAB

σA

)(
1− hA

R

)
+

σB

σA

hB

R

Fdrag

2πRσA

=

(
1− σB + σAB

σA

)[
1 +

(
1− hA

R

)]
+

σB

σA

hB

R

Fdrag

2πRσA

=

(
1− σB + σAB

σA

)(
2− hA

R

)
+

σB

σA

hB

R
(B.34)

Assume, as previously, that the ratio of film thickness to radius is small, hB/R,
hA/R � 1.

Fdrag

2πRσA

≈ 2

(
1− σB + σAB

σA

)
Fdrag

4πRσA

≈
(

1− σB + σAB

σA

)
4πLAµAUmax

(
1 + 2µB

µA

LB

LA

)
4πRσA

≈
(

1− σB + σAB

σA

)
µAUmax

(
1 + 2µB

µA

LB

LA

)
σA

≈
(

1− σB + σAB

σA

)
R

LA

(B.35)

The final form of the model is equation B.36.

Camax ≈
[
1−

(
σAB + σB

σA

)](
R

LA

)(
1

1 + 2µB

µA

LB

LA

)
(B.36)

for Ca < 10−3.
The final form without the removal of the films:SYMPLIFY

Camax =
1

2

[
∆σ
σA

(2−HA) + σB

σA
HB

]
{

1 + LB

LA

(
µB

µA
− LB

LA

1
2
+

µB
µA

ln
“

1
1−HA

”
ln

“
1

1−HA

”
+ 1

2

µA
µB

)} (B.37)



C. SQUARE DERIVATION

C.1 Derivation of Force Terms

Three terms are included in the force balance; the motive force, the drag force and
the force associated with the stretching of the interface at the menisci, these are the
same force terms used in the round derivation B.1.

Fmotive = Fdrag + Fstretch (C.1)

C.1.1 Pressure Force

The motive force is caused by a pressure imbalance across the three menisci, a spher-
ical cap is used for the shape of the square menisci, this results in the same pressure
differential found for the round geometries.

Fmotive = ∆PAcross =
2(σA − σB − σAB)

R

(
πR2

)
(C.2)

Where Across is the projected cross-sectional area of the menisci.
The stretching force was defined as the surface tension σ multiplied by the coated

perimeter Pe. This occurs across each of three menisci in the bislug system. To find
the perimeter for a square channel with a film, the film was broken in to two parts,
the flat film and the corner region 4.6. The transition begins where the radius of
the corner has a perpendicular intersection with the wall. The shape of the corner
is assumed to be a partial circle (1/8) with a radius Rc. For the leading slug the
perimeter is that of a normal square.

Fstretch = σPe (C.3)

As the bislug flows in a prewet round channel there is a continuous destruction of the
interface at A and the creation of one at AB and B. The creation at AB is done over
the thin film hA.

xc = R− xf = Rc + hA (C.4)

Destruction of A-air interface : −σA2π(R− hA)what should the perimeter be for the leading slug

Creation of A-B interface : σAB8R

[
xf

R
+

π

4

(
1− xf

R
− hA

R

)]
Creation of B-air interface : σB8R

[
xf

R
+

π

4

(
1− xf

R
− hA

R
− hB

R

)]
(C.5)
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Fstretch = 2πR

(
1− hA

R

)
(σAB + σB − σA) + 8xf (σAB + σB)− 2πxf (σAB + σB)− σBRπhB

= 2πR

[(
1− hA

R

)
(σAB + σB − σA)− xf

R
(σAB + σB)− σB

hB

R

]
+ 8xf (σAB + σB)(C.6)

C.1.2 Geometry

To keep a similar derivation with the round channels a distance from the center of
the square channel was used. This is broken into two different sections, geometry for
the flat region and corner region.

Flat Region

The distance to the film:

Sf =
√

x2 + (R− hA)2

σf =
Sf

R
=

√
ζ2 + (1−Ho)2 (C.7)

Where ζ is the ratio x/R and Ho is hA/R.
The distance to the wall:

So =
√

x2 + R2

σo =
So

R
=

√
ζ2 + 12 (C.8)

Corner Region

The distance from the center to the wall is the same for the corner and flat region.

hc =
√

(x− xf )2 + (Rc + hA)2 −Rc

hc
′ =

Rc + ho

Rc + hc

hc

x∗ = x− hc
x− xf

Rc + hc

Sf =
√

x∗2 + (R− h′
c)

2 (C.9)

Non-dimensionalized

Hc =
hc

R
=

√
(ζ − ζf )2 + (C + Ho)2 − C

Hc
′ =

hc
′

R
= Hc

C + Hp

C + Hc

ζx =
x∗

R
= ζ −Hc

ζ − ζf

C + Hc

σf =
Sf

R
=

√
ζx

2 + (1−Hc
′)2 (C.10)
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C.2 Drag

C.2.1 Velocity Derivations

Core A

Assuming Poisseuille flow in the channel and using S as a distance function, this
allows for the same derivation technique used in the round channels. The distance
from the center to the wall and the film increases as zeta increase from the ceter to
the wall.

starting with the lubrication approximation, s can be substituded for R, both
distance measurements from the center point of the channel.

0 = −∂P

∂z
+

µ

s

∂

∂s

(
s
∂u

∂s

)
(C.11)

Integrating twice w.r.t s,

u =
1

2
C0s

2 + C1s + c2 (C.12)

Boundary conditions:

u = Umax @ s = o → Umax = C2

∂u

∂s
= 0 @ s = 0 → C1 = 0

u = 0 @ s = So → C0 =
−2U

Umax

(C.13)

Results in:

u = Umax

[
1− s2

So
2

]
(C.14)

a generic solution for Poiseuille.
Shear Stress at the wall:

τw = µA
∂u

∂s
|s=So = µA

2Umax

So

(C.15)

Film A

Starting with the lubrication approximation, same as derivation for round channels

0 =
∂

∂s

(
s
∂u

∂s

)
(C.16)

Integrating twice

0 =

∫
∂

∂r

(
r
∂u

∂r

)
u = C0 ln s + C1

(C.17)
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u = 0 @s = So → C1 = −C0 ln So

u = UAB @s = Sf → C0 =
UAB

ln
Sf

So

(C.18)

results in:

u = C0 ln
s

So

Co =
UAB

ln
Sf

So

u = UAB

ln
(

s
So

)
ln
(

Sf

So

)
or,u = UAB

ln
(

So

s

)
ln
(

So

Sf

) , to match the solution for a round channel (C.19)

Core B

Starting with the lubrication approximation, same as Core A.

0 = −∂P

∂z
+

µ

s

∂

∂s

(
s
∂u

∂s

)
(C.20)

Integrating twice w.r.t s,

u =
k

4µA

s2 + C1s + C2 (C.21)

k=∂P
∂z

Boundary conditions:

u = Umax @ s = o → Umax = C2

∂u

∂s
= 0 @ s = 0 → C1 = 0

u = UAB @ s = Sf → UAB =
k

4µA

Sf
2 + Umax

(C.22)

(C.23)

The velocity is:

u =
k

4µA

s2 + Umax (C.24)
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Final Velocity Forms

UAB can be found in the same fashion as the round channels. At the trasition between
film A and Core B it is assumed to have a no-slip condition. This results in a constact
velocity and shear stress at a local point at the transition.

B.C.’s

τcoreB|s=Sf
= τfilmA|s=Sf

ucoreB|s=Sf
= ufilmA|s=Sf

= UAB

(C.25)

(C.26)

taucoreB|s=Sf
= µB

∂u
∂s
|s=Sf

= −µB(Umax − UAB)
2

Sf

τfilmA|s=Sf
= µA

∂u
∂s
|s=Sf

= −µA
UAB

Sf ln So

Sf

(C.27)

Combining the shear stress and velocities at the transition results in:

UAB =
Umax(

1 + 1
2

µA

µB

1

ln So
Sf

) (C.28)

non-dimensional:
UAB

Umax

=
1(

1 + 1
2

µA

µB

1
ln σo

σf

) (C.29)

Resulting Final Equations:

ufilmA = Umax

ln s
So

ln So

Sf
+ 1

2
µA

µB

(C.30)

uCoreB = Umax

(1− s2

Sf
2

)
+

s2

Sf
2(

1 + 1
2

µA

µB

1

ln So
Sf

)
 (C.31)

Both equations are a function of x, resulting in different profiles at different locations
of x. Each of the functionso for s have been described in the geometry section. The
functions must be used in the correct location in the channel. or, non-dimensionalized

CaA = CaAmax

(1− σ2

σf
2

)
+

σ2

σf
2(

1 + 1
2

µA

µB

1
ln σo

σf

)
 (C.32)

where,
CaA = UmaxµA/σA (C.33)
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C.2.2 Final Forms of Drag

Drag force is the shear stress acting over the surface area.
Shear stresses,

τwCoreA = −2µA
Umax

So

τwFilmA = −µA
UAB

So ln
(

So

Sf

)
τf CoreB = −2µB

(Umax − UAB)

Sf

(C.34)

where,

UAB =
Umax(

1 + 1
2
M 1

ln

„
So
Sf

«
) (C.35)

where, M = µA

µB
.

non-dimensionalized distance,

τwCoreA = −2µA
Umax

σo

τwFilmA = −µA
UAB

σo ln
(

σo

σf

)
R

τf CoreB = −2µB
(Umax − UAB)

σfR
(C.36)

Where,

UAB =
Umax(

1 + 1
2
M 1

ln

„
σo
σf

«
) (C.37)

where, M = µA

µB
.

Core A

FdragCoreA =

∫ ∫
τwCoreA ∂x ∂z

= lA

∫
τwCoreA ∂x (C.38)

A closed form solution exists for the leading slug, Core A.

FdragcoreA = −16lAUmaxµA ln(1 +
√

2) (C.39)
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Film A and Core B

Film A and Core B must be numerically integrated to find the values for the drag.
The viscosity ratio must be included in the integration making each solution unique
to the fluid pairs.

Core B:

FdragCoreB =

∫ ∫
τf CoreB ∂x ∂z

= lb

∫
τf CoreB ∂x

(C.40)

Film A:

FdragF ilmA =

∫ ∫
τwFilmA ∂x ∂z

= lb

∫
τwFilmA ∂x

(C.41)

The numerical integration has to take place over different domains. The domains
are the flat region and the corner. The interface that the shear stress acts over needs
to be integrated over the distance normal to the surface. The distance equations can
be found above C.1.2.

The non-dimensional form was used so the integration was from 0-1 for Core A and
from 0-ζtrans for the flat region and ζtrans-1 for the corner region. The substitution of
the distance equations and UAB result in equations that cannot be solved analytically
but require numerical integration.

Coefficients were used for the solution of the drag forces, the drag from Core B
and Film A were combined and α was used for the coefficient. Core A has a closed
form solution but β was used for the coefficient for consistency.

FdragCoreA = βUmaxLA

FdragCoreB + FdragF ilmA = αUmaxLB

(C.42)

C.3 Force Balance

Setting the motive force equal to the drag and stretching.

Fmotive = Fdrag + Fstretch (C.43)

2(σA − σB − σAB)

R

(
2πR2

) π

4
R2 =

αUmaxLB + βUmaxLAµA

+2πRσA

[(
1− hA

R

)(
σAB + σB

σA

)
− xf

R

(
1− 4

π

)(
σAB + σB

σA

)
+

hB

R

σB

σA

]
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UmaxLAµA

(
α

µA

LB

LA

+ β

)
= (C.44)

2πRσA

[(
σAB + σB

σA

)(
2− hA

R

)
+

xf

R

(
1− 4

π

)(
σAB + σB

σA

)]
(C.45)

The final form has been non-dimensionalized using CaA, assumes hB � 1 to simplifiy
the equation and the film thickness is found by using the Bretherton relationship.

CaAmax =
UmaxµA

σA

=

2πR

LA

[(
σAB+σB

σA

) (
2− hA

R

)
+

xf

R

(
1− 4

π

) (
σAB+σB

σA

)]
(

α
µA

LB

LA
+ β

) (C.46)

Table C.1. Coefficients for Fdrag in the square channels

Ca Number ho (µm) α (kg/m s) β
2 E-3 10.6 0.52567 14.1020
4 E-3 16.9 0.51926 14.1020

Without Stretch term:

CaAmax =
2πR

LA

1−
(

σAB+σB

σA

)
α

µA

LB

LA
+ β

(C.47)

need to finish the derivation after matlab code is finished up.



D. MATLAB CODE

D.1 graphing

Modeling the velocity profiles in both round and square channels with and without
a thin film

Stepping Through Velocities,

n=.00005; % step s i z e

Ca r=[4E−5 2E−4 2E−4 3E−4] ; % Data from
exper iments

Ca l ab e l r=c e l l s t r ( [ ’Round Non−Prewet low ’ ; ’Round Non−
Prewet high ’ ; ’ Round Prewet low ’ ; ’ Round Prewet high ’ ] )
; %l a b e l s f o r the data

sigma A=47.7e−3 ; %N/m
mu A=.0178; % kg /(m s )
Umax r=Ca r∗ sigma A/mu A∗1000 ; %

mm/s

%Umax=200; % mm/s

R=.5; % ha l f width o f the channel f o r the square
and the rad ius f o r the round

ho r=R. ∗ . 6 4 3 ∗ ( 3 . ∗ Ca r ) . ˆ ( 2/3 ) ; % mm, c a l c u l a t e d
from bre ther ton1961

%ho=[.01 .05 . 1 ] ;

Outer Loop, Stepping Through ho

for i =1: length ( ho r ) ;

Round Channels

Properties For a bislug system the front and film are function of fluid A and the rear
is a function of fluid B
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zeta coreA =0:n : 1 ; % non d imens iona l i z ed p o s i t i o n in r z e t a=r/
R

%ho=.1;
H( i )=ho r ( i ) /R; % non d imens iona l i z ed f i lm t h i c kn e s s H=

ho/R

muA=.0178; % kg /(m s )
muB=.0096; % kg /(m s ) ;

zeta Fi lm boundary ( i )=1−H( i ) ;

for j =1: length ( zeta Fi lm boundary ( i ) : n : 1 ) ; % ca l c u l a t i n g
z e t a f o r f i lm A
a=zeta Fi lm boundary ( i ) : n : 1 ;

zeta FilmA ( i , j )=a ( j ) ;

end
clear a

for j =1: length ( 0 : n : zeta Fi lm boundary ( i ) ) ; %
ca l c u l a t i n g z e t a f o r core B
a=0:n : zeta Fi lm boundary ( i ) ;
zeta CoreB ( i , j )=a ( j ) ;

end
clear a

Poiseuille flow (ur=Umax(1-zetaˆ2))

for j =1: length ( zeta coreA )
ur CoreA ( i , j )=Umax r ( i )∗(1− zeta coreA ( j ) . ˆ 2 ) ; % ur A i s the f l ow

in the round channel w. r . t . f l u i d A
end % doesn ’ t need loop ,

on ly one s e r i e s o f va l u e s because i t i s in Core A

Velocity of film

UABr( i )=Umax r ( i ) ./(1−1/2∗muA/muB. ∗ 1 . / log(1−H( i ) ) ) ;

Poiseuille with film

for j =1: length ( zeta CoreB ( i , : ) )
ur CoreB ( i , j )=Umax r ( i ) ∗((1+ zeta CoreB ( i , j ) ˆ2/(1−H( i ) ) ˆ2∗(1/(1−

muA/(2∗muB) ∗1/ log(1−H( i ) ) )−1) ) ) ;
end
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Couette Flow in thin film

for j =1: length ( zeta FilmA ( i , : ) )
ur FilmA ( i , j )=Umax r ( i ) ∗ log ( zeta FilmA ( i , j ) ) /( log(1−H( i ) )−1/2∗muA

/muB) ;
end

end

Plots of Round channels

for i =1: length ( ho r ) ;
% round w/o f i lm

f igure
hold on
% Core A
plot ( ur CoreA ( i , : ) /Umax r ( i ) , ze ta coreA ) ;
plot ( ur CoreA ( i , : ) /Umax r ( i ) ,− zeta coreA ) ;
t i t l e ( sprintf ( ’ Flow p r o f i l e s o f a round channel with a rad iu s o f

%g mm,\n Umax o f %g mm/s and f i lm th i ckne s s o f %g mm’ ,R, Umax r
( i ) , ho r ( i ) ) , ’ f o n t s i z e ’ ,22) ;

ylabel ( ’ z e ta ( r /R) ’ , ’ f o n t s i z e ’ ,22) ;
xlabel ( ’U/Umax ’ , ’ f o n t s i z e ’ ,22) ;
%ax i s ( [ ( − .1) ( 1 . 1 ) (−1.1) ( 1 . 1 ) ] ) ;
pbaspect ( [ 2 2 1 ] ) ;

set (gca , ’ FontSize ’ ,20)

% Core B
plot ( ur CoreB ( i , 1 : find ( zeta CoreB ( i , : ) , 1 , ’ l a s t ’ ) ) /Umax r ( i ) ,

zeta CoreB ( i , 1 : find ( zeta CoreB ( i , : ) , 1 , ’ l a s t ’ ) ) , ’ g ’ )
plot ( ur CoreB ( i , 1 : find ( zeta CoreB ( i , : ) , 1 , ’ l a s t ’ ) ) /Umax r ( i ) ,−

zeta CoreB ( i , 1 : find ( zeta CoreB ( i , : ) , 1 , ’ l a s t ’ ) ) , ’ g ’ )
% f i lm A
plot ( ur FilmA ( i , 1 : find ( zeta FilmA ( i , : ) , 1 , ’ l a s t ’ ) ) /Umax r ( i ) ,

zeta FilmA ( i , 1 : find ( zeta FilmA ( i , : ) , 1 , ’ l a s t ’ ) ) , ’ r ’ )
plot ( ur FilmA ( i , 1 : find ( zeta FilmA ( i , : ) , 1 , ’ l a s t ’ ) ) /Umax r ( i ) ,−

zeta FilmA ( i , 1 : find ( zeta FilmA ( i , : ) , 1 , ’ l a s t ’ ) ) , ’ r ’ )

print ( ’−depsc ’ , ’−r300 ’ , ’− l o o s e ’ , sprintf ( ’ f i g s /%s f l o w p r o f i l e .
eps ’ , char ( Ca l ab e l r ( i ) ) ) ) ;

print ( ’−dpdf ’ , ’−r300 ’ , ’− l o o s e ’ , sprintf ( ’ f i g s /%s f l o w p r o f i l e .
pdf ’ , char ( Ca l ab e l r ( i ) ) ) ) ;

% saveas ( gc f , s p r i n t f ( ’˜/ Research/ bi−s l u g /Matlab/Fina l / f i g s /%
s f l o w p r o f i l e . eps ’ , char ( Ca l a b e l ( i ) ) ) , ’ eps ’ )

hold o f f
end % Round Channels
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%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Square Channels

Going to use the x value from the wall as the reference point for each calculation.
Plots of profile on x and the normalized film velocity will be plotted.

Ca=[2E−3 4E−3] ; % Data from exper iments
Ca labe l=c e l l s t r ( [ ’ Square Prewet low ’ ; ’ Square Prewet high ’ ] ) ;

%l a b e l s f o r the data

Umax=Ca∗ sigma A/mu A∗1000 ; % mm/s
ho=R. ∗ . 6 4 3 ∗ ( 3 . ∗Ca) . ˆ ( 2/3 ) ;
H=ho . /R; % non d imens iona l i z ed f i lm t h i c kn e s s H=ho/R

%outer loop , us ing k f o r an k , i , j arrays
for k=1: length ( ho )

Parameters

Using the same initial parameters as the round channels

Flow in a square channel with a thin film

Two regions for both the Couette and Poiseuille flow There are two different functions
for the distance to the film.

Rc=.1;

x f ( k )=R−ho (k )−Rc ; % the l en g t h from the
cen ter to the t r a n s i t i o n po in t on the wa l l o f the channel in
the x−d i r

z e t a o t r a n s (k )=xf (k ) /R ;% t r an s i t i o n po in t from f l a t to curved

for i =1: length ( 0 : ( z e t a o t r a n s ) /2 : z e t a o t r a n s ) ;
a=0:( z e t a o t r a n s (k ) ) /2 : z e t a o t r a n s (k ) ;

z e t a s f l a t (k , i )=a ( i ) ; % the range f o r the f l a t reg ion on the
wa l l

end
clear a
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Ho(k )=ho (k ) /R; % non−dimensiona l f i lm
t h i c kn e s s in the f l a t region , ho/R

% Fla t reg ion
for i =1: length ( z e t a s f l a t )

s i gma s o f l a t (k , i )=sqrt ( z e t a s f l a t (k , i ) .ˆ2+1) ;
% The l en g t h from the cen ter to the

wa l l

s i g m a s f i l m f l a t (k , i )=s i gma s o f l a t (k , i ) .∗(1−Ho(k ) ) ;
% Using s im i l a r t r i a n g l e s to f i nd

s i gm a s f i l m f l a t
end

% Curved reg ion
C=Rc/R;

for i =1: length ( [ z e t a o t r a n s (k ) ,(1+ z e t a o t r a n s (k ) ) / 2 , 1 ] )
% ze t a s c o r n e r w a l l

a=[ z e t a o t r a n s (k ) ,(1+ z e t a o t r a n s (k ) ) / 2 , 1 ] ;
z e t a s c o r n e r wa l l (k , i )=a ( i ) ; % range to o f z e t a on the

wa l l

Hc(k , i )=sqrt ( ( z e t a s c o r n e r wa l l (k , i )−z e t a o t r a n s (k ) ) .ˆ2+(C+Ho(k
) ) . ˆ 2 )−C; % Hc based on ze t a

Hc prime (k , i )=Hc(k , i ) . ∗ (C+Ho(k ) ) . / (C+Hc(k , i ) ) ; % Hc prime
based on ze t a

z e t a s c o rn e r p r ime (k , i )=real ( z e t a s c o r n e r wa l l (k , i )−sqrt (Hc(k , i
) .ˆ2−Hc prime (k , i ) . ˆ 2 ) ) ; % This i s f o r c a l c s o f sigma f i lm
and sigma s o ,

s i gma s f i lm co rn e r (k , i )=real ( sqrt ((1−Hc prime (k , i ) ) .ˆ2+
ze t a s c o rn e r p r ime (k , i ) . ˆ 2 ) ) ;

s i gma s o co rne r (k , i )=s i gma s f i lm co rn e r (k , i ) ./(1−Hc prime (k , i ) )
;

z e t a s c o r n e r wa l l a c t e d (k , i )=sqrt ( s i gma s o co rne r (k , i ) ˆ2−1) ;
% This i s the a c t ua l wa l l p o s i t i o n t ha t

sigma o i s ca l c ed on

Velocity at the film, UAB for calcs

Flat
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UAB s f lat (k , i )=Umax(k ) ./(1−1/2.∗muA/muB. ∗ 1 . / log (
s i g m a s f i l m f l a t (k , i ) . / s i gma s o f l a t (k , i ) ) ) ;

% Corner
UAB s corner (k , i )=Umax(k ) ./(1−1/2.∗muA/muB. ∗ 1 . / log (

s i gma s f i lm co rn e r (k , i ) . / s i gma s o co rne r (k , i ) ) ) ;

end

%%%%%%%%%%%%%%%%%%%%%%%%% Graphing Beginning
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Velocity at the film, UAB for graphing

Flat

for i =1: length ( [ 0 : n : z e t a o t r a n s (k ) ] )
a=[0 :n : z e t a o t r a n s (k ) ] ;

z e t a s f l a t g (k , i )=a ( i ) ;
end
clear a

for i =1: length ( z e t a s f l a t g (k , : ) )
z e t a s f l a t s o g (k , i )=z e t a s f l a t g (k , i ) /(1−Ho(k ) ) ;
s i g m a s f i l m f l a t g (k , i )=sqrt ( z e t a s f l a t g (k , i ) .ˆ2+(1−Ho(k ) ) ˆ2) ;

% The l en g t h from the cen ter to the f i lm
s i gma s o f l a t g (k , i )=sqrt ( z e t a s f l a t s o g (k , i ) .ˆ2+1) ;

% The l en g t h from the cen ter to the
wa l l

UAB s f lat g (k , i )=Umax(k ) ./(1−1/2.∗muA/muB. ∗ 1 . / log (
s i g m a s f i l m f l a t g (k , i ) . / s i gma s o f l a t g (k , i ) ) ) ;

end

% Corner
for i =1: length ( [ z e t a o t r a n s (k ) : n : 1 ] ) % range to o f

z e t a on the wa l l f o r p l o t t i n g
a=[ z e t a o t r a n s (k ) : n : 1 ] ;

z e t a s c o r n e r wa l l g (k , i )=a ( i ) ;
end
clear a
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for i =1: length ( z e t a s c o r n e r wa l l g (k , : ) )
Hc g (k , i )=sqrt ( ( z e t a s c o r n e r wa l l g (k , i )−z e t a o t r a n s (k ) ) .ˆ2+(C+

Ho(k ) ) . ˆ 2 )−C; % Hc based on ze t a
Hc prime g (k , i )=Hc g (k , i ) . ∗ (C+Ho(k ) ) . / (C+Hc g (k , i ) ) ;

% Hc prime based on ze t a
z e t a s c o rn e r p r ime g (k , i )=real ( z e t a s c o r n e r wa l l g (k , i )−sqrt (

Hc g (k , i ) .ˆ2−Hc prime g (k , i ) . ˆ 2 ) ) ; % This i s f o r c a l c s o f
sigma f i lm and sigma s o ,

s i gma s f i lm c o r n e r g (k , i )=real ( sqrt ((1−Hc prime g (k , i ) ) .ˆ2+
z e t a s c o rn e r p r ime g (k , i ) . ˆ 2 ) ) ;

s i gma s o co rn e r g (k , i )=s i gma s f i lm c o r n e r g (k , i ) ./(1−Hc prime g
(k , i ) ) ;

UAB s corner g (k , i )=Umax(k ) ./(1−1/2.∗muA/muB. ∗ 1 . / log (
s i gma s f i lm c o r n e r g (k , i ) . / s i gma s o co rn e r g (k , i ) ) ) ;

end

%%%%%%%%%%%%%%%%%%%%%%%%% Graphing End
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Poiseuille in Core B

Flat

for i =1: length ( z e t a s f l a t (k , : ) )

for j =1: length ( [ 0 : n:1−Ho(k ) ] ) ;
a=[0 :n:1−Ho(k ) ] ;
p s i Co r eB f l a t (k , i , j )=a ( j ) ;

s i gma s CoreB f l a t (k , i , j )=p s i Co r eB f l a t (k , i , j ) .∗ s i gma s o f l a t (k
, i ) ;

u s CoreB f l a t (k , i , j )=(Umax(k )−UAB s f lat (k , i ) ) .∗(1−
s i gma s CoreB f l a t (k , i , j ) . ˆ 2 . / s i g m a s f i l m f l a t (k , i ) . ˆ 2 )+
UAB s f lat (k , i ) ;

end
end

clear a

% Corner
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for i =1: length ( z e t a s c o r n e r wa l l (k , : ) )

for j =1: length ( [ 0 : n:1−Hc prime (k , i ) ] ) ;

a=[0 :n:1−Hc prime (k , i ) ] ;
p s i CoreB corner (k , i , j )=a ( j ) ;

s igma s CoreB corner (k , i , j )=ps i CoreB corner (k , i , j ) .∗
s i gma s o co rne r (k , i ) ;

us CoreB corner (k , i , j )=(Umax(k )−UAB s corner (k , i ) ) .∗(1−
s igma s CoreB corner (k , i , j ) . ˆ 2 . / s i gma s f i lm co rn e r (k , i ) . ˆ 2 )+
UAB s corner (k , i ) ;

end
l CoreB corner (k , i )=find ( ps i CoreB corner (k , i , : ) , 1 , ’ l a s t ’ ) ;

end
clear a

Couette

% Fla t

% Boundary f o r the f i lm

for i =1: length ( z e t a s f l a t (k , : ) )

for j =1: length ([1−Ho(k ) : n : 1 ] ) ;
a=[1−Ho(k ) : n : 1 ] ;
p s i f i l m A f l a t (k , i , j )=a ( j ) ;

s i gma s f i lmA f l a t (k , i , j )=p s i f i l m A f l a t (k , i , j ) .∗
s i gma s o f l a t (k , i ) ;

u s f i lmA f l a t (k , i , j )=UAB s f lat (k , i ) ∗ log ( s i gma s f i lmA f l a t (k , i , j
) / s i gma s o f l a t (k , i ) ) . / log ( s i g m a s f i l m f l a t (k , i ) /
s i gma s o f l a t (k , i ) ) ;

end
end
clear a

% Corner
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for i =1: length ( z e t a s c o r n e r wa l l (k , : ) ) ;
for j =1: length ([1−Hc prime (k , i ) : n : 1 ] ) ;

a=[1−Hc prime (k , i ) : n : 1 ] ;
p s i f i lmA co rn e r (k , i , j )=a ( j ) ;

s i gma s f i lmA corne r (k , i , j )=p s i f i lmA co rn e r (k , i , j ) .∗
s i gma s o co rne r (k , i ) ;

u s f i lmA corne r (k , i , j )=UAB s corner (k , i ) ∗ log (
s i gma s f i lmA corne r (k , i , j ) / s i gma s o co rne r (k , i ) ) . / log (
s i gma s f i lm co rn e r (k , i ) / s i gma s o co rne r (k , i ) ) ;

end

l f i lmA co rn e r (k , i )=find ( p s i f i lmA co rn e r (k , i , : ) , 1 , ’ l a s t ’ ) ;
end

clear a

end % end o f the c a l c u l a t i o n loop

Core A, Poiseuille

for k=1: length ( ho )
for i =1: length ( z e t a s f l a t (k , : ) )

zeta s CoreA (k , i )=z e t a s f l a t (k , i ) ; % non−d imens ion l i z ed x f o r
Core A

end
for i =1: length ( z e t a s c o r n e r wa l l (k , : ) )−1
zeta s CoreA (k , i+length ( z e t a s f l a t (k , : ) ) )=z e t a s c o r n e r wa l l

(k , i +1)
end

end
s igma s o CoreA=sqrt (1+zeta s CoreA . ˆ 2 ) ; % the l en g t h from the

cen ter to the channel to the wa l l
for i =1: length ( zeta s CoreA ) ;

ps i s CoreA =[0:n : 1 ] ;

for j =1: length ( ps i s CoreA ) ;

sigma s CoreA (k , i , j )=ps i s CoreA ( j ) .∗ s igma s o CoreA ( i ) ;
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us CoreA (k , i , j )=Umax(k )∗(1− sigma s CoreA (k , i , j ) . ˆ2/
s igma s o CoreA ( i ) . ˆ 2 ) ;

z e t a s s t a r Cor eA (k , i , j )=ps i s CoreA ( j ) ∗ zeta s CoreA ( i ) ;

end

end

% us f i lmA corner=UAB s corner∗ l o g ( s i gma s corner /
s i gma s o corner ) ./ l o g ( s i gma s f i lm co rne r / s i gma s o corner )

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Beginning Graph f o r
Square %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Plots in Square Channels

for k=1: length ( ho )

Loop not needed for Core A

square w/o film

f igure
hold on
% Core A

for i =1: length ( zeta s CoreA (k , : ) ) ;

plot ( squeeze ( us CoreA (k , i , : ) ) /Umax(k ) , squeeze ( sigma s CoreA (k , i
, : ) ) ) ;

plot ( squeeze ( us CoreA (k , i , : ) ) /Umax(k ) ,− squeeze ( sigma s CoreA (k , i
, : ) ) ) ;

s { i}=sprintf ( ’ z e ta=%g ’ , zeta s CoreA (k , i ) ) ;
end

hold o f f

t i t l e ( sprintf ( ’ Flow p r o f i l e s o f a square channel with a hydrau l i c
diameter o f %g mm \n and a Umax o f %g mm/s at var i ous

l o c a t i o n s along the channel ’ ,R,Umax(k ) ) )
ylabel ( ’ sigma ’ , ’ f o n t s i z e ’ ,22) ;
xlabel ( ’U/Umax ’ , ’ f o n t s i z e ’ ,22) ;
legend ( s ) ;
legend ( ’ boxo f f ’ , ’ Best ’ ) ;
pbaspect ( [ 3 3 1 ] ) ;
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print ( ’−depsc ’ , ’−r300 ’ , ’− l o o s e ’ , sprintf ( ’ f i g s /%s f l o w p r o f i l e . eps
’ , char ( Ca labe l ( k ) ) ) ) ;

print ( ’−dpdf ’ , ’−r300 ’ , ’− l o o s e ’ , sprintf ( ’ f i g s /%s f l o w p r o f i l e . pdf ’
, char ( Ca labe l ( k ) ) ) ) ;

end

Plots of flow in square channels with a thin film

%%%% I need to add l a b e l s

for k=1: length ( ho ) ; %s t a r t i n g here to minimize the time needed
f o r t e s t i n g i n d i v i d u a l l oops

% UAB, f l ow at the f i lm
f igure
hold on
plot ( s i gma s o f l a t g (k , 1 : find ( z e t a s f l a t g (k , : ) , 1 , ’ l a s t ’ ) ) ,

UAB s f lat g (k , 1 : find ( z e t a s f l a t g (k , : ) , 1 , ’ l a s t ’ ) ) /Umax(k ) )
plot ( s i gma s o co rn e r g (k , 1 : find ( z e t a s c o r n e r wa l l g (k , : ) , 1 , ’

l a s t ’ ) ) , UAB s corner g (k , 1 : find ( z e t a s c o r n e r wa l l g (k , : ) , 1 , ’
l a s t ’ ) ) /Umax(k ) )

t i t l e ( sprintf ( ’The v e l o c i t y at the f i lm with a \n f i lm th i ckne s s
o f %g mm and a Umax o f %g ’ , ho ,Umax(k ) ) )

xlabel ( ’ s igma o ’ , ’ f o n t s i z e ’ ,22)
ylabel ( ’Uab/Umax ’ , ’ f o n t s i z e ’ ,22)
hold o f f
print ( ’−depsc ’ , ’−r300 ’ , ’− l o o s e ’ , sprintf ( ’ f i g s /%s Uab . eps ’ , char (

Ca labe l ( k ) ) ) ) ;
print ( ’−dpdf ’ , ’−r300 ’ , ’− l o o s e ’ , sprintf ( ’ f i g s /%s Uab . pdf ’ , char (

Ca labe l ( k ) ) ) ) ;

f igure
hold on

% f l a t

for i =1: length ( z e t a s f l a t (k , : ) ) ;
% Core B Po i s e u i l l e

plot ( squeeze ( u s CoreB f l a t (k , i , 1 : find ( p s i Co r eB f l a t (k , i , : ) , 1 , ’
l a s t ’ ) ) /Umax(k ) ) , squeeze ( s i gma s CoreB f l a t (k , i , 1 : find (
p s i Co r eB f l a t (k , i , : ) , 1 , ’ l a s t ’ ) ) ) , ’ g ’ ) ;

plot ( squeeze ( u s CoreB f l a t (k , i , 1 : find ( p s i Co r eB f l a t (k , i , : ) , 1 , ’
l a s t ’ ) ) /Umax(k ) ) ,− squeeze ( s i gma s CoreB f l a t (k , i , 1 : find (
p s i Co r eB f l a t (k , i , : ) , 1 , ’ l a s t ’ ) ) ) , ’ g ’ ) ;

% Film A Couette f l ow
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plot ( squeeze ( u s f i lmA f l a t (k , i , 1 : find ( p s i f i l m A f l a t (k , i , : ) , 1 , ’
l a s t ’ ) ) /Umax(k ) ) , squeeze ( s i gma s f i lmA f l a t (k , i , 1 : find (
p s i f i l m A f l a t (k , i , : ) , 1 , ’ l a s t ’ ) ) ) , ’ r ’ ) ;

plot ( squeeze ( u s f i lmA f l a t (k , i , 1 : find ( p s i f i l m A f l a t (k , i , : ) , 1 , ’
l a s t ’ ) ) /Umax(k ) ) ,− squeeze ( s i gma s f i lmA f l a t (k , i , 1 : find (
p s i f i l m A f l a t (k , i , : ) , 1 , ’ l a s t ’ ) ) ) , ’ r ’ ) ;

s { i}=sprintf ( ’ z e ta=%g ’ , z e t a s f l a t (k , i ) ) ;
end

% curved

for i =1: length ( z e t a s c o r n e r wa l l (k , : ) ) ;

% Core B Po i s e u i l l e
plot ( squeeze ( us CoreB corner (k , i , 1 : l CoreB corner (k , i ) ) /Umax(k ) ) ,

squeeze ( s igma s CoreB corner (k , i , 1 : l CoreB corner (k , i ) ) ) , ’ b ’ ) ;
plot ( squeeze ( us CoreB corner (k , i , 1 : l CoreB corner (k , i ) ) /Umax(k ) )

,− squeeze ( s igma s CoreB corner (k , i , 1 : l CoreB corner (k , i ) ) ) , ’ b
’ ) ;

% Film A Couette f l ow
plot ( squeeze ( u s f i lmA corne r (k , i , 1 : l f i lmA co rn e r (k , i ) ) /Umax(k ) ) ,

squeeze ( s i gma s f i lmA corne r (k , i , 1 : l f i lmA co rn e r (k , i ) ) ) , ’ r ’ ) ;
plot ( squeeze ( u s f i lmA corne r (k , i , 1 : l f i lmA co rn e r (k , i ) ) /Umax(k ) )

,− squeeze ( s i gma s f i lmA corne r (k , i , 1 : l f i lmA co rn e r (k , i ) ) ) , ’ r ’
) ;

%s{ i}=s p r i n t f ( ’ z e t a=%g ’ , z e t a s f l a t ( i ) ) ; %need to work on t h i s
t i t l e ( sprintf ( ’ Flow p r o f i l e s o f a square channel with a hydrau l i c

diameter o f %g mm, a f i lm th i ckne s s o f %g mm \n and a Umax o f
%g mm/s at var i ous l o c a t i o n s along the channel ’ ,R, ho (k ) ,Umax(

k ) ) )
end

% t i t l e ( s p r i n t f ( ’ Flow p r o f i l e s o f a square channel wi th a
hyd rau l i c diameter o f %g mm, a f i lm t h i c kn e s s o f %g mm \n and
a Umax o f %g mm/s at var ious l o c a t i o n s a long the channel ’ ,R, ho
,Umax) )

ylabel ( ’ sigma ’ , ’ f o n t s i z e ’ ,22) ;
xlabel ( ’U/Umax ’ , ’ f o n t s i z e ’ ,22) ;
legend ( s ) ; % i need to work on the the l egend
legend ( ’ boxo f f ’ , ’ Best ’ ) ;
pbaspect ( [ 3 3 1 ] ) ;
hold o f f
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print ( ’−depsc ’ , ’−r300 ’ , ’− l o o s e ’ , sprintf ( ’ f i g s /%
s f l o w p r o f i l e f i l m . eps ’ , char ( Ca labe l ( k ) ) ) ) ;

print ( ’−dpdf ’ , ’−r300 ’ , ’− l o o s e ’ , sprintf ( ’ f i g s /%s f l o w p r o f i l e f i l m
. pdf ’ , char ( Ca labe l ( k ) ) ) ) ;

Channel Profile

% need to ge t y and x p o s i t i o n s to p l o t the s t r a i g h t l i n e s

% f i lm p r o f i l e

% f l a t
for i =1: length ( s i g m a s f i l m f l a t g (k , : ) ) ;

s i g m a s f i l m f l a t p r o f i l e=s i g m a s f i l m f l a t g ;
z e t a s f l a t p r o f i l e=z e t a s f l a t g ;
p s i s f l a t p r o f i l e (k , i )=sqrt ( s i g m a s f i l m f l a t p r o f i l e (k , i ) .ˆ2−

z e t a s f l a t p r o f i l e (k , i ) . ˆ 2 ) ;
end

% corner
for i =1: length ( s i gma s f i lm c o r n e r g (k , : ) ) ;

s i gma s c o r n e r p r o f i l e=s i gma s f i lm c o r n e r g ;
z e t a s c o r n e r p r o f i l e=z e t a s c o rn e r p r ime g ;
p s i s c o r n e r p r o f i l e (k , i )=sqrt ( s i gma s c o r n e r p r o f i l e (k , i ) .ˆ2−

z e t a s c o r n e r p r o f i l e (k , i ) . ˆ 2 ) ;
end

%%%%%%%%%%%%%%%%%%%555 Film with l i n e s p l o t
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

f igure
hold on

axis ( [ ( −1 .1 ) ( 1 . 1 ) (−1.1) ( 1 . 1 ) ] )
pbaspect ( [ 2 2 1 ] )

% p l o t o f f i lm
%f l a t
plot ( z e t a s f l a t p r o f i l e (k , 1 : find ( z e t a s f l a t p r o f i l e (k , : ) , 1 , ’

l a s t ’ ) ) , p s i s f l a t p r o f i l e (k , 1 : find ( z e t a s f l a t p r o f i l e (k , : )
, 1 , ’ l a s t ’ ) ) , ’ g ’ )

plot(− z e t a s f l a t p r o f i l e (k , 1 : find ( z e t a s f l a t p r o f i l e (k , : ) , 1 , ’
l a s t ’ ) ) ,− p s i s f l a t p r o f i l e (k , 1 : find ( z e t a s f l a t p r o f i l e (k
, : ) , 1 , ’ l a s t ’ ) ) , ’ g ’ )

plot(− z e t a s f l a t p r o f i l e (k , 1 : find ( z e t a s f l a t p r o f i l e (k , : ) , 1 ,
’ l a s t ’ ) ) , p s i s f l a t p r o f i l e (k , 1 : find ( z e t a s f l a t p r o f i l e (k
, : ) , 1 , ’ l a s t ’ ) ) , ’ g ’ )

plot ( z e t a s f l a t p r o f i l e (k , 1 : find ( z e t a s f l a t p r o f i l e (k , : ) , 1 , ’
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l a s t ’ ) ) ,− p s i s f l a t p r o f i l e (k , 1 : find ( z e t a s f l a t p r o f i l e (k
, : ) , 1 , ’ l a s t ’ ) ) , ’ g ’ )

plot ( p s i s f l a t p r o f i l e (k , 1 : find ( z e t a s f l a t p r o f i l e (k , : ) , 1 , ’
l a s t ’ ) ) , z e t a s f l a t p r o f i l e (k , 1 : find ( z e t a s f l a t p r o f i l e (k
, : ) , 1 , ’ l a s t ’ ) ) , ’ g ’ )

plot(− p s i s f l a t p r o f i l e (k , 1 : find ( z e t a s f l a t p r o f i l e (k , : ) , 1 , ’
l a s t ’ ) ) ,− z e t a s f l a t p r o f i l e (k , 1 : find ( z e t a s f l a t p r o f i l e (k
, : ) , 1 , ’ l a s t ’ ) ) , ’ g ’ )

plot ( p s i s f l a t p r o f i l e (k , 1 : find ( z e t a s f l a t p r o f i l e (k , : )
, 1 , ’ l a s t ’ ) ) ,− z e t a s f l a t p r o f i l e (k , 1 : find (
z e t a s f l a t p r o f i l e (k , : ) , 1 , ’ l a s t ’ ) ) , ’ g ’ )

plot(− p s i s f l a t p r o f i l e (k , 1 : find ( z e t a s f l a t p r o f i l e (k , : ) , 1 , ’
l a s t ’ ) ) , z e t a s f l a t p r o f i l e (k , 1 : find ( z e t a s f l a t p r o f i l e (k , : )
, 1 , ’ l a s t ’ ) ) , ’ g ’ )

% corner
plot ( z e t a s c o r n e r p r o f i l e (k , 1 : find ( p s i s c o r n e r p r o f i l e (k , : ) , 1 ,

’ l a s t ’ ) ) , p s i s c o r n e r p r o f i l e (k , 1 : find ( p s i s c o r n e r p r o f i l e (k
, : ) , 1 , ’ l a s t ’ ) ) , ’ g ’ )

plot(− z e t a s c o r n e r p r o f i l e (k , 1 : find ( p s i s c o r n e r p r o f i l e (k , : )
, 1 , ’ l a s t ’ ) ) ,− p s i s c o r n e r p r o f i l e (k , 1 : find (
p s i s c o r n e r p r o f i l e (k , : ) , 1 , ’ l a s t ’ ) ) , ’ g ’ )

plot(− z e t a s c o r n e r p r o f i l e (k , 1 : find ( p s i s c o r n e r p r o f i l e (k , : )
, 1 , ’ l a s t ’ ) ) , p s i s c o r n e r p r o f i l e (k , 1 : find (
p s i s c o r n e r p r o f i l e (k , : ) , 1 , ’ l a s t ’ ) ) , ’ g ’ )

plot ( z e t a s c o r n e r p r o f i l e (k , 1 : find ( p s i s c o r n e r p r o f i l e (k , : ) , 1 ,
’ l a s t ’ ) ) ,− p s i s c o r n e r p r o f i l e (k , 1 : find ( p s i s c o r n e r p r o f i l e (
k , : ) , 1 , ’ l a s t ’ ) ) , ’ g ’ )

plot ( p s i s c o r n e r p r o f i l e (k , 1 : find ( p s i s c o r n e r p r o f i l e (k , : ) , 1 , ’
l a s t ’ ) ) , z e t a s c o r n e r p r o f i l e (k , 1 : find ( p s i s c o r n e r p r o f i l e (k
, : ) , 1 , ’ l a s t ’ ) ) , ’ g ’ )

plot(− p s i s c o r n e r p r o f i l e (k , 1 : find ( p s i s c o r n e r p r o f i l e (k , : ) , 1 ,
’ l a s t ’ ) ) ,− z e t a s c o r n e r p r o f i l e (k , 1 : find ( p s i s c o r n e r p r o f i l e
(k , : ) , 1 , ’ l a s t ’ ) ) , ’ g ’ )

plot ( p s i s c o r n e r p r o f i l e (k , 1 : find ( p s i s c o r n e r p r o f i l e (k , : ) , 1 ,
’ l a s t ’ ) ) ,− z e t a s c o r n e r p r o f i l e (k , 1 : find (
p s i s c o r n e r p r o f i l e (k , : ) , 1 , ’ l a s t ’ ) ) , ’ g ’ )

plot(− p s i s c o r n e r p r o f i l e (k , 1 : find ( p s i s c o r n e r p r o f i l e (k , : ) , 1 ,
’ l a s t ’ ) ) , z e t a s c o r n e r p r o f i l e (k , 1 : find ( p s i s c o r n e r p r o f i l e (
k , : ) , 1 , ’ l a s t ’ ) ) , ’ g ’ )
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% Lines o f sigma o
% f l a t

for i =1: length ( z e t a s f l a t (k , : ) ) ;
p s i p r o f i l e =[0 :n : 1 ] ;
for j =1: length ( p s i p r o f i l e )
z e t a s o f l a t p r o f i l e (k , i , j )=z e t a s f l a t (k , i ) ∗ p s i p r o f i l e ( j ) . /

s i gma s o co rne r (k , i ) ;
end
plot ( squeeze ( z e t a s o f l a t p r o f i l e (k , i , : ) ) , p s i p r o f i l e , ’ r ’ ) ;

%t e x t (max( z e t a s o f l a t p r o f i l e ( k , i , : ) ) , 1 , [ ’\ z e t a = ’ , num2str (
z e t a s f l a t ( k , i ) ) ] ) ;

text (max( z e t a s o f l a t p r o f i l e (k , i , : ) ) , 1 . 0 5 ,num2str( i ) )
l e g { i}=sprintf ( ’%g=%g ’ , i ,max( z e t a s o f l a t p r o f i l e (k , i , : ) ) )

end

% corner

for i =1: length ( z e t a s c o r n e r wa l l (k , : ) ) ;
p s i p r o f i l e =[0 :n : 1 ] ;
for j =1: length ( p s i p r o f i l e )

z e t a s o c o r n e r p r o f i l e (k , i , j )=p s i p r o f i l e ( j ) .∗ z e t a s c o r n e r wa l l
(k , i ) ;

end
plot ( squeeze ( z e t a s o c o r n e r p r o f i l e (k , i , : ) ) , p s i p r o f i l e , ’ r ’

) ;
%t e x t (max( z e t a s o c o r n e r p r o f i l e ( k , i , : ) ) , 1 , [ ’\ z e t a = ’ , num2str (

z e t a s c o r n e r w a l l a c t e d ( k , i ) ) ] ) ;
text (max( z e t a s o c o r n e r p r o f i l e (k , i , : ) ) , 1 . 0 5 ,num2str( length (

z e t a s f l a t (k , : ) )+i ) ) ;
l e g { length ( z e t a s f l a t (k , : ) )+i}=sprintf ( ’%g=%g ’ , length (

z e t a s f l a t (k , : ) )+i ,max( z e t a s o c o r n e r p r o f i l e (k , i , : ) ) )
end

% boundary o f box
xwal l=−1:n : 1 ;
ywal l=−1:n : 1 ;
plot (−1 , ywall , ’ b ’ , 1 , ywall , ’ b ’ , xwall , 1 , ’b ’ , xwall ,−1 , ’b ’ )

t i t l e ( sprintf ( ’ Flow p r o f i l e s o f a square channel with a
hydrau l i c diameter o f %g mm, a f i lm th i ckne s s o f %g mm \n and
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a Umax o f %g mm/s at var i ous l o c a t i o n s along the channel ’ ,R,
ho (k ) ,Umax(k ) ) )

T=legend ( leg , ’ Locat ion ’ , ’ SouthWest ’ )
set (get (T, ’ t i t l e ’ ) , ’ S t r ing ’ , ’ Wall I n t e r c ep t ’ )

pbaspect ( [ 3 3 1 ] ) ;
hold o f f

print ( ’−depsc ’ , ’−r300 ’ , ’− l o o s e ’ , sprintf ( ’ f i g s /%
s f l o w p r o f i l e l i n e s . eps ’ , char ( Ca labe l ( k ) ) ) ) ;

print ( ’−dpdf ’ , ’−r300 ’ , ’− l o o s e ’ , sprintf ( ’ f i g s /%
s f l o w p r o f i l e l i n e s . pdf ’ , char ( Ca labe l ( k ) ) ) ) ;

end

Trying to find a relationship for Hc

%c l o s e a l l
% fo r k=1: l e n g t h (Ho)
%
% %f i g u r e
% % p l o t y y ( s i gma s o co rne r g ( k , 1 : f i nd ( z e t a s c o r n e r w a l l g ( k , : )

,1 , ’ l a s t ’ ) ) , UAB s corner g ( k , 1 : f i nd ( z e t a s c o r n e r w a l l g ( k , : )
,1 , ’ l a s t ’ ) ) , s i gma s o co rne r g ( k , 1 : f i nd ( z e t a s c o r n e r w a l l g ( k
, : ) ,1 , ’ l a s t ’ ) ) , ( Hc g ( k , 1 : f i nd ( z e t a s c o r n e r w a l l g ( k , : ) ,1 , ’
l a s t ’ ) )+Hc prime g ( k , 1 : f i nd ( z e t a s c o r n e r w a l l g ( k , : ) ,1 , ’ l a s t
’ ) ) ) .ˆ (1/3) /2)

% %p l o t ( s i gma s o co rne r g ( k , 1 : f i nd ( z e t a s c o r n e r w a l l g ( k , : )
,1 , ’ l a s t ’ ) ) , Hc g ( k , 1 : f i nd ( z e t a s c o r n e r w a l l g ( k , : ) ,1 , ’ l a s t ’ ) )
, ’ g ’ )

%
% % f i g u r e
% % [AX,H1,H2]= p l o t y y ( s i gma s o co rne r g ( k , 1 : f i nd (

z e t a s c o r n e r w a l l g ( k , : ) ,1 , ’ l a s t ’ ) ) , UAB s corner g ( k , 1 : f i nd (
z e t a s c o r n e r w a l l g ( k , : ) ,1 , ’ l a s t ’ ) ) , s i gma s o co rne r g ( k , 1 :
f i nd ( z e t a s c o r n e r w a l l g ( k , : ) ,1 , ’ l a s t ’ ) ) , ( Hc g ( k , 1 : f i nd (
z e t a s c o r n e r w a l l g ( k , : ) ,1 , ’ l a s t ’ ) ) ) .ˆ (1/3) )

% % se t (AX(1) , ’YLim ’ , [ . 1 . 8 ] )
% % se t (AX(2) , ’YLim ’ , [ . 1 . 8 ] )
% % t i t l e ( s p r i n t f ( ’ Flow p r o f i l e s o f a square channel wi th a

hyd rau l i c diameter o f %g mm, a f i lm t h i c kn e s s o f %g mm \n and
a Umax o f %g mm/s at var ious l o c a t i o n s a long the channel ’ ,R, ho
( k ) ,Umax) )

%
% f i g u r e
% ho ld on
% p l o t ( s i gma s o co rne r g ( k , 1 : f i nd ( z e t a s c o r n e r w a l l g ( k , : ) ,1 , ’

l a s t ’ ) ) , UAB s corner g ( k , 1 : f i nd ( z e t a s c o r n e r w a l l g ( k , : ) ,1 , ’
l a s t ’ ) ) /Umax( k ) , ’ b ’ )
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% p l o t ( s i gma s o co rne r g ( k , 1 : f i nd ( z e t a s c o r n e r w a l l g ( k , : ) ,1 , ’
l a s t ’ ) ) , ( Hc g ( k , 1 : f i nd ( z e t a s c o r n e r w a l l g ( k , : ) ,1 , ’ l a s t ’ ) ) ) , ’
g ’ )

%
% t i t l e ( s p r i n t f ( ’ Flow p r o f i l e s o f a square channel wi th a

hyd rau l i c diameter o f %g mm, a f i lm t h i c kn e s s o f %g mm \n and
a Umax o f %g mm/s at var ious l o c a t i o n s a long the channel ’ ,R, ho
( k ) ,Umax( k ) ) )

% yl im ( ’ auto ’ )
% ho ld o f f
% pr i n t (’−depsc ’ , ’− r300 ’ , ’− l oose ’ , s p r i n t f ( ’˜/ Research/ bi−s l u g /

Matlab/Fina l / f i g s /%s Hc . eps ’ , char ( Ca l a b e l ( k ) ) ) ) ;
% end

D.2 derivation

clear , clc , close a l l
set (0 , ’ DefaultFigureWindowStyle ’ , ’ docked ’ )
set (0 , ’ Defaul tFigurePaperOr ient ’ , ’ landscape ’ )

Integration of the different sections of the square channel for use in a model

% Each par t needs to be in t e g ra t ed , t h e r e may not be a c l o s ed
s o l u t i o n

% which would r e qu i r e numerical i n t e g r a t i o n .

Flow in Core A in the square channel

Core A Parameters

syms u a U max s a so a mu a ze ta a z l a
% u a i s the v e l o c i t y in the channel
% U max i s the cen ter l i n e v e l o c i t y
% s a i s the l en g t h from the cen te r po in t to any l o c a t i o n in the

channel
% so a i s the l e n g t h from the cen ter po in t to the wa l l
% mu a i s the v i s c o s i t y o f f l u i d A
% ze t a a i s the non−dimensiona l d i s t ance on the wal l , x/R
% z i s the d i r e c t i o n o f the s l u g l en g t h
% l a i s the l e n g t h o f the s l u g

Equations for Core A

u a=U max∗(1− s a ˆ2/ so a ˆ2) ; % the func t i on f o r the v e l o c i t y in
Core A in the square channel

u a pr ime=d i f f ( u a , s a ) ; % du/ds

tau w a=mu a∗ subs ( u a prime , s a , so a ) ; % the
shear s t r e s s at the wa l l , mu a∗du/ds | s=so
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% drag
s i gmao a ze ta=sqrt (1+ ze ta a ˆ2) ; %

so a non d imens iona l i z ed wi th R, z e t a=x/R as a func t i on o f
z e t a

F drag a dz dze ta=in t ( subs ( tau w a , so a , s i gmao a ze ta ) , z , 0 , l a ) ;
% Drag f o r c e in Core a in the square channel .

e v a l ua t e f o r dz from 0−L fo r z

F drag a dzeta=in t ( F drag a dz dzeta , zeta a , 0 , 1 ) ;
% Drag f o r c e in Core a

eva lua t ed f o r dze ta from 0−1
F drag a=8∗F drag a dzeta ; %

so l u t i o n s im p l i f i e s the s o l u t i o n by pu t t i n g the nega t i v e in
the l o g term

fpr intf ( ’The so lu t i on , %s has the negat ive f a c t o r in the log term
, t h i s matches the s o l u t i o n done by hand ’ , ’ F drag a ’ )

Core B and Film A

Core B and Film A are dependent on each other

Core B and Film A Parameters

syms u b f mu b U AB u f i lm so s f sigmao s igmaf sigma R l b Ho
zeta

% u b v e l o c i t y o f the core b in the f l a t r e g i o n z e t a t r an s
% mu b v i s c o s i t y o f the f l u i d in core b
% U AB v e l o c i t y at the f i lm in the f l a t reg ion
% u f i lm v e l o c i t y o f the f i lm a in the f l a t reg ion
% so i s the d i s t ance from the cen ter to the wa l l
% s f i s the d i s t ance from the cen ter to the f i lm
% sigmao i s the nondimensional form of so , so/R
% sigmaf i s the nondimensional form of s f , s f /R
% R i s the Length o f the h a l f the wa l l
% l b i s the l en g t h o f the s l u g in COre B, the f i lm i s l o c a t e d in

t h i s reg ion
% Ho nondimens iona l i zed f i lm t h i c kn e s s ho , ho/R
% ze ta i s the nondimens iona l i zed d i s t ance on the wal l , x/R
% z e t a t r an s i s the nondimens iona l i zed d i s t ance to the t r a n s i t i o n

between the f l a t and curved reg ion

Equations for the velocities



D. Matlab Code 76

U AB=U max/(1+1/2∗mu a/mu b∗1/ log ( sigmao/ s igmaf ) ) ; % v e l o c i t y at
the f i lm in the f l a t region , us ing the non−dimensiona l form

u f i lm=U AB∗ log ( sigmao/sigma ) / log ( sigmao/ s igmaf ) ; % v e l o c i t y
o f the f i lm as a func t i on o f s i gma f

u b=(U max−U AB)∗(1− sigmaˆ2/ s igmaf ˆ2)+U AB;

fpr intf ( ’ s o l u t i o n f o r %s i s the same as my hand der iva t i on , have
to use matlab to group and c o l l e c t \n\n ’ , ’ u b ’ )

fpr intf ( ’ s o l u t i o n f o r %s i s the same as my hand de r i v a t i on \n\n ’ , ’
u f i lm ’ )

% f ind shear s t r e s s

u b prime=d i f f ( u b , sigma ) /R ; % du/dsigma dsigma
=ds/R dsigma∗R=ds

u f i lm pr ime=d i f f ( u f i lm , sigma ) /R ; % du/dsigma dsigma=ds
/R

tau b=c o l l e c t (mu b∗ subs ( u b prime , sigma , s igmaf ) ,U max) ;
% shear s t r e s s at the f i lm , us ing c o l l e c t on U max

to match my s o l u t i o n s
t au f i lm=c o l l e c t (mu a∗ subs ( u f i lm pr ime , sigma , sigmao ) ,U max) ;

% shear s t r e s s at the wa l l , us ing c o l l e c t on U max
to match my s o l u t i o n s

% i n t e g r a t i n g to f i nd shear s t r e s s

% fdrag=8∗ i n t ∗ i n t tau a dz dze ta
% dz i s the d i f f e r e n t i a l l e n g t h o f the s l u g
% dze ta=dx/R

Fdrag b dz dzeta=in t ( tau b , z , 0 , l b ) ;
Fdrag f i lm dz dze ta=in t ( tau f i lm , z , 0 , l b ) ; %Fi r s t i n t e g r a t i o n

o f the drag in the f l a t reg ions , i n t dz | 0− l b

s igmao f=sqrt ( ze ta ˆ2+1) ; % di s t ance from the
cen ter to the wa l l f o r the f l a t reg ion

s i gma f f 1=s igmao f ∗(1−Ho) ; %
Tria l Fix

s i gma f f=sqrt ( ze ta ˆ2+(1−Ho) ˆ2) ; % di s t ance
from the cen ter to the f i lm fo r the f l a t reg ion

FINDING U AB F %%%%
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U AB f=subs ( subs (U AB, sigmao , s igmao f ) , s igmaf , s i gma f f ) ;

END

%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% eve ry t h in g above t h i s l i n e i s the same fo r both the f l a t reg ion
and the

% curve area , Using s u b s c r i p t s be low to keep the f i lm , f and the
corner

% reg ion c , s epara t e

Flat Core B

% Drag f o r c e at the wa l l from f i lm .

Fdrag b f dze ta=subs ( subs ( Fdrag b dz dzeta , sigmaf , s i gma f f ) ,
sigmao , s igmao f ) ; % the second in t e g ra t i on , f f o r the
f i lm reg ion f o r Core B, f o r z e t a | 0− z e t a t r an z

% Fd r a g f i lm f d z e t a= % the second in t e g ra t i on , f f o r
the f i lm reg ion f o r f i lm A, f o r z e t a | 0− z e t a t r an z

% Co l l e c t i n g terms to numer ica l l y i n t e g r a t e
%us ing a sub method to remove the non dependent terms , terms

s t i l l
%dependent on Ho and mua and mub

%%%%%%%%%%%%%%%%%%% Beginning In t e g r a t i on

Ca bound=[2E−3 4E−3] ; % Data from
exper iments

Ca labe l=c e l l s t r ( [ ’ Square Prewet low ’ ; ’ Square Prewet high ’ ] ) ;
%l a b e l s f o r the data

R chan =.5; % ha l f width o f the channel
f o r the square and the rad ius f o r the round

ho=R chan . ∗ . 6 4 3 ∗ ( 3 . ∗Ca bound ) . ˆ ( 2 /3 ) ; % mm,
c a l c u l a t e d from bre ther ton1961

ho=[ho , . 0 0 1 : ( . 1 − . 0 0 1 ) / 8 : . 1 ] ; % Reducing the
i n t e r f e r e n c e wi th R
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Rc=.1;
Ho o=ho/R chan ; % outer loop

d e f i n i t i o n
mu b=0.0096 ; % kg /(m s )
mu a=0.0178; % kg /(m s )
M=mu a/mu b ; % Vi s co s i t y

Ratio , M=mu a/mu b
z e t a t r an s=1−Rc−Ho o ; % Trans i t ion po in t ∗∗∗

New

T b f=−2∗U max∗ l b ; % su b s t i t u t i o n f o r
for i =1: length (Ho o ) ;

Ho=Ho o ( i ) ;
Fdrag b f dz e ta subs ( i )=subs ( subs ( Fdrag b f dze ta /T b f ) ,R, R chan

) ;

Fd r a g b f s t r i n g=char ( v e c t o r i z e ( Fdrag b f dz e ta subs ( i ) ) ) ; %
Convert syms to s t r i n g f o r numerical i n t e g r a t i o n

z e t a end f ( i )=z e t a t r an s ( i ) ;

Fd r ag b f i n t ( i )=quad( Fd rag b f s t r i ng , 0 , z e t a end f ( i ) ) ;
end

Convert back to equation form

Fdrag b f =8∗(T b f ∗Fdrag b f i n t ) ;

Flat Film A

Fdrag f i lm f d z e t a=subs ( subs ( Fdrag f i lm dz dze ta , sigmaf , s i gma f f )
, sigmao , s igmao f ) ;

T f i lm f=−U max∗ l b ;

for i =1: length (Ho o )
Ho=Ho o ( i ) ;

Fd r a g f i lm f d z e t a sub s ( i )=subs ( subs ( Fd r ag f i lm f d z e t a / T f i lm f )
,R, R chan ) ;

Fd r a g f i lm f s t r i n g=char ( v e c t o r i z e ( Fd r ag f i lm f d z e t a sub s ( i ) ) ) ;
F d r a g f i lm f i n t ( i )=quad( Fd r a g f i lm f s t r i n g , 0 , z e t a t r an s ( i ) ) ;
end
Fdrag f i lm f=8∗T f i lm f ∗ Fd r a g f i lm f i n t ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% FIX

Finding U AB C %%%

s igmao c=sqrt ( ze ta ˆ2+1) ;
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C=’Rc ’ /R; % C=Rc/R
Hc=sqrt ( ( zeta− ’ z e t a t r an s ’ ) .ˆ2+(C+’Ho ’ ) ˆ2)−C;
ze ta x=zeta−Hc∗( zeta− ’ z e t a t r an s ’ ) /(C+Hc) ; %

di s t ance to the f i lm normal to the f i lm at the wa l l
Hc prime=(C+’Ho ’ ) /(C+Hc) ∗Hc ; %

th i c kn e s s normal to the wa l l through the f i lm

s i gma f c=sqrt ( z e ta x ˆ2+(1−Hc prime ) ˆ2) ; % Distance
to f i lm based on ze t a and ho and Rc

U AB c=subs ( subs (U AB, sigmao , s igmao c ) , s igmaf , s i gma f c ) ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Corner Core B

% For i n t e g r a t i n g across the f i lm the pe rp ed i cu l a r to the su r f a ce
i s used

s igmao c=sqrt ( ze ta .ˆ2+1) ;
T b c=−2∗U max∗ l b ;
for i =1: length (Ho o ) ;

Ho=Ho o ( i ) ;
C=Rc . / R chan ; % C=Rc/R
Hc=sqrt ( ( zeta−z e t a t r an s ( i ) ) .ˆ2+(C+Ho) . ˆ 2 )−C; %%%%%

ADDED −C
Hc prime=(C+Ho) . / (C+Hc) .∗Hc ; %

th i c kn e s s normal to the wa l l through the f i lm
%ze t a x=zeta−Hc .∗ ( ze ta−z e t a t r an s ( i ) ) . / (C+Hc) ; %

d i s t ance to the f i lm normal to the f i lm at the wa l l
z e ta x=zeta−sqrt (Hcˆ2−Hc prime ˆ2) ;

s i gma f c ( i )=sigmao c∗(1−Hc prime ) ; % Distance to
f i lm based on ze t a and ho and Rc

%s igmaf c ( i )=s q r t ( z e t a x .ˆ2+(1−Hc prime ) .ˆ2) ; %
Distance to f i lm based on ze t a and ho and Rc

Fdrag b c dzeta ( i )=subs ( subs ( subs ( subs ( Fdrag b dz dzeta , sigmao ,
s igmao c ) , s igmaf , s i gma f c ( i ) ) /T b c ) ,R, R chan ) ; % subbed in
sigmao sigmaf and mu a and mu b

Fdrag b c dz e t a s t r i n g=char ( v e c t o r i z e ( Fdrag b c dzeta ( i ) ) ) ;

Hc prime end=(C+Ho) . / (C+(sqrt ((1− z e t a t r an s ( i ) ) .ˆ2+(C+Ho) . ˆ 2 )−C) )
. ∗ ( sqrt ((1− z e t a t r an s ( i ) ) .ˆ2+(C+Ho) . ˆ 2 )−C) ; %
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po s i t i o n o f end o f meniscus
z e ta end c=1−Hc prime end ;

%Fdra g b c d z e t a i n t ( i )=quad ( Fd ra g b c d z e t a s t r i n g , z e t a s t a r f ,
z e t a end c ) ;

Fdrag b c dz e t a i n t ( i )=quad( Fdrag b c dz e ta s t r i ng , z e t a t r an s ( i ) ,
z e t a end c ) ;

end
Fdrag b c=8∗T b c∗Fdrag b c dz e t a i n t ;

Corner Film A

% Film w i l l use the same d e f i n i t i o n s f o r s igmaf and sigmao and
mu a and

% mu b
T f i lm c=−U max∗ l b ;
for i =1: length (Ho o ) ;

FIX sigma f c, current version uses sigma x which is for the core

Fdrag f i lm c dz e ta ( i )=subs ( subs ( subs ( subs ( Fdrag f i lm dz dze ta ,
sigmao , s igmao c ) , s igmaf , s i gma f c ( i ) ) / T f i lm c ) ,R, R chan ) ; %
subbed in sigmao sigmaf and mu a and mu b

Fd r a g f i lm c d z e t a s t r i n g=char ( v e c t o r i z e ( Fdrag f i lm c dz e ta ( i ) ) ) ;

z e t a t r a n s c ( i )=z e t a t r an s ( i ) ;
Fd r a g f i lm c d z e t a i n t ( i )=quad( Fd r ag f i lm c d z e t a s t r i n g ,

z e t a t r a n s c ( i ) , 1 ) ;
end

Fdrag f i lm c=vpa (8∗ Fd r a g f i lm c d z e t a i n t ∗ subs ( T f i lm c ,R, R chan )
,5 ) ;

Round

clear ho=1 syms tau w round core mu a mu b Ho o U max U ab l b R chan

for i =1: length ( ho )
U ab ( i )=U max./(1−mu a ./ (2∗mu b) . / log(1−Ho o ( i ) ) ) ;

t au f r ound co r e ( i )=−2∗mu b∗(U max−U ab ( i ) ) . / ( R chan∗(1−Ho o (
i ) ) ) ;

Fdrag round core ( i )=c o l l e c t ( t au f r ound co r e ( i ) ∗ l b ∗2∗pi∗(1−
Ho o ( i ) ) ∗R chan ,U max) ; %Tau w∗area o f con tac t
wi th the wa l l

tau w round f i lm ( i )=−mu a∗U ab ( i ) /R chan/ log (1/(1−Ho o ( i ) ) ) ;
t a u f r ound f i lm ( i )=−mu a∗U ab ( i ) /( R chan∗(1−Ho o ( i ) ) ) / log

(1/(1−Ho o ( i ) ) ) ;
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Fdrag round f i lm ( i )=tau w round f i lm ( i ) ∗ l b ∗2∗pi∗R chan ;
%Tau w∗area o f con tac t wi th the

wa l l
end

Plotting Drag and ho

% separa t e square wi th f i lm
f igure
hold on
plot ( ho ( 3 : length ( ho ) ) , Fd r ag b f i n t ( 3 : length ( ho ) ) ∗2∗8 , ho ( 3 : length

( ho ) ) , Fd rag b c dz e t a i n t ( 3 : length ( ho ) ) ∗2∗8 , ho ( 3 : length ( ho ) ) ,
Fd r a g f i lm f i n t ( 3 : length ( ho ) ) ∗8 , ho ( 3 : length ( ho ) ) ,
Fd r a g f i lm c d z e t a i n t ( 3 : length ( ho ) ) ∗8) ;

plot ( ho ( 1 : 2 ) , Fd r ag b f i n t ( 1 : 2 ) ∗2∗8 , ho ( 1 : 2 ) , Fd rag b c dz e t a i n t
( 1 : 2 ) ∗2∗8 , ho ( 1 : 2 ) , F d r a g f i lm f i n t ( 1 : 2 ) ∗8 , ho ( 1 : 2 ) ,
Fd r a g f i lm c d z e t a i n t ( 1 : 2 ) ∗8) ;

hold o f f
% p l o t ( ho , Fd r a g b f i n t ∗8∗R chan )
% p l o t ( ho , Fd r a g b c d z e t a i n t ∗8∗R chan )
% p l o t ( ho , F d r a g f i lm f i n t ∗8∗R chan )
% p l o t ( ho , F d r a g f i lm c d z e t a i n t ∗8∗R chan )
% p l o t ( ho , ( Fd r a g b c d z e t a i n t+Fd r a g b f i n t ) ∗8∗R chan )
% p l o t ( ho , ( F d r a g f i lm c d z e t a i n t+Fd r a g f i lm f i n t ) ∗8∗R chan )

t i t l e ( ’ F d r a g as a func t i on as h o in a square channel ’ ) ;
ylabel ( ’ Fdrag , #∗Umax∗ l b ’ ) ;
xlabel ( ’ ho ’ ) ;
legend ( ’ F d Core f l a t ’ , ’ F d Core corner ’ , ’ F d f i lm f l a t ’ , ’ F d

f i lm corner ’ ) ;

% hold o f f

% t o t a l square wi th f i lm

f igure
hold on
plot ( ho ( 3 : length ( ho ) ) , ( Fd rag b c dz e t a i n t ( 3 : length ( ho ) )+

Fdrag b f i n t ( 3 : length ( ho ) ) ) ∗2∗8 , ho ( 3 : length ( ho ) ) , (
Fd r a g f i lm c d z e t a i n t ( 3 : length ( ho ) )+Fd r a g f i lm f i n t ( 3 : length
( ho ) ) ) ∗8 , ho ( 3 : length ( ho ) ) , ( ( Fd rag b c dz e t a i n t ( 3 : length ( ho ) )+
Fdrag b f i n t ( 3 : length ( ho ) ) ) ∗2∗8+( Fd r a g f i lm c d z e t a i n t ( 3 :
length ( ho ) )+Fd r a g f i lm f i n t ( 3 : length ( ho ) ) ) ∗8) ) ;

plot ( ho (1 ) , ( Fd rag b c dz e t a i n t (1 )+Fdrag b f i n t (1 ) ) ∗2∗8 , ’ o ’ , ho
(1 ) , ( Fd r a g f i lm c d z e t a i n t (1 )+Fd r a g f i lm f i n t (1 ) ) ∗8 , ’ o ’ , ho
(1 ) , ( ( Fd rag b c dz e t a i n t (1 )+Fdrag b f i n t (1 ) ) ∗2∗8+(
Fd r a g f i lm c d z e t a i n t (1 )+Fd r a g f i lm f i n t (1 ) ) ∗8) , ’ o ’ , ’
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MarkerSize ’ ,10 , ’ MarkerFaceColor ’ , ’ green ’ , ’ MarkerEdgeColor ’ , ’ k ’
) ;

plot ( ho (2 ) , ( Fd rag b c dz e t a i n t (2 )+Fdrag b f i n t (2 ) ) ∗2∗8 , ’ square ’
, ho (2 ) , ( Fd r a g f i lm c d z e t a i n t (2 )+Fd r a g f i lm f i n t (2 ) ) ∗8 , ’
square ’ , ho (2 ) , ( ( Fd rag b c dz e t a i n t (2 )+Fdrag b f i n t (2 ) ) ∗2∗8+(
Fd r a g f i lm c d z e t a i n t (2 )+Fd r a g f i lm f i n t (2 ) ) ∗8) , ’ square ’ , ’
MarkerSize ’ ,10 , ’ MarkerFaceColor ’ , ’ green ’ , ’ MarkerEdgeColor ’ , ’ k ’
) ;

hold o f f
t i t l e ( ’ Total F d r a g as a func t i on as h o in a square channel ’ )
ylabel ( ’ F d r a g , #∗U m a x∗ l b ’ )
xlabel ( ’ h o ’ )
legend ( ’ Total F d Core ’ , ’ Total F d Film ’ , ’ Total F d r a g ’ )
print ( ’−depsc ’ , ’−r300 ’ , ’− l o o s e ’ , ’ f i g s / t o t a l d r a g s qua r e . eps ’ ) ;
print ( ’−dpdf ’ , ’−r300 ’ , ’− l o o s e ’ , ’ f i g s / t o t a l d r a g s qua r e . pdf ’ ) ;

% Round with f i lm
a=double ( vpa ( Fdrag round core )/−U max/ l b ) ;
b=double ( Fdrag round f i lm/−U max/ l b ) ;

% Separate
f igure
hold on
plot ( ho ( 3 : length ( ho ) ) , a ( 3 : length ( ho ) ) , ho ( 3 : length ( ho ) ) ,b ( 3 : length

( ho ) ) , ho ( 3 : length ( ho ) ) , a ( 3 : length ( ho ) )+b ( 3 : length ( ho ) ) ) ;
plot ( ho ( 1 : 2 ) , a ( 1 : 2 ) , ho ( 1 : 2 ) ,b ( 1 : 2 ) , ho ( 1 : 2 ) , a ( 1 : 2 )+b ( 1 : 2 ) ) ;
hold o f f
t i t l e ( ’ F d r a g as a func t i on as h o in a round channel ’ ) ;
ylabel ( ’ Fdrag , #∗Umax∗ l b ’ ) ;
xlabel ( ’ ho ’ ) ;
legend ( ’ F d Core ’ , ’ F d f i lm ’ , ’ Total F d ’ ) ;

print ( ’−depsc ’ , ’−r300 ’ , ’− l o o s e ’ , ’ f i g s / to ta l d rag round . eps ’ ) ;
print ( ’−dpdf ’ , ’−r300 ’ , ’− l o o s e ’ , ’ f i g s / to ta l d rag round . pdf ’ ) ;

Table Production

%ta b l e 1 =[ ’ho ’ , ’ Round F drag Coe f f i c i en t ’ ]
tab l e1 =[ho ’ , ( a+b) ’ ]
csvwrite ( ’ Round drag coe f f i c i en t ho d rag . csv ’ , t ab l e1 ) ;

%ta b l e 2 =[ ’ho ’ , ’ Square F drag Coe f f i c i en t ’ ]
tab l e2 =[Ca bound ( 1 : 2 ) ’ , ho ( 1 : 2 ) ’ , ( ( Fd rag b c dz e t a i n t ( 1 : 2 )+

Fdrag b f i n t ( 1 : 2 ) ) ∗2∗8+( Fd r a g f i lm c d z e t a i n t ( 1 : 2 )+
Fd r a g f i lm f i n t ( 1 : 2 ) ) ∗8) ’ ] ;

csvwrite ( ’ s q u a r e d r a g c o e f f i c i e n t h o d r a g . csv ’ , t ab l e2 ) ;
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Force Balance

Stretch Term

clear mu a
syms sigma a sigma ab C B H B sigma b x f H A alpha R U max l a

l b beta mu a

F s t r e t ch=2∗pi∗R∗((1−H A/R) ∗( sigma b+sigma ab−s igma a )−x f /R∗(
sigma b+sigma ab )−sigma b∗H B/R)+8∗x f ∗( sigma ab+sigma b ) ;

Pressure Term

delP=2∗( sigma a−sigma ab−sigma b ) /R;
A men=pi∗Rˆ2 ;

F pres s=delP∗A men ;

Sum Terms

a=F pres s ; % Pressure Force
b=F s t r e t ch ; %St r e t ch Terms
c=alpha ∗U max∗ l b ; %Total Drag f o r t r a i l i n g s l u g and

f i lm
d=beta∗mu a∗U max∗ l a ; % Drag f o r

in Core A

%Without S t r e t ch
t o t a l wo s t r e t c h=c+d−a ;
U maxwostretch=so l v e ( t o ta l wo s t r e t ch ,U max) ;
p re t ty ( U maxwostretch ) ;

%With s t r e t c h

Tota l s t r e t ch=b+c+d−a ; % term i s equa l to zero
at t h i s po in t

U max stretch=so l v e ( Tota l s t r e t ch ,U max) ;
p re t ty ( U max stretch ) ;

Data for plots, with and without stretch

R=R chan

sigma A =47.7;
sigma B =20.3;
sigma AB=18.0;

mu a=0.0178; % kg /(m s )
mu A=mu a ;
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alpha =[(( Fdrag b c dz e t a i n t ( 1 : 2 )+Fdrag b f i n t ( 1 : 2 ) ) ∗2∗8+(
Fd r a g f i lm c d z e t a i n t ( 1 : 2 )+Fd r a g f i lm f i n t ( 1 : 2 ) ) ∗8) ] ;

beta=−16∗log (2ˆ(1/2)−1) ;

L A = [ 1 : 1 : 2 5 ] ;
%L=[ . 5 , 1 . 2 ]
L=1

% without
for i =1:2
Ca max nostretch ( i , : ) =2.∗pi .∗R./L A.∗(1−( sigma B+sigma AB)/

sigma A ) /( alpha ( i ) . /mu A∗L + beta ) ;
end

%with
xf=R chan−Rc−ho ;
for i =1:2

ha=ho ( i )
Ca max stretch ( i , : )= 2 .∗ pi .∗R./L A.∗((1−( sigma B+sigma AB)/

sigma A )∗(2−ha/R)+xf ( i ) /R∗(1−4/pi ) ∗ ( ( sigma B+sigma AB)/
sigma A ) ) /( alpha ( i ) . /mu A∗L + beta )

end

Ca data f ront=csvread ( ’ 10 19 07 squa r e . csv ’ , 1 , 4 ) ;
L A data=csvread ( ’ 10 19 07 squa r e . csv ’ , 1 , 1 , [ 1 , 1 , 2 9 , 1 ] ) ;
L B data=csvread ( ’ 10 19 07 squa r e . csv ’ , 1 , 2 , [ 1 , 2 , 2 9 , 2 ] ) ;

f igure
hold on
plot (L A , Ca max nostretch ( 1 , : ) , ’ o ’ , ’ MarkerEdgeColor ’ , ’ b lack ’ ) ;
plot (L A , Ca max nostretch ( 2 , : ) , ’ ˆ ’ , ’ MarkerEdgeColor ’ , ’ green ’ ) ;
plot (L A , Ca max stretch ( 1 , : ) , ’ square ’ , ’ MarkerEdgeColor ’ , ’ b lue ’ ) ;
plot (L A , Ca max stretch ( 2 , : ) , ’ v ’ , ’ MarkerEdgeColor ’ , ’m’ ) ;
plot ( L A data , Ca data f ront , ’+ ’ , ’ MarkerEdgeColor ’ , ’ red ’ ) ;
hold o f f
h l egend=legend ( ’Low Ca Pred ic t ion , no s t r e t c h ’ , ’ High Ca

Pred ic t ion , no s t r e t c h ’ , ’Low Ca Pred ic t ion , s t r e t c h ’ , ’ High Ca
Pred ic t ion , s t r e t c h ’ , ’ Experimental Data ’ , ’ Locat ion ’ , ’ SouthWest
’ ) ;

set ( h legend , ’ FontSize ’ , 8 )
xlabel ( ’L A (mm) ’ )
ylabel ( ’Ca Number(U {max} \mu A / \ sigma A ) ’ )
set (gca , ’ XMinorTick ’ , ’ on ’ , ’ Yscale ’ , ’ l og ’ , ’ Xscale ’ , ’ l og ’ ) ;
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xlim ( [ . 7 , 5 0 ] ) ;
yl im ( [ . 0 0 0 5 , . 0 5 ] ) ;

print ( ’−depsc ’ , ’−r300 ’ , ’ f i g s / square data compare f ront . eps ’ ) ;
print ( ’−dpdf ’ , ’−r300 ’ , ’ f i g s / square data compare f ront . pdf ’ ) ;

Ca data rear=csvread ( ’ 10 19 07 squa r e . csv ’ , 1 , 6 ) ;

f igure
hold on
plot (L A , Ca max nostretch ( 1 , : ) , ’ o ’ , ’ MarkerEdgeColor ’ , ’ b lack ’ ) ;
plot (L A , Ca max nostretch ( 2 , : ) , ’ ˆ ’ , ’ MarkerEdgeColor ’ , ’ green ’ ) ;
plot (L A , Ca max stretch ( 1 , : ) , ’ square ’ , ’ MarkerEdgeColor ’ , ’ b lue ’ ) ;
plot (L A , Ca max stretch ( 2 , : ) , ’ v ’ , ’ MarkerEdgeColor ’ , ’m’ ) ;
plot ( L A data , Ca data rear , ’+ ’ , ’ MarkerEdgeColor ’ , ’ red ’ ) ;
hold o f f
h l egend=legend ( ’Low Ca Pred ic t ion , no s t r e t c h ’ , ’ High Ca

Pred ic t ion , no s t r e t c h ’ , ’Low Ca Pred ic t ion , s t r e t c h ’ , ’ High Ca
Pred ic t ion , s t r e t c h ’ , ’ Experimental Data ’ , ’ Locat ion ’ , ’ SouthWest
’ ) ;

set ( h legend , ’ FontSize ’ , 8 )
xlabel ( ’L A (mm) ’ )
ylabel ( ’Ca Number(U {max} \mu A / \ sigma A ) ’ )
set (gca , ’ XMinorTick ’ , ’ on ’ , ’ Yscale ’ , ’ l og ’ , ’ Xscale ’ , ’ l og ’ ) ;
xl im ( [ . 7 , 5 0 ] ) ;
yl im ( [ . 0 0 0 5 , . 0 5 ] ) ;

print ( ’−depsc ’ , ’−r300 ’ , ’ f i g s / square data compare rear . eps ’ ) ;
print ( ’−dpdf ’ , ’−r300 ’ , ’ f i g s / square data compare rear . pdf ’ ) ;
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