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ABSTRACT

Based on counts of record highs and lows, and employing reversibility in time, an approach to examining

natural variability is proposed. The focus is on intrinsic variability; that is, variance separated from the trend in

the mean. A variability index a is suggested and studied for an ensemble of monthly temperature time series

around the globe. Deviation of hai (mean a) from zero, for an ensemble of time series, signifies a variance

trend in a distribution-independent manner. For 15 635 monthly temperature time series from different

geographical locations (Global Historical Climatology Network), each time series about a century-long, hai5
21.0, indicating decreasing variability. This value is an order of magnitude greater than the 3s value of

stationary simulations. Using the conventional best-fit Gaussian temperature distribution, the trend is asso-

ciated with a change of about 20.28C (106 yr)21 in the standard deviation of interannual monthly mean

temperature distributions (about 10%).

1. Introduction

While there is a vast literature on detecting globally

averaged interannual mean temperature trends (global

warming), the possible trend in the interannual variance

has received less attention. Yet, a change in variance

may be just as important (e.g., Katz and Brown 1992).

According to the IPCC report, ‘‘Evidence for changes in

observed inter-annual variability (such as standard de-

viations of seasonal averages) is still sparse’’ (Trenberth

et al. 2007, p. 300) and previous studies have led to

varied conclusions (Scherrer et al. 2005).

Many recent studies devoted to interannual variability

have addressed regional and seasonal variability, moti-

vated largely by European heat waves of the early twenty-

first century. For example, Della-Marta et al. (2007) find

a variance trend of 16% 6 2% for daily summer maxi-

mum temperatures in western Europe. While Della-Marta

et al. explore distributions of extreme temperatures (tails

of distributions), variance trends from entire distribu-

tions are also important. Although such attempts (Schär

et al. 2004; Scherrer et al. 2005) inspired much study and

received support from climate model simulations (e.g.,

Vidale et al. 2007), because of data sparsity and the

weak signals, results remain statistically inconclusive.

Since detection of a statistically significant global trend

in interannual temperature variance remains an impor-

tant, yet open problem, we propose a different approach.

Motivated by greater sensitivity of outstanding values to

subtle trends and distribution-independence of the results,

we reformulate the problem in the language of record-

breaking statistics and explore global trends in variance of

average temperatures.

Record-breaking statistics have been used to eluci-

date a variety of weather and climate related trends

(e.g., Glick 1978; Vogel et al. 2001), but their use in the

analysis of temperature trends is more recent and has

focused on observing trends in the mean (as opposed to

variance) of temperature time series (see Basset 1992;

Basset and Lin 2003; Benestad 2003, 2004; Redner and

Petersen 2006; Meehl et al. 2009). To the best of our

knowledge, record-breaking statistics have not been

used to extract variance trends, although the notion ap-

pears in the mathematical literature, for example, semi-

nal works Foster and Stuart (1954), Cox and Stuart

(1955), and Ury (1966), and more recently, Gulati

and Padgett (2003), Hofmann and Balakrishnan (2006),

and Krug (2007). We are, however, aware via Meehl

et al. (2009), that R. W. Portmann et al. (2009, personal
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communication), may address the same issue. We now

proceed to show that record-breaking statistics appear

promising for exploring trends in interannual tempera-

ture variance.

2. Background for record-breaking statistics

The ith entry in a time series, xi, is a record-breaking

event (record) if it exceeds all previous values in the

sequence. In other words, xi is a record high if

x
i
. max(x

1
, x

2
, . . . , x

i�1
), (1)

and is a record low if

x
i
, min(x

1
, x

2
, . . . , x

i�1
). (2)

The first entry is always a record high and a record low;

see Fig. 1.

The expected number of records (successes) in a time

series is the sum over trial (term in a series) probabilities

of being a record (success). For a set of trials that are

independent, identically distributed (i.i.d.), and contin-

uous, the nth trial has an equal chance of having the

greatest value as all preceding trials: 1/n. Thus the ex-

pected number of successes (records), E(R), for a time

series with n events is

E(R) 5 1 1 1/2 1 1/3 1 � � �1 1/n, (3)

and, by Euler’s formula for harmonic series,

E(R) |ln(n) 1 g, (4)

where g 5 0.577. . . is the Euler constant. These results

are occasionally attributed to Rényi (1962) [e.g., Eliazar

and Klafter (2009) refers to the ‘‘celebrated theorem by

Rényi’’]. However, the results originate with Foster and

Stuart (1954). We stress the distribution independence

of these results; that is, they hold for any continuous

probability densities. If the i.i.d. assumption is violated by

a trend or correlations, the number of records will deviate

from the logarithmic dependence in Eq. (4) and trends

can, perhaps, be detected in a distribution-independent

manner. However, one difficulty remains.

Measured quantities are never continuous as instru-

mental precision is finite, e.g., GHCN monthly temper-

atures are reported with a resolution of a tenth of a

degree (C). This allows for a possibility of ties, thus

ruining the beautifully simple result [Eq. (4)]. [See, e.g.,

Vervaat (1973), Gouet et al. (2001), and Key (2005) for

details regarding records in the discrete case.]

3. Problem formulation and the variability index

To circumvent the above difficulty, we pursue an ap-

proach that is blind to ties, yet sensitive to variance. To

that end, note that stationary time series have no trends

in mean, variance, etc., and, therefore are invariant with

respect to time-reversal (e.g., Foster and Stuart 1954).

This invariance implies that the expected number of re-

cord highs or lows does not change upon time-reversal,

regardless of continuity (possibility of ties) or serial cor-

relation (clusters of extremes may occur, but without

preference for direction). Conversely, trends break the

time-reversal invariance and deviation from such in-

variance can possibly be used to detect time-dependence

of various parameters, as is illustrated in Fig. 1.

In addition to time-reversal symmetry (or lack thereof),

there is a possible symmetry between highs and lows.

For example, the global warming signal (trend in the

mean annual global temperature) causes excess number

of record highs when compared with record lows (see

appendix A; Meehl et al. 2009). To disentangle the two

symmetries, we subtract the mean trend from our time

series (section 4b) and focus on detecting variance

trends.

FIG. 1. Example of record counting: monthly means for Flagstaff,

AZ (December). The filled (open) triangles show locations of

record-breaking highs (lows). The variability index a 5 (RHfwd 2

RHbwd) 1 (RLfwd 2 RLbwd), where RH(RL) is the number of

record-breaking highs (lows), and the subscript indicates direction

in time. A negative (positive) value of a corresponds to a de-

creasing (increasing) variance for the forward time series. For this

example, a 5 215, both before and after detrending. This is the

lowest value of a for the GHCN dataset, see section 4. Years (top)

forward and (bottom) backward.
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Given these symmetries, we construct a variance de-

tector a as follows:

a 5 (RH
fwd
�RH

bwd
) 1 (RL

fwd
�RL

bwd
)

5 (RH 1 RL)
fwd
� (RH 1 RL)

bwd
, (5)

where RH and RL are the numbers of record-breaking

highs and record-breaking lows, respectively, and the

subscripts denote direction in time (forward and back-

ward). The two forms in the above equation differ only

by rearrangement but contrast ‘‘sum of differences’’

versus ‘‘difference of sums’’ perspectives, see Fig. 2 in

section 5. Note that for stationary time series a is en-

tirely independent of distribution, continuity, and serial

correlation; E(a) 5 hai 5 0. Here we introduce h�i to

denote an average over an ensemble of time series,

used in the remainder of this paper. A positive (nega-

tive) hai indicates an increasing (decreasing) variance as

demonstrated in Fig. 1. Thus, a qualitative trend can be

extracted without making any assumptions about the data

(section 5).

For subsequent development, we note that some sym-

metries also apply for the nonstationary case where only

a mean trend (e.g., monotonic, ‘‘hockey stick,’’ or pos-

sessing odd–even symmetry) is present. For example,

hRHfwdi5 hRLbwdi, hRHbwdi5 hRLfwdi, and the number

of ties is not affected by the time reversal. Hence, hai5 0,

regardless of distribution. Conversely, if the mean trend

were removed, these symmetries would remain as the time

series would return to being stationary. (These statements

are elaborated below, see Fig. 4 in section 5 and Fig. B1 in

appendix B).

Correlations between station pairs can reduce the

statistical significance of hai as the effective number of

time series is reduced in their presence. In the GHCN

data (section 4a), we account for correlations between

stations by reducing the number of simulated time series

used to evaluate statistical significance of the results.

Serial correlations can also affect hai by altering its

FIG. 2. Histograms of a components for the 15 635 GHCN time series, each with its mean trend removed. Record

highs (lows) are signified by RH (RL) with subscripts denoting direction in time. (a) Each of four components are

plotted; (b) the ‘‘sum of differences’’ perspective (section 3) is emphasized, RHfwd 2 RHbwd and RLfwd 2 RLbwd are

plotted. Both histograms are shifted left, indicating a decreasing variance. The sum of these components is a. (c) The

‘‘difference of sums’’ perspective is emphasized, (RH 1 RL)fwd and (RH 1 RL)bwd are plotted. The difference of the

components of these two histograms is a. The shift between the histograms hints at a non-0 a. (d) The histogram of a

values for the GHCN data. Our main result: hai5 21.0 is evident here in the shift of the peak from hai5 0, indicating

a decreasing variance.
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magnitude but for the GHCN data, this effect has been

found negligible, as shown in appendix C. Recall that

because of the time-reversal symmetry built into the

definition of a, correlated clusters of records tend to

cancel. (See the appendix C for details concerning both

temporal and spatial correlations.) To quantify a vari-

ance trend via a, a particular distribution must be as-

sumed and our simulations and data analysis to that end

are reported in section 4c.

To summarize, the novelty of the proposed approach

lies in combining record-breaking statistics with the

separation of trends in order to ask about intrinsic var-

iability. Indeed, while it is known that records can in-

dicate trends and, furthermore, time reversibility has

already been applied to finding mean trends, Foster and

Stuart (1954) and Benestad (2004), we find no studies

that use the method to find trends in variability. Perhaps

no one asked the question because it is difficult to draw

conclusions about a variance trend when entwined with

mean trends. Below, we discuss detrending and trend

simulation methods and then proceed to extract a weak

but significant trend using our metric a.

4. Data and simulations

a. Description of the dataset

The Global Historical Climatology Network dataset

(version 2) is maintained by the National Climatic Data

Center (NCDC) and has been used widely in studies of

global temperature trends. Notably, it has been used by

Benestad (2004) in his studies of temperature and record-

breaking statistics, by Hansen et al. (2001) of the God-

dard Institute of Space Studies (GISS) in climate analysis,

and by Trenberth et al. (2007) of the International Panel

on Climate Change (IPCC) as a reference dataset. IPCC

reports that this data has a linear global mean tempera-

ture trend of 0.648C 6 0.168C (100 yr)21 for 1901–2005

(Trenberth et al. 2007). Additional information about

the data can be found in Peterson and Vose (1997) and

Peterson et al. (1998).

The GHCN dataset consists of land surface monthly

mean temperatures for ’7000 stations distributed glob-

ally. We use the dataset adjusted for nonclimatic ir-

regularities, for example, processing errors, mislocated

stations, changes in location of data collection, and in-

strument changes, Peterson and Vose (1997). Our analysis

was performed on time series between 90 and 130 years in

duration. Also, in order to exclude correlated data, we

omit time series designated as duplicates. The filtering

rejected ’80% of time series, mostly as too short. Thus,

’1500 stations qualified for our analysis, most containing

data for all twelve months. We constructed time series for

each month individually so, for example, monthly means

for January at a given station comprise one time series,

February values present a new time series and 15 635 time

series were thus obtained.

b. Extracting intrinsic variance

To extract a possible trend in variance, independent of

the ‘‘global warming’’ signal, one must remove the mean

trend. From the outset, we note that the results reported

below are robust; that is, relatively insensitive to the

method of detrending. We chose a local linear re-

gression, LOWESS (see Cleveland 1979) as one of the

methods. LOWESS detrending uses a smoothing pa-

rameter ( f), the percent of values (nearest neighbors)

used to calculate each local regression. Since the GHCN

time series length (l) is variable, we refer to f 9 [ f l, the

number of nearest neighbors used in calculating each

local regression. We chose f 9 5 50: given that l ’ 100 yr,

this corresponds to f ’ 0.5, the starting point recom-

mended by Cleveland (1979). For each of the 15 635

GHCN time series we subtract off resulting mean trends

(regressions) individually. As detailed in appendix B,

other detrending methods, such as linear regression,

LOWESS regressions with other f 9 values, and various

least squares polynomial fits, yield similar variance

trends.

The resulting time series, stationary in the mean, may

still have variance trends as indicated by the metric a

[Eq. (5)]. Does the detrending method or magnitude of

the mean trend affect the variability index hai? It is

shown in appendix B that hai is far more sensitive to

variance trends than mean trends and it is quite robust

with respect to the methods of detrending. Also, a test of

mean trend removal in the language of records (de-

viation of hbi [ hRH 2 RLi from 0) is discussed in

appendix A. For the GHCN data, even with no de-

trending at all, a significant variance trend is detected.

c. Simulation of variance trends

The variability metric hai is calculated using solely the

GHCN dataset, without any assumptions about distri-

butions. However, in order to associate a quantitative

trend with a numerical value of hai we employ simula-

tions, based on the commonly used Gaussian fits to

temperature distributions (see discussion below for

more details). The important notion here is to keep

constant the mean while letting the variance of the

Gaussian distribution, 1/
ffiffiffiffiffiffiffiffiffiffiffi

2ps2
p

exp(�T2/2s2), depend

on time, for example, s 5 s(t). The simulation is then

performed by drawing random numbers from a discrete

Gaussian distribution (separation of 0.18C between
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values, the resolution of the GHCN data) with time

dependent standard deviation, s(t):

s(t) 5 s
0

1 dt (6)

with s0 [ the initial standard deviation, d [ the trend

per year, and t [ the time in years. We mimicked the data

by using an initial standard deviation of 1.88C, the mean

standard deviation for the data (per time series), and a

length of 106 years, the mean time series length in the

data.

The conventional Gaussian choice for the tempera-

ture distribution was confirmed via the moment test

(e.g., Thode 2002), with 92% of the data within the 99th

percentile for the third moment of a Gaussian and 97%

is within the 99th percentile for the fourth moment of a

Gaussian, each with coinciding means. We also consid-

ered truncated Gaussians, as recommended by Redner

and Petersen (2006), with the range between boiling

points of nitrogen and water, but found that for s ’ 28C,

simulated monthly mean values were not affected.

5. Results and discussion

In addition to proposing a distribution-independent

method, based on reversible record breaking, our

GHCN-based results are also noteworthy. The main

result is the ensemble-averaged (15 635 time series) hai5
21.0, calculated via Eq. (5) for the detrended GHCN

dataset. Histograms of a and its components are shown

in Fig. 2, while the spatial distribution of stations and

monthly components of hai (January and July) are il-

lustrated in Fig. 3. The histograms of a are peaked to

the left of hai5 0, supporting the hai5 21.0 result, and

indicating a decreasing variance. This is so for each of

the 12 months.

Returning to the result hai 5 21.0, we attempt to

quantify its statistical significance and uncertainty, via

a Monte Carlo estimate of confidence intervals (e.g.,

Press et al. 2007). To that end, we turn to i.i.d. simula-

tions. Each single stationary (i.i.d.) simulation is a time

series consisting of independent draws, mimicking GHCN

conditions. One thousand datasets (each consisting of

10 000 time series) were generated. Rather than using

the 15 635 time series as in GHCN, we used a conser-

vative 10 000 stationary simulations to account for pos-

sibly correlated time series pairs in the GHCN data (see

appendix C). The overwhelming 99.9% of our stationary

(i.i.d.) simulations, resulted in jhaij , 0.12. None ap-

proached the GHCN value of 21.0. Furthermore, insofar

as hai is obtained by summation of (integer valued) as, it

FIG. 3. (top) Spatial distribution of stations in the GHCN dataset and the corresponding a values (color bar) for (left) January and

(right) July (each month provides a set of over a thousand time series). Here the integer-valued a values are from the LOWESS detrended

data. The most popular values of a are 21 and 22. (bottom) Histograms for all 12 months are shifted from a 5 0 (hai 5 0 for no trend)

again showing a decreasing trend in variance.
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is Gaussian-distributed by the central limit theorem. The

3s value or the 99.7% confidence interval for these sta-

tionary time series is 60.12. Thus, the GHCN data value

of hai5 21.0 is an order of magnitude larger than the 3s

uncertainty.

While hai5 21.0 is statistically significant and free of

assumptions, attributing a variance trend to a depends on

a distribution. Simulations based on the conventional,

best-fit Gaussian distributions with time-variable vari-

ance described in section 4c are shown in Fig. 4. These

associate a variance trend, as defined by time-dependent

standard deviation s 5 s(t), with a particular value of the

variability index a. For the GHCN value of a 5 21.0, this

results in a standard deviation trend of year-to-year

monthly mean temperature distributions of about 20.28C

(106 yr)21 [change in variance of 2(0.048C)2 (106 yr)21],

a 10% relative change. This is for data with most time

series between 1900 and 2005, see Fig. C2 in appendix C

for durations of time series.

6. Concluding remarks

Natural variability is an often used but vaguely de-

fined notion. Linking natural variability with trends in

variance is one way to render it precise. For example,

Whitcher et al. (2002) review various tests for stationarity

of variance and point out that the Gaussian assumption

is often employed. Indeed, in climatology assuming a dis-

tribution is often unavoidable and yet unrealistic (e.g.,

Wilcox 2003; Ghil et al. 2002; Gluhovsky and Agee 2007).

In contrast, our approach to intrinsic natural variability,

based on the index a, is independent of underlying

probability distributions. Also, the index is simple to use

and, perhaps, most importantly, our results are insensitive

to mean trends (see appendix B for details). Additionally,

it is notable that for all reasonable trends, the sign of hai is

independent of mean trends and the built-in reversibility

ensures that hai 5 0.

We found hai5 21.0 for the 15 635 detrended GHCN

time series, indicating a decreasing variance. This result is

statistically significant: hai 5 21.0 is an order of magni-

tude larger than the 3s uncertainty. To attribute a mea-

sure to this trend, we turned (alas) to conventional,

best-fit Gaussian distributions with time-variable vari-

ance. Interpolation results in a standard deviation trend

of year-to-year monthly mean temperature distributions

of about 20.28C (106 yr)21, a 10% relative change. This

is for data with most time series between 1900 and 2005,

see Fig. C2 in appendix C for durations of time series.

Decreasing variance of interannual (year-to-year)

monthly temperatures may seem surprising in light of

research done by Della-Marta et al. (2007), Schär et al.

(2004), and Scherrer et al. (2005), who found increasing

variability for European summers. However, it appears

less surprising within the context of intra-annual (values

within a single year) variance trends, which are more

widely distributed spatially and seasonally. In the past

two decades a decrease in intra-annual temperature

variance has been observed via diurnal and seasonal

changes and it is thoroughly documented (e.g., Karl et al.

1993; Easterling et al. 1997; Michaels et al. 1998; Vinnikov

et al. 2002; Klein Tank and Können 2003; Vose et al. 2005;

Alexander et al. 2006; Trenberth et al. 2007; Sen Roy and

Yuan 2009). These studies also suggest asymmetry be-

tween low and high temperature rates, for example, vari-

ous lows warming faster than highs, and possibly relate to

an interannual variance decrease, reported here. Hence,

‘‘global calming’’ may be related to global dimming.

Despite the statistical significance of the results, there

is much to explore. The spatial distribution of the

GHCN stations is not uniform as can be seen in Fig. 3.

Specifically, the longer time series used here are found

primarily in the United States, Europe, India, Japan, and

Southern Australia. Furthermore, this is a land-only

dataset, resulting in the further underrepresentation

of the Southern Hemisphere. Hence, the reported de-

crease in variance may be more localized than the global

FIG. 4. Plot of hai vs trend in variance. The ensemble mean value

hai5 21.0 indicates decreasing variance. This value is statistically

significant as it exceeds, by an order of magnitude, the 3s value for

stationary simulations. To attribute a variance trend to hai5 21.0,

results of simulations mimicking the GHCN data are shown. Sim-

ple interpolation yields a trend of about 20.28C (106 yr)21, a 10%

relative change (open diamond). Each filled circle represents the

mean of 10 000 time series, see appendix C for details. Tempera-

ture time series were simulated by drawing numbers from a discrete

Gaussian distribution (separation of 0.18C between values, the res-

olution of the GHCN dataset) with a time-dependent standard de-

viation (variance trend). The abscissa (trends) is in degrees Celsius

per 106 years with an initial standard deviation of 1.88C, chosen to

equal the mean time series length and mean standard deviation for

the data. Error bars are within the markers.
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extent of the data suggests. However, the question of

intrinsic variance and the method based on the distribution-

independent variability index a, along with a first feasi-

bility study are important and should be tried on datasets

of better precision and more uniform spatial distribution.
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APPENDIX A

Record Highs and Lows versus the Mean Trend

a. Mean trend detection via high–low asymmetry

Mean trends break the high–low record symmetry, for

example, one expects the global warming trend to cause

excess number of record highs. This is, indeed, the case

as has recently been reported in Meehl et al. (2009).

Meehl et al. examined the mean trend via a ratio of re-

cords using NCDC U.S. Cooperative Observer Program

network station data: ’2000 stations spanning the United

States and 56 years of data (1950–2006). Rather than

examine globally distributed records in time series of

monthly mean temperatures, Meehl et al. consider U.S.

time series of both daily maxima and minima [extremes

are also good indicators of change, see Della-Marta et al.

(2007) who also examine daily temperatures]. They re-

port the ratio of record daily maxima to record daily

minima that occur in 2006 to be ’2. Similarly, we can

report the ratio of total record highs to lows using

monthly means in the GHCN data: �RH/�RL 5 1.14,

where the sums are over all 15 635 time series and RH

(RL) are the number of record highs (lows) per time se-

ries. However, note that the number of expected record

events increases with the length of time series. When a

mean ratio is used instead of the sums, record highs are

compared to record lows for time series of the same

length. Our time series vary in length (90 to 130 years)

and the mean ratio is better suited for evaluating trends:

hRH/RLi 5 1.46.

b. Detrending tests via high–low asymmetry

As above, we employ high–low asymmetry to check

our detrending. For this purpose, we define b [ RH 2

RL. For strictly stationary time series, there is a com-

plete symmetry between highs and lows so that hbi 5 0

(either forward or backward). Indeed, hbi 5 0 indi-

cates absence of (nonperiodic) mean trend, although the

condition is sufficient but not necessary. For example,

a low-clipped distribution would favor record highs, but

could still be stationary. We calculate hbi to demonstrate

the diminishing high–low asymmetry for the detrended

GHCN data. For the LOWESS detrended data used in

this paper ( f 9 5 50), hbi 5 20.2 (forward and back-

ward), where the angular brackets denote an ensemble

average (over the 15 635 time series). This is a de-

crease in jhbij of 0.45 forward and 1.21 backward, in-

dicating the removal of mean trend; for the GHCN

data before detrending hbifwd 5 0.65 and hbibwd 5

21.41. We also give results for hbi for multiple detrend-

ing methods—see Table A1 and appendix B. In all cases

jhbij decreases after detrending, again confirming the

removal of mean trend.

APPENDIX B

Sensitivity of a to Detrending

The purpose of this appendix is to demonstrate that

1) the variability index a is insensitive to method of

detrending (see Table A1) and 2) a is far more sensitive

to changes in variance than changes in the mean. Both of

these conclusions tend to render the specifics of de-

trending moot: we elaborate next.

TABLE A1. For the GHCN dataset, different detrending tech-

niques are compared, all with hai between 20.92 and 21.00. The

GHCN data with no detrending results in hai 5 20.84, still a sta-

tistically significant number. (The 3s value or the 99.7% confidence

interval for stationary series is 60.12. Thus, the GHCN data value

of hai 5 21.0 is an order of magnitude larger than the 3s uncer-

tainty. See section 5.) Values for b 5 RH 2 RL are also displayed.

Decreasing jhbij indicates removal of the mean trend. Note that

jhbij decreases for all detrending methods, see text for details. The

LOWESS detrending smoothing parameter ( f 9) is discussed in

section 4b. Least squares fitting of polynomials, orders 1 through 4,

and anomaly detrended data are also tested.

Method f 9/order hai hbifwd hbibwd

None — 20.84 0.65 21.41

Lowess 10 20.92 20.07 0.00

Lowess 20 20.96 20.10 20.02

Lowess 30 20.99 20.14 20.08

Lowess 40 21.00 20.18 20.12

Lowess 50 21.00 20.22 20.17

Lowess 60 21.00 20.23 20.27

Lowess 70 20.98 20.22 20.38

Lowess 80 20.97 20.17 20.48

Polynomial 1 20.93 20.12 20.58

Polynomial 2 20.95 20.07 20.51

Polynomial 3 21.00 20.46 20.09

Polynomial 4 20.94 20.16 20.18

Anomaly — 20.91 20.04 0.40
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a. Sensitivity to methods of detrending

We subtracted off the mean trend fit for each time

series and chose two different techniques to calculate

the mean trends: 1) local linear regression, LOWESS

(recommended by one of the anonymous reviewers);

2) least squares polynomial fit to the time series. Between

the two techniques we tested 12 distinct detrending

versions: eight LOWESS tests for different smoothing

parameters (section 4b) and four least squares regressions

for different order polynomials. All 12 mean trend re-

moval calculations yielded values an order of magnitude

larger than the 3s uncertainty, 60.12: hai ranges between

20.92 and 21.00 (see Table A1). In fact, even without

detrending, the GHCN dataset still gives statistically

significant results: hai 5 20.84.

In addition, we tried detrending by subtracting off the

global temperature anomaly for that year. The tempera-

ture anomaly is commonly defined as a deviation of a

globally averaged temperature for a given year from the

globally averaged temperature of the entire time span

(1880–2006): see the NCDC Internet site (online at http://

www.ncdc.noaa.gov/oa/climate/ghcn-monthly/index.php)

for the relevant deviations. Thus processed time series

from this time period resulted in hai 5 20.91.

b. Sensitivity to magnitude of the trends

In Fig. B1, we compare sensitivities of a to linear

trends in mean and variance (see section 4c for details on

trend simulation). When the mean and variance trends

are comparable, the mean trend has a negligible effect

on hai, compared to the effect of the variance trend. This

is because there is no direct measure of mean trend in

a; that is, the difference or ratio of record highs and

lows in the same temporal direction. Thus, while de-

trending of the mean trend will often be imperfect, hai
will still give a reliable measure of variance trend as

shown in Table A1.

APPENDIX C

Spatial and Temporal Correlations

a. Spatial correlations

In addition to GHCN filtering, we tested for ‘‘geo-

graphical independence’’ of the GHCN time series by

calculating correlation coefficients (r) for all station

pairs, calculating each month separately. For the GHCN

dataset with no detrending, 45% of series pairs are un-

correlated (r between 60.10, 1s for uncorrelated time

series) and 83% are uncorrelated or weakly correlated

(r , 0.30), see Fig. C1. Additionally, 11% of correlated

time series (r . 0.30) are not in the same country (widely

separated), so only ’15% of time series pairs are possibly

significantly correlated. Correlation coefficients for the

LOWESS detrended data ( f 9 5 50) are similar: 46% of

series are uncorrelated and 86% are uncorrelated or

weakly correlated (see Fig. C1). To account for these

possible correlations, we conservatively reduced the

number of simulated time series to 10 000, ’64% of the

GHCN number of time series.

Note that while intercorrelated time series could lead

to clustering of records, the clustering effects tend to

cancel in the calculation of a because of the time-

reversal symmetry. Furthermore, we show that clustering

of records is minimal in the GHCN data, by examining

the placement of records in time. Figure C2 shows the

fraction of time series that have a record each year; re-

cord highs and lows, forward and backward. The vertical

axis on the right shows the number of time series avail-

able each year. Note that deviations from apparent noise

in the annual fraction of records often coincides with

changes in the number of time series, most notably

FIG. B1. Variability index a is relatively insensitive to mean

trends. Plots of hai vs the linear trend in standard deviation (s)

for several values of a parameter (linear mean trend). Realistic

mean trends, ,j618C (100 yr)21j (comparable to GHCN data),

do not affect a but larger mean trends do. In particular, the figure

shows that only variance changes cause hai 6¼ 0; At a fixed variance

trend, jhaij decreases with increasing mean trend, rendering the

a-estimated variance trend conservative; and mean trends can

change the magnitude of hai, but not its sign. Each point is the

mean for 10 000 simulations (see section 4c for details regarding

the simulations).
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around 1990 where there is a large spike in records

counted backward, but also a 20% increase in the number

of time series.

b. Temporal correlations

GHCN time series (no detrending) are slightly skewed

toward positive serial correlations (see Fig. C3a; 52% of

time series have no significant correlation, between 60.10

for 1-yr lag, 1s for ‘‘noise’’ in autocorrelation coefficients

beyond 2-yr lags, and 93% have no serial correlation or

weak serial correlation, between 60.30 for 1-yr lag.

Meanwhile, serial correlations for the LOWESS de-

trended GHCN time series ( f 9 5 50) have the same

distribution as those for stationary simulations: 64% of

time series have none, between 60.10 for 1-yr lag, 1s for

‘‘noise’’ in autocorrelation coefficients beyond 2-yr lags,

and 99% have no serial correlation or weak serial cor-

relation, between 60.30 for 1-yr lag. This demonstrates

that the excess of positively correlated series is associ-

ated with the mean trend as the detrending leaves no

appreciable serial correlations.

We verify that serial correlations are negligible by

calculating hai for two simulated datasets with identi-

cal variance trends: one with serial correlations (av-

erage autocorrelation at 1-year lag ’0.9), the other with

no serial correlations. The results were statistically

indistinguishable, see Fig. C3b. Because serial correla-

tions in the GHCN data are weaker and less frequent

than those in the simulated time series with serial corre-

lations, the weak serial correlations in the data do not

affect the value of a nor the attribution of the trend.

To conclude, in the absence of detrending we find

significant serial correlation, but note that distinguishing

between strictly stationary correlated time series and

uncorrelated time series with a trend, is dubious. Indeed,

the very notion of serial correlation is valid only for

strictly stationary processes. In fact, a trend in variance

itself can induce spurious serial correlations. We are

not alone in taking this view; for example, Meehl et al.

(2009) do not even consider study of autocorrelation

worthwhile in their record high/low study: ‘‘Though this

simple summation does not take into account station

record length or any autocorrelation effects, it is not

unexpected that there would be more record high

FIG. C1. Statistical independence of geographically separated

time series is shown here by comparing histograms of correlation

coefficients for pairs from the 15 635 GHCN time series, the

LOWESS detrended GHCN data ( f 9 5 50), and a simulated dataset

of stationary and independent time series. The overlap of the his-

tograms indicates low frequency of correlations in the GHCN data;

85% of GHCN time series pairs and 86% of the LOWESS de-

trended GHCN time series pairs are uncorrelated or weakly cor-

related (r , 0.30). However, with 15% possibly correlated we

conservatively reduced the number of simulated time series to

10 000, ’64% of the GHCN number of time series. FIG. C2. For the GHCN data, we show here the annual fraction

of series with a record high or low, (a) forward and (b) backward.

Record highs and lows in the forward (backward) direction de-

crease (increase) toward 2000. The number of series that are

available each year are shown also (right y axis). Notably, there do

not seem to be any outstanding years with record clustering; the

largest fluctuations in record numbers correspond to increases or

decreases in the number of time series, recall the first value is al-

ways a record.
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maximum temperatures being set than record low

minima simply because the annual U.S. average surface

temperatures have been increasing since the 1970s.’’
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