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ABSTRACT

Recent studies have led to the statistical characterization of the spatial (temporal) distributions of cloud
(precipitation) particles as a doubly stochastic Poisson process. This paper arrives at a similar conclusion (larger-
than-Poissonian variance) via the more fundamental route of statistical physics and significantly extends previous
findings in several ways. The focus is on the stochastic structure in the spatial distribution of cloud particles.

A new approach for exploring the stochastic structure of clouds is proposed using a direct relation between
number density variance and the pair correlation function. In addition, novel counting diagrams, particularly
useful for analyzing counts at low data rates, demonstrate droplet clustering and striking deviations from Poisson
randomness on small (centimeter) scales. These findings are shown to agree with pair correlation functions
calculated for droplet counts obtained from an aircraft-mounted cloud probe. Time series of the arrival of each
droplet are used to bin the data evenly so as to avoid corruption of the statistics through the operations of
multiplication and division. Furthermore, it is shown that statistically homogeneous series of particle counts
exhibit super-Poissonian variance.

Since it is not always practical or feasible to obtain such direct measurements, the possibility of studying
cloud texture using a revival of the idea of coherent microwave scatter from cloud droplets is discussed, including
a more complete interpretation of Bragg scatter that seems to explain some recent observations in clouds. Finally,
the appearance of clustering and the subsequent geometric distribution of droplet counts are interpreted using
basic considerations of turbulence.

1. Introduction

The statistical laws governing spatial distribution of
particles in clouds are, obviously, of great interest and
have been studied for decades. Perhaps the simplest and
most basic distribution law to adopt for particle counting
statistics in clouds is the Poisson distribution. Many
texts and monographs have done so (e.g., Rogers and
Yau 1989, p. 134) However, there is by now a consid-
erable body of evidence in conflict with the Poissonian
statistics (which tends to underestimate true variability)
because clouds appear patchy on many length scales
down to centimeters (e.g., Paluch and Baumgardner
1989; Baker 1992; Pawlowska et al. 1997; Pinsky and
Khain 1997; and Davis et al. 1999). For a concise sum-
mary see Pruppacher and Klett (1997, chapter 2, pp.
28–30) and their appendix A-2.1.5, in particular.

What distinguishes our approach from the previous
work in this field is the use of the correlation function
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formalism to characterize the stochastic structure of
clouds. In particular, it was shown that ‘‘patchiness’’
can be quantitatively characterized by correlations of
particle counts and that the mere presence of patchiness
is often inconsistent with the Poissonian statistics (Kos-
tinski and Jameson 1997; Jameson et al. 1998). These
spatial correlations of droplet concentration may exist
on several length scales. Perhaps the simplest multiscale
approach is to assume a fractal (or multifractal) model,
as has been done in, for example, Hentschel and Pro-
caccia (1984) or Davis et al. (1999). At the other end
of the spectrum, we recently advanced the Poisson mix-
ture approach based on the assumption of a single cor-
relation length scale and wide separation of measure-
ment and correlation scales. One of our goals here is to
suggest a deeper and more fundamental statistical phys-
ics approach that yields super-Poissonian variance (larg-
er than Poissonian variance for the same mean) of par-
ticle counts without the restrictive assumption of wide
scale separation and single correlation length. We ac-
complish this by using the correlation-fluctuation the-
orem (CFT), which is a direct relation between con-
centration variance and a two-point correlation function.
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Note that the previously advanced Poisson mixture in-
terpretation does not enter this argument at all.

Another major goal of this paper is to demonstrate
the possibility of observing the cloud texture (finescale
correlation structure) by calculating the two-point cor-
relation function directly and through the CFT, both of
which are computed by analyzing aircraft-mounted
cloud probe data of time series of particle arrival times.
In the process, we introduce new tools for processing
and displaying droplet time-of-arrival data. We focus on
the following question: is the probability of detecting a
droplet within next, say, 10 cm, enhanced by having
just detected a droplet?

The defining feature of the Poisson process or of
‘‘pure’’ randomness is that such a conditional proba-
bility equals the unconditional probability of simply de-
tecting a droplet within the next 10 cm of the probe
path. In other words, there is no enhancement in the
Poisson case. In this paper, by the direct use of coin-
cidence counting, we demonstrate a striking pattern of
droplet clustering and deviations from Poissonian be-
havior. This confirms previous reports of finescale
patchiness from a different point of view and with dif-
ferent data and techniques. Furthermore, we argue that
the use of CFT simplifies and widens the range of pos-
sible cloud probe experiments by removing the need for
consecutive time series of droplet counts.

We also suggest coherent Bragg scatter by droplets
themselves as a possible way to measure cloud texture.
This was suggested already in the 1960s but was not
actively pursued. We argue for the revival of that idea
since the CFT provides an important new link to the
Fourier transform of the correlation function, which de-
termines the radar Bragg scatter off cloud droplets. We
then proceed to elaborate on the previously suggested
model of a Poisson mixture through an incorporation of
recent results in fluid dynamics of particles in a turbulent
flow such as vorticity-induced patchiness caused by tur-
bulent entrainment, and by providing justification for
the previously derived geometric distribution of counts
via exponential tails of passive scalars in turbulence.

2. Definitions, terminology, and background
theory of the Poisson process

This section is of a rather tutorial nature but we feel
that it is essential for clarifying our differences from the
work of others and for providing an important guide for
subsequent sections. Let a number of cloud particles in
a given unit volume be our random variable of interest
(call it n) and assume that the random process is sta-
tistically homogeneous, that is, the moments of the ran-
dom process n(x) such as the mean and the variance are
unaffected by shifts in the choice of origin. Below, in
the data analysis section, we provide evidence for the
statistical homogeneity of the data analyzed here (see
appendix A).

It is important to understand that finescale physical

inhomogeneities (patchiness of clouds) do not preclude
statistical homogeneity. This further distinguishes our
approach from previous work such as Pawlowska et al.
(1997) who model clouds as an inhomogeneous Poisson
process. To illustrate our approach, we can do no better
than to quote from Landau and Lifshitz (1980, p. 351).

The assertion that the particles of a homogeneous iso-
tropic body (liquid or gas) are equally likely to be at any
position in space, applies to each separate particle on
condition that all the other particles can have arbitrary
positions. This assertion certainly does not contradict the
fact that, owing to their interaction, there must exist some
correlation between the relative positions of the different
particles. This means that if we consider, say, two par-
ticles at the same time, then for a given position of one
particle, different positions of the other will not be equal-
ly probable.

Hence, unlike Pawlowska et al. (1997) or Davis et al.
(1999), we treat cloud particles that are randomly dis-
tributed in space as a homogeneous but correlated ran-
dom process. The so-called small-scale inhomogeneities
often mentioned in the cloud physics literature are man-
ifestations of correlation (stochastic structure) in this
framework. Let us make this precise.

Let two volume elements dV1 and dV2 be sufficiently
small so that they can contain either zero or one particle
only and the probability of containing two or more par-
ticles is negligible. Hence, the average number of par-
ticles ndV is also the probability that a particle is in the
volume element dV (Landau and Lifshitz 1980, p. 351).

Then, for a general statistically homogeneous random
field, the joint probability P(1, 2) of finding two particles
in the two volumes dV1 and dV2 (one particle in each)
is (e.g., see Green 1969, pp. 62–63)

P(1, 2) 5 n 2dV1dV2[1 1 h(l)], (1)

where h(l) is the so-called pair correlation function (in
theory liquids) or two-point correlation function (in as-
tronomy) and l is the separation distance between two
volumes [statistical isotropy is implied by h 5 h(l)].
The h(l) is defined operationally as

2[N(l)N(0) 2 N ] N(l)N(0)
h(l) [ 5 2 1, (2)

2 2(N ) (N )

where N 5 nV and V is the test volume. We see from
Eq. (1) that the assumption of statistical independence
of counts in nonoverlapping volumes implies h(l) 5 0
because only in this case is the joint probability simply
a product of the individual ones. However, in the pres-
ence of correlations, the conditional probability of find-
ing the second particle, given that the first one is there,
is enhanced (or inhibited) by a factor of (1 1 h). Equiv-
alently, from the definition of h(l) in (2), it can be seen
that the two-point autocorrelation function is identically
zero in the absence of correlations (the Poissonian case).

If we interpret a ‘‘blob’’ (‘‘void’’) as a region of ap-
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FIG. 1. The rhs of this figure is a schematic depiction of the chain
of reasoning that leads to super-Poissonian fluctuations via the doubly
stochastic random process model. It is essential to understand that
the time sequence on the right is viewed as a stationary (homoge-
neous) but correlated process as opposed to an inhomogeneous Pois-
son process. Hence, ‘‘stochastic structure’’ is characterized by cor-
relation functions. The Poissonian ‘‘droplet-to-droplet’’ fluctuations
are riding on top of the ‘‘patch-to-void’’ variations. The independent
variances add. The patch-to-void fluctuations are unpredictable and
therefore are treated as random (i.e., any deterministic variations, of
course, do not contribute to the variance).

preciable positive (negative) correlation of particle
counts then the Poisson process is ideally random in
the sense that only in the case of the Poisson process
are there no blobs or voids at any length scale. Hence,
the Poisson field is as even as randomness allows.

The assumptions behind the Poisson distribution (e.g.,
Ochi 1990) are that 1) the process is statistically ho-
mogeneous; 2) the probability of detecting more than
one particle in a given volume dV is vanishingly small
for sufficiently small dV; and 3) particle counts in non-
overlapping volumes are statistically independent ran-
dom variables (at any length scale). It is the last as-
sumption of statistical independence at any length scale
that is the true origin of the Poisson distribution because
it prevents blobs or voids from appearing. Given the
assumptions, the probability distribution of counts is
given by

NN exp(2N )
p(N) 5 , (3)

N!

where N is the random variable of interest (number of
particles in a test volume), p(N) is a probability of find-
ing N particles in a test volume, and N is the mean rate.
It is important to note that the variance of counts equals
the mean ( 5 N) for the Poisson distribution. Given2s N

our interpretation of a blob, we expect deviations from
the Poisson statistics on these scales, for particles im-
mersed in or entrained by vigorous turbulence because
of spatial correlations of concentration introduced by
uneven stirring. In this sense, Poissonian clouds are de-
void of turbulence and resemble an ideal gas of mole-
cules more than they resemble real clouds.

The Poisson distribution is a function of one param-
eter, the mean value (equal to the variance). There are
two natural generalizations of the Poisson process: 1)
inhomogeneous Poisson process and 2) doubly sto-
chastic Poisson process (where the local mean is itself
a random variable on a longer spatial scale). In the for-
mer case [adopted, e.g., in Pawlowska et al. (1997)],
the mean is viewed as a spatially dependent but pre-
dictable deterministic variable so it does not contribute
to variance. For example, in Fig. 1, the time series on
the rhs has variations about the global mean. If these
variations are treated as deterministic (predictable at
least in principle), then they do not contribute to the
variance (only random variables do).1 Therefore, the
distribution for the number of droplets observed during
a spatial interval (0, L) is given by (e.g., see Ochi 1990,
437–439)

1 Dispersion about a mean of a random process (function) is un-
derstood here as a measure of randomness and should not be confused
with variation about a mean of deterministic functions in space or
time.

nL

n(x) dxE
L[ ]

0
p(n) 5 exp 2 n(x) dx , (4)E[ ]n! 0

and this distribution still has the property that the mean
and variance are equal.

To avoid this restriction (not satisfied by the data we
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have analyzed so far; see below), we adopt the doubly
stochastic Poisson process model (e.g., see Ochi 1990).
Instead of being inhomogeneous and Poissonian, it is
statistically homogeneous (stationary) but not Poisson-
ian as is confirmed by the data analysis in appendix A.
The most important distinction is that the element of
‘‘structure’’ of clouds is viewed stochastically rather
than deterministically; that is, rather than assuming pre-
dictability of large scale structures, we characterize it
in terms of correlation functions. The situation is some-
what similar to that in modern statistical communication
theory, where deterministic signals carry no information
and all real messages are treated as random but with
preassigned probabilities and intersymbol correlations.

Perhaps it is worth pointing out that models of ho-
mogeneous random processes are used to describe non-
Poissonian statistics in other branches of science, for
example, bunching of photons (Loudon 1983) or clus-
tering of galaxies (Peebles 1980). These phenomena are
in conflict with the assumption of statistical indepen-
dence of spatially separated volumes. While in these
examples spatial correlations appear because of inter-
action among objects (e.g., exchange interaction of pho-
tons or gravitational attraction of galaxies), in our case
the cause of correlations is the intermittency of turbulent
mixing. In our opinion, this makes clouds a particularly
interesting and unique example of non-Poissonian sta-
tistics because it makes a point of fundamental impor-
tance: correlation between positions of spatially sepa-
rated objects does not necessarily imply physical inter-
action between these objects.

For example, there is no direct physical interaction
between drops separated by 100 m but their spatial lo-
cations are correlated to the extent that both belong to
the same cloud patch. As another example in time, an
arrival of a raindrop makes it more likely that the next
drop will arrive shortly. The conditional part of the joint
probability in (1) is enhanced by (1 1 h) because the
first drop has been detected. In other words, raindrops
arrive in bunches (patches of clouds) as was elaborated
on in Kostinski and Jameson (1997) and Jameson and
Kostinski (2000). From this point of view, the well-
known expression ‘‘it never rains but it pours’’ is a
manifestation of raindrop bunching. As we show below,
this applies to clouds as well.

3. The correlation-fluctuation theorem and cloud
texture measurements

Above, we argued that turbulent patches understood
as regions of enhanced (blobs) or decreased (voids) con-
centration, represent long-range positive (negative) cor-
relation of particle count fluctuations and therefore vi-
olate the statistical independence assumption behind the
Poisson process. Presumably, the longer and stronger
the correlation, the more substantial the violation of
statistical independence assumption required in Pois-
sonian statistics and, therefore, the larger the deviations

from the Poissonian variance. In other words, a natural
question arises: is there a relationship between the var-
iance of counts in a fixed sampling volume and the
spatial correlation of particle positions?

It turns out that the answer is yes. A powerful formula
is available in statistical physics that relates the variance
of counts in a given volume to the pair correlation func-
tion, integrated over the same volume. It was originally
developed for the case of density fluctuations in gases
and liquids but the derivation is completely general as
can be found in Landau and Lifshitz [1980, p. 352, Eq.
(116.5)] or Green (1969, pp. 62–63). It reads

2(dN ) N
2 1 5 h(l) dV, (5)EN V V

where, as in Eq. (1), h(l) is the pair correlation function
between particle counts in volumes V1 and V2, separated
by distance l; dN is the deviation from the mean count
in a given volume V; and N 5 nV, where n is the local
mean concentration. Note that our h differs from the n
in Landau and Lifshitz (1980) by the factor N /V. Also
note that in the limiting case of no correlation we re-
cover the Poisson relation 5 N . Thus, according to2s N

(5), the mean squared fluctuation (dN)2 of particle
counts (variance of N) in a given volume is related to
the pair correlation function integrated over the same
volume.

Then the physical meaning of Eq. (5) is as follows:
given a fixed mean concentration, the variance of par-
ticle counts is enhanced by the presence of correlations
throughout the sampling volume V. This is illustrated
in Fig. 1. One of the goals of section 6 is to carefully
elaborate on this interpretation.

Note, however, that (5) is completely general and
needs no additional assumptions or blob and void in-
terpretation, such as introduced in Kostinski and Ja-
meson (1997) and Jameson et al. (1998). After multi-
plying both sides of (5) through by N and rearranging,
we obtain

2
2(dN ) 5 N 1 h N , (6)

where the volume-averaged pair correlation function h
is defined as

1
h 5 h(l) dV. (7)EV V

[From the ‘‘random walk’’ point of view, the quadratic
term on the rhs of (6) can be viewed as the coherent
displacement of the walker if N is interpreted as a num-
ber of steps.]

The physical meaning of the Poissonian limit is as
follows. As the dimensions of the sampling volume V
become much larger than the correlation distance, most
of the integration region in h does not contribute and
h approaches zero. Then the Poissonian relation 52s N

N is recovered. This can also happen if negative and
positive correlation regions nearly cancel for a given
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sampling volume (wave phenomena such as Kelvin–
Helmholtz instability could result in sinusioidally de-
caying h). At the other end, if V 1/3 is much smaller than
the correlation distance, the quadratic term is always
there and h can be approximated by h(0). Hence, if the
average number of particles N is much larger than unity,
the quadratic term in (6) dominates. This result is quite
general and is not model dependent. Note that, depend-
ing on the resolution, some experiments will pick up
the super-Poissonian variance and some will not.

Equation (5) suggests a possibly simple means of
measuring cloud texture (small-scale variability) as ex-
pressed by the pair correlation function h(l) via a direct
measurement of the lhs of (5). For example, the follow-
ing procedure might be used in aircraft-mounted cloud
probe studies.

1) Pick a small (compared with a small turbulent eddy)
sampling volume dV. Here small might mean com-
parable to the viscous dissipation (Kolmogorov)
scale of turbulence; for example, dV can be set to
several cubic centimeters. Note that much larger
sampling volumes may ‘‘wash out’’ finer scale var-
iability.

2) Count particles in dV for many consecutive ‘‘snap-
shots’’ (realizations of a random process) along the
flight path to accumulate a time series of measure-
ments of N. These measurements then form an en-
semble of realizations of a random variable N.

3) Compute the lhs of (5), which is a simple calculation
of the variance, and the mean of the time series of
counts (‘‘relative’’ to the Poissonian relation 52s N

N). Such processing has been done in the past (e.g.,
Baker 1992; Jameson et al. 1998).

4) Using the same measurements, increase the size of
sampling volume and repeat the procedure to get
#y h(l) dV on larger spatial scales. This way h as a
function of l can be deduced by approximating the
integrals by their mean values.

One can also monitor directly the average product of
volume counts separated by a fixed distance (e.g., co-
incidence counters such as the ones used in nuclear
physics), but this involves mounting two probes and
may be more difficult. The above steps can also be
applied to the analysis of recorded particle interarrival
times, as we will now demonstrate.

4. Observations of small-scale clustering and pair
correlation functions

During the Tropical Ocean Global Atmosphere Cou-
pled Ocean–Atmosphere Response Experiment (TOGA
COARE) in 1992–93, the National Center for Atmo-
spheric Research Electra aircraft flew at a speed of 130
m s21 in a saturated environment about 1 km (3 km
above the ground level) above the cloud base of raining,
warm tropical clouds. Attached to the wing, was a Par-
ticle Measuring System (PMS) probe capable of im-

aging the shadows cast by cloud droplets passing
through a wing-oriented linear array of downward-di-
rected laser beams as the aircraft moved horizontally.
The probe cross-sectional area was 9.6 mm2. For this
study, we chose data on 50-mm diameter droplets im-
aged with the PMS 2D-C instrument.2 Furthermore, a
traverse without cloud breaks was chosen.

The data consist of time intervals between successive
droplet arrivals over a 20-s total duration that traversed
about 2.75 km and included slightly over 1400 50-mm
diameter droplets. While these observations were used
to study interdrop distances, as described in greater de-
tail in Jameson et al. (1998), here we use these obser-
vations differently.

Specifically, beginning with the first we measure the
distances to all the subsequent droplets. We then divide
the total 2.718-km path into 10-cm increments and as-
sign each droplet to one of these bins. This, in effect,
transforms the data from a time series of the number of
50-mm droplets into a spatial series of the number per
10-cm path increment (corresponding to the sampling
volume element V of about 10 mm2 3 10 cm 5 1 cm3).
Later on, in order to implement the CFT, we process
the data for a series of increasing ‘‘sampling volumes’’
traversing distances from 10 cm to 1 m in 10-cm in-
crements.

For the 10-cm resolution, N then is a number of 50-
mm particles per cubic centimeter, averaged over the
entire pass through the cloud. The N is about 0.05 per
each V; that is, only one 10-cm interval out of 20 has
a particle in it and the total path contains 27 180 inter-
vals. To test for clustering at such small scales and low
counts, we first ask the following question: is the prob-
ability of detecting more than one droplet within a 10-
cm interval larger than the one given by the law of
independent events?

Figure 2 clearly shows that the answer is yes. For
example, the expected value of 10-cm intervals con-
taining three and four particles for independently dis-
tributed particles is shown in Fig. 2 as about 1 and 0,
respectively. This is obtained by simply drawing 1400
uniformly distributed random numbers on the (0, 1) in-
terval and histograming into 27 000 bins. This is clearly
much lower than the actual data show. The same con-
clusion holds (although slightly less dramatic) when the
procedure is repeated for even a finer resolution of 1
cm (270 000 intervals and 1 in 200 intervals containing
more than zero particles), as is shown Fig. 3. This type
of exploratory data analysis and display is designed to
achieve the finest possible resolution and it is suitable
only for very low counts when the vast majority of
occurrences are 0 or 1 events.

To gain further insight into clustering among con-

2 Data on particle diameters from 25 to 800 mm in 25-mm intervals
were available and we chose the second smallest size bin as the most
reliable one (see Jameson et al. 1998, for details).
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FIG. 2. (a) Beginning with the first droplet, the distances to all the
subsequent 1404 droplets were measured. The total 2.718-km path
was then divided into 10-cm increments and each droplet is assigned
to one of these bins, which transforms the data into a time series of
the number of 50-mm droplets per 10-cm path increment (corre-
sponding to the sampling volume element V of about 10 mm2 3 10
cm 5 1 cm3). These data are compared with the Poissonian simulation
(b) based on independent trials (Bernoulli- or binomial-type exper-
ments for very small expected value) simply by drawing 1400 uni-
formly distributed random numbers on the (0, 1) interval and his-
tograming into 27 200 bins.

FIG. 3. The same comparison as for Fig. 2 but for intervals of only
1 cm. The Poisson simulation (b) is now performed on 272 000

bins.

secutive intervals (rather than inside each one), it is
natural to turn to the pair correlation function h(l) as
defined by Eq. (2), which is specifically designed to
monitor correlation among counts whose intervals are
separated by a specified distance (lag). However, we
operate in the domain of such small counts (19 out of
20 values are 0) that one must be cautious in interpreting
the results; for example, h(l) is expected to be erratic.

The directly computed and the average pair correlation
functions (denoted as h) are shown in Fig. 4, for the
1- and 10-cm resolutions. The h’s were computed from
the CFT as

21 (dN ) 1
h 5 h(l) dV 5 2 . (8)E 2V NNV

The zero-lag values are excluded in the calculations
because unlike the conventional autocovariance func-
tion, h is not bounded by unity at zero separation. In
fact, as one decreases the interval and as N approaches
zero, h(0) diverges as 1/N in the nearly Poissonian re-
gime. This is why h is expected to be a bit higher than
h; the large values at small lags make a large contri-
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FIG. 4. Here we plot the pair correlation functions based on the 1-
and 10-cm-interval data and for lags up to 1 m (excluding zero lag;
see text). The correlation functions are computed on the basis of the
direct definition [Eq. (2)] and the average correlation functions are
derived using the CFT relation [Eq. (8)].

bution to the integral. In spite of the difficulties of in-
terpreting correlation functions when counts are so low,
Fig. 4 confirms our previous conclusions: for both 1-
and 10-cm lag increments we see correlations at cen-
timeter separations that decay at longer distances. Also,
it is encouraging that the results of Fig. 4 agree on 1-
and 10-cm resolutions.

The h’s are, of course, smoother than the directly
computed h’s because of the huge number of realiza-
tions. Indeed, every 10-cm interval of the entire traverse
is regarded as a new realization of the volume count.
This is an important advantage of the CFT: the number
of realizations is so large that it is possible to obtain
statistically meaningful results from one path through a
cloud. Furthermore, and perhaps more importantly, one
need not record spatially nor temporally arranged series,
in order to compute h’s. For example, one can leave
several probes of different volumes on a mountain top
(high enough for frequent cloudiness, e.g., Mauna Loa)
and make automated particle measurements, say, every
hour for many days. This is sufficient to estimate h’s
at different spatial scales (different volumes of probes)
through the CFT, especially when N k 1. (In passing,
we also note that the ‘‘box counting method’’ applied
to the 50-mm particle data on resolution from centi-
meters to 100 m reveals no signs of fractal scaling.)

In addition to the simplicity of the proposed approach,
we stress the fact that it provides subresolution infor-
mation; that is, the pair correlation function inside the
sampling volume is measured. This is illustrated by the
10-m sampling data of appendix A. Figures A1 and A2
establish statistical homogeneity of the data as reflected
in the constancy of the local mean and the variance. We

see from Fig. A3 that the data pair correlation function
is barely significant for the 10-m and longer separations
because it is so similar to the equivalent Poisson case.
Yet Fig. A4 shows that the variance of the data is 4.25
times the variance of the equivalent Poisson distribu-
tion! This is in complete agreement with CFT because
in these data it is the sub-10-m correlations that make
a significant contribution to the 10-m volume integral.

Note that the relevant physical mechanisms enter the
picture through the functional form of the pair corre-
lation function versus the separation distance. Thus one
would expect h to depend on particle size, the state of
turbulence (e.g., the Reynolds number, energy dissipa-
tion rate), etc. Hence, the underlying physics can be
studied by means of particle counting. Aside from direct
observations, however, it should be possible in principle
to observe stochastic structure of clouds using remote
sensing based on the idea of Bragg scatter in liquids.

5. Remote sensing of cloud texture: Coherent
scattering from cloud particles

While the previous section shows that spatial corre-
lation can be observed directly, such observations may
not always be convenient or plausible. Is there, then, a
way to detect spatial correlations of droplets remotely?
An approach to measure h(l) in physical science has
been known since the discovery of coherent scattering
of X rays by liquids or gases near phase transition.
There, the scatterers form a random but spatially cor-
related array and it is the Fourier transform of the pair
correlation function (sometimes called the structure fac-
tor) that is measured via Bragg scattering (e.g., see
Green 1969, pp. 59–63). The key physical idea is to
employ a spectral representation of a random process
because the random but correlated collection of scat-
terers can be viewed as a superposition of diffraction
gratings, one of which is in ‘‘resonance’’ with the in-
cident radiation. A mathematical manifestation of this
statement is the Wiener–Khintchin theorem about the
autocorrelation function and the power spectrum being
a Fourier pair. Hence, the critical role is played by the
Fourier transform of the pair (or auto-) correlation func-
tion. A particularly striking example is that of critical
opalescence where a transparent gas becomes turbid and
opaque as a phase transition is approached because mol-
ecules develop long-range correlations (blobs) compa-
rable to the wavelength of visible light.

However, it appears that coherent scattering has been
reserved in radar meteorology for scattering off the con-
tinuous fluctuations of index of refraction caused by
turbulence (temperature and humidity) but not so much
for particulate matter. Specifically, in the most detailed
analysis we know, Gossard and Strauch (1983, p. 60)
state the following.

In calculating the scatter from cloud and precipitation
particles it is usually assumed that the scatterer concen-
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tration is random in the sense that the particle concen-
tration in neighboring parcels is completely uncorrelated
where the meaning of ‘‘parcel’’ is an atmospheric volume
of size approximately (l/2)3. If the number of scatterers
dN(r1)dr1 is independent of dN(r2)dr2 . . . then

2I 5 (dN ) (r) dr 5 N(r) dr 5 N . [9]E E T

V V

Note that the Poissonian-like process 5 N is implied2s N

in the above equation. A little later on in Gossard and
Strauch (1983, p. 61) we find the following.

The possibility that number density in neighboring par-
cels is not completely uncorrelated in precipitation was
considered briefly . . . and rejected as an important con-
sideration. However, it is not so evident that a coherent
(Bragg) scatter is negligible in clouds, where number
densities can be as high as 1000 cm23 and this possibility
was considered from a theoretical standpoint by Smith
(1964), by Naito and Atlas (1964) and by Chernikov
(1968). The subject was apparently never pursued further
because of the difficulty of measuring cloud number den-
sity spatial spectra. . . .

We agree with the authors that ‘‘it is not so evident’’
that Bragg scatter of cloud droplets is negligible, and
perhaps this is the right time to reexamine the issue.3

Indeed, we argued above that Eq. (5) provides rela-
tively simple means of measuring the correlation function
and the related Fourier transform (cloud number density
spatial spectrum). Furthermore, as discussed in the in-
troduction, recent experimental evidence and results of
this study suggest that spatial correlations between cloud
droplet counts exist on the centimeter scale. This is also
suggested by the theoretical arguments described in the
following section. On the other hand, common ground-
based radar wavelengths are in the range of 3–10 cm.

Thus, it is plausible that coherent radar scattering off
cloud droplets is detectable because the random but cor-
related collection of cloud scatterers is equivalent to a
superposition of diffraction gratings, one of which is
likely to be in resonance with the incident radar wave-
length. Note that even if N is decomposed as N 5 N
1 dN, where N is assumed deterministic and therefore
does not contribute to the scattering (as is done, e.g.,
by Gossard and Strauch), the coherent contribution is
proportional to (dN)2. On the other hand, whenever N
k 1 and correlations are present, (dN)2 } N 2 according

3 Our framework differs from that of Naito and Atlas (1966) or
Smith (1964) in several essential aspects. Previous studies did not
appreciate the central role of the Poisson distribution in quantifying
deviations from ideal randomness and equated lack of correlation
with complete and latticelike, rather than statistical, uniformity (e.g.,
see Smith 1964, p. 204). Furthermore, these studies treated local mean
counts and gradients as deterministic functions. Negative correlations
were not allowed (our voids), etc.

to Eq. (6), so that coherent intensity ends up quadratic
in N . This is in contrast to the incoherent intensity,
which is linear in N .4

More precisely, the coherent scattered intensity I is
given by

`

2I 5 (dN ) lC(l) sin(2kl) dl, (10)E
0

(e.g., see Gossard and Strauch 1983, p. 58), where k 5
2k sinu, u is the scattering angle, k is the wavenumber,
and C(l) is the spatial correlation function of particle
counts similar to our h(l) [see Eq. (2–12) of Gossard
and Strauch 1983].

In the backscatter case this reduces to
`

2I 5 (dN ) lC(l) sin(22kl) dl. (11)E
0

Hence, the radar echo is proportional to the variance of
the particle number density. This fact renders super-
Poissonian counting statistics [presence of the (N)2

term] essential for the existence of Bragg scattering.
In our opinion, recent dual-wavelength (3 and 10 cm)

radar observations of small cumulus clouds by Knight
and Miller (1993) and Knight and Miller (1998) appear
to have several ‘‘symptoms’’ of particulate Bragg scatter.
In particular, they report that Bragg and Rayleigh returns
are correlated. This is to be expected if both types of
return come from the same source: cloud particles.

Also, Knight and Miller (1998) report that the Bragg
component is larger for the longer wavelength. This is
plausible from the particulate Bragg scatter point of
view as the spatial correlation of concentration may have
a stronger Fourier component (‘‘diffraction grating’’) at
10 cm than at 3 cm. For example, vorticity-induced
patchiness (Shaw et al. 1998), which is discussed further
in the next section, occurs on the scale of about 10
Kolmogorov scales or about a few centimeters. To take
a concrete example, consider a correlation function
model of a sinusoidally decaying exponential (x is in
the direction of propagation of the radar waves),

x x
C(x) 5 exp cos , (12)1 2 1 2L L1 2

whose Fourier transform is

L L1 1f(k) 5 1
2 2 2 21 1 (L ) (k 2 1/L ) 1 1 (L ) (k 1 1/L )1 2 1 2

(13)

4 Recall that the number of cloud droplets in the radar resolution
volume (N ) might be on the order of 1015 for 100 particles per cubic
centimeter and radar resolution volume of 107 m3. Under the right
circumstances, that is, proper spatial correlation, squaring this number
may more than offset the D6 size dependence of the radar Rayleigh
backscatter cross section of these cloud droplets.
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and has a peak at L2 (spatial period of a wavelike dis-
turbance, e.g., or preferred spacing of vorticity-induced
filaments) that yields stronger radar return at that wave-
length.5 If L2 is closer to 10 cm, S-band radar echo is
stronger. This is a speculation, of course, in the absence
of reliable (higher counts) data on correlation functions
at the centimeter scale but it does yield a consistent
picture and suggests intriguing measurements.6 We are
still left with the question of the physical origin of the
super-Poissonian statistics. One possible interpretation
based on the doubly stochastic Poisson process model
is considered in the next section.

6. On the physical interpretation of the Poisson
mixture

The purpose of this section is to elaborate on the
previously developed Poisson mixture interpretation
(Kostinski and Jameson 1997; Jameson et al. 1998) in
light of recent results in fluid dynamics and turbulent
mixing. Consider a simple distribution of blobs, all
roughly of a size L and relative voids of about the same
size, for example, such as depicted at the top right of
Fig. 1, and imagine traversing any one of such patches
and measuring cloud particle counts per unit volume
whose dimension is much smaller than L. Then, particle
counts will obey (3) as the local mean concentration (n)
remains constant because the experiments are confined
to a given patch. However, on longer spatial scales (larg-
er than L), the concentration itself will fluctuate as mea-
surements move from patch to patch. Hence, the time
series depicted on the right of Fig. 1 results. Kostinski
and Jameson (1997) interpreted the distribution of n ,
denoted p(n), of the patches as a random variable in
such circumstances. Thus, (3) holds only when condi-
tioned upon a constant mean concentration, and to ob-
tain the total distribution, one must integrate over p(n),

`

p(n) 5 p(n | n )p(n ) dnE
0

` nn exp(2n )
5 p(n ) dn, (14)E n!0

where the vertical bar denotes conditional probability.
Hence, the process is doubly stochastic; that is, Pois-
sonian fluctuations ‘‘ride on top’’ of the longer scale

5 Note that the pair correlation function differs from the autocor-
relation function simply by normalization (n 2 vs ) and subtracting2n
off the unity.

6 In this connection, it is interesting to note that Bragg scattering
from raindrops may also be present in radar scattering off precipi-
tation because smallest precipitation patches are likely to exist on
spatial scales of several centimeters (Jameson and Kostinski 2000).
Hence, one might be able to observe the coherent scatter with an
S-band or longer radar waves (e.g., wind profilers).

blob-to-void fluctuations as depicted in Fig. 1. Again
note that despite the presence of physical inhomoge-
neities (patches), the random process is regarded as sta-
tistically homogeneous because p(n) does not depend
on the choice of origin. Realizations of such process on
scales, comparable to correlation length, may appear to
have ‘‘trends’’ but these are random as well and are to
be viewed as correlations rather than predictable deter-
ministic structures. This is an essential difference be-
tween the doubly stochastic and inhomogeneous Pois-
son process interpretations.

For conditional random variables (e.g., Ochi 1990,
pp. 65–66),

5 En̄ [s 2(n | n)] 1 (E[n | n]),2 2s sn n̄ (15)

where E denotes the expectation value. Thus, the var-
iance of a Poisson mixture is enhanced beyond that of
a pure Poisson probability distribution function (pdf )
by the variance of n (the blob-to-void contribution), that
is, 5 1 where the first term is the pure Poisson2 2 2s s sn P k̄

contribution, that is, 5 m [ k f (k) dk , and m 5
`

2s #k 0

E(n) is the global (averaged over many correlation
lengths) mean concentration of cloud particles.

To make further progress with the doubly stochastic
Poisson process approach, we need to know more about
the physics of the formation of the enhanced concen-
tration filaments and their probability distribution p(n).
A physical discussion of this distribution is the main
purpose of this section. In the language of fluid dynam-
ics, this is a question of probability density function of
the particle concentration fluctuations in a turbulent
flow.

Let us begin by pointing out that even on a small
scale (say, 10 cm), patchiness of cloud particles is likely
to be ubiquitous to the extent that turbulent air, in which
these particles are immersed, is ubiquitous. The physical
picture that emerges from recent fluid dynamics studies
is that the formation of patches and filaments is due to
the interplay of intense and spotty random vorticity
fields of atmospheric turbulence and a small amount of
particle inertia as they slowly fall through the eddies
while being only partially entrained by them.

Indeed, many recent studies have indicated that the
spottiness of a concentration field remains there even
when sedimentation or gravitational settling take place.
For example, Maxey and Corrsin (1986) pointed out in
their abstract that ‘‘particles with weak inertia show a
strong tendency to collect along isolated paths.’’ Squires
and Eaton (1991) echoed (we quote from their abstract)
that ‘‘turbulence may actually inhibit rather than en-
hance mixing of particles.’’ See also Fig. 5, of Wang
and Maxey (1993, p. 42) for the visual evidence of
clumping, and Shaw at al. (1998). Basically, turbulent
eddies push such particles away from the center of the
vortex, and they tend to collect in high-strain and low-
vorticity regions. Some implications of this phenome-
non in cloud physics have already been examined by
Pinsky and Khain (1998) and Shaw et al. (1998). The
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important point here is that even an initially homoge-
neous purely Poissonian distribution of cloud particles
with small inertia quickly evolves into collection of fil-
aments simply by virtue of falling through a random
vorticity field created by atmospheric turbulence.

Having established the presence of patchiness (and,
therefore, correlation function h), we conclude via Eqs.
(5) and (6) that the mere presence of the pair correlation
function h is sufficient to indicate super-Poissonian var-
iance. Thus, non-Poissonian statistics follow from pres-
ence of turbulence, at least on some spatial scales. This
chain of reasoning is depicted schematically in Fig. 1.

Vorticity and partial entrainment need not be the dom-
inant mechanism. For example, imagine an initially ho-
mogeneous blob of light cloud droplets is twisted and
distorted by a succession of turbulent eddies as time
progresses. The resultant patches must be viewed sto-
chastically (e.g., see Brodkey 1995, p. 329, Fig. 14-48
in particular). Let us regard cloud droplets as passive
tracers in a turbulent velocity field and apply recent
results in the field of turbulent mixing (e.g., see Hozler
and Siggia 1994, particularly images of patchy mixing
on pp. 1826–1830). These clearly show that vigorous
turbulence is a quick, but not a thorough, mixer in the
sense that patches persist for a long time until molecular
diffusion finishes the job.

But what can we state quantitatively about the prob-
ability distribution p(n) of the ‘‘patchy’’ concentration
field? The exponential distribution of concentration is
a good starting point because of the Markov ‘‘lack of
memory’’ property e2(x1y) 5 e2xe2y so that the joint
probability is simply a product of individual probabil-
ities (see Kostinski and Jameson 1999 for more details).
Also, several recent and extensive studies indicate that
the pdf of passive contaminants p(n) tends to an ex-
ponential form under a rather wide set of conditions
(Pumir et al. 1991). Sinai and Yakhot (1989) provide a
theoretical framework (based on the underlying fun-
damental turbulence equations of random advection) for
the evidence of exponential pdf of local mean concen-
tration.

We therefore set

1 n
f (n ) 5 exp 2 . (16)1 2m m

where m is the global mean concentration; that is, it is
averaged over many concentration bursts and voids. We
expect fluctuations in particle count to be in excess of
that implied by Poisson statistics because of variations
in the local mean concentrations (bursts and voids), as
shown in Fig. 1. The result of integration in (14) with
(16) inside the integral verifies this anticipation. It is
the geometric distribution

n1 m
p(n) 5 . (17)1 2m 1 1 m 1 1

Note only a single parameter (as for the Poisson dis-

tribution): the global mean particle count m but the shape
of this distribution is completely different from the Pois-
sonian one (much longer tail) and can be easily com-
pared with experimental histograms. Also note that it is
the exponential tails of the concentration distribution
that are reflected in the geometric tail of the distribution
of counts. In other words, the fluctuations are enhanced
over those of (3):

5 m 1 m2.2s n (18)

There are two independent sources of randomness
whose contributions therefore add: the regular Poisson
fluctuations at a fixed concentration ( 5 m) and the2s n

average concentration fluctuations themselves ( 52s n

m2). This is in agreement with the Eq. (5).7

We conclude that even in the absence of any physical
interaction, such as drop breakup, correlations between
droplet counts associated with spatially separated vol-
umes persist. There are at least two independent routes
to patchiness from the fluid dynamics point of view: (i)
partial entrainment of particles in eddies of the random
vorticity field and the tendency of turbulence to collect
particles along isolated paths even when the initial dis-
tribution is purely random (Poissonian); and (ii) general
tendency of passive scalar pdfs produced by turbulent
mixing to develop exponential tails. Thus, in our opin-
ion, turbulent mixing renders non-Poissonian statistics
ubiquitous because patchiness by its very definition im-
plies spatial correlation of particle counts which, in turn,
implies super-Poissonian variance via the relation (5) as
depicted in Fig. 1. Furthermore, these arguments are
rather general and do not depend on the nature of par-
ticles (e.g., can be applied to aerosols) and on the de-
tailed characterization of turbulence such as the exact
value of the Reynolds number or degree of homoge-
neity; for example, they can be applied to convective
cores of clouds as well as to the entrainment regions.
The form of the pair correlation function h does, of
course, depend on such details.

7. Summary and concluding remarks

In this work we attempted to probe deeper into sto-
chastic nature of clouds. Novel counting diagrams, par-
ticularly applicable to low count rates, were used to
demonstrate droplet clustering on finescale. The results
show striking pattern of deviations from the Poissonian
statistics.

7 Note that the result } m2 applies more generally than would2s n

seem from this derivation. Indeed, Eq. (6) is completely model in-
dependent. On the other hand, the entire family of two-parameter G
distributions for n results in negative-binomial distributions of counts
(see Kostinski and Jameson 1997 for details), which, in turn, yield

5 m 1 Cm2, similar to (6). Hence, such models can be used with2s n

little loss of generality. Note that Eq. (10) in Kostinski and Jameson
(1997, p. 2178) contains a misprint: h should be replaced by m in
one of the sets of parentheses.
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We have also introduced a new connection between
super-Poissonian statistics and the pair correlation func-
tion h(l) via the relations (5) and (6). This relation al-
lows a direct measurement of the cloud texture (rep-
resented by the pair correlation function) from the data
obtained by the airborne cloud probes. This approach
is based on rather general methods of statistical physics.
For example, the correlation-fluctuation relations (5)
and (6) are model independent in the sense that the
super-Poissonian variance results from a mere presence
of correlations on some scale but is independent of the
functional form of h(l). The shape of h(l) is likely to
change from one cloud type to another, depend on par-
ticle size, etc., yet the result [Eq. (6)] still holds and
only the coefficient in the quadratic term varies. Fur-
thermore, the dependence of the excess variance on the
sampling volume is made explicit so that the effects of
changes in resolution can now be understood.

We have also suggested a remote sensing approach
to study cloud texture by resurrecting the idea of co-
herent scatter by droplets themselves and offered a more
complete interpretation of Bragg scatter that can explain
some recent observations in clouds. The basic idea is
that the random but nevertheless spatially correlated col-
lection of scatterers can be viewed as a superposition
of diffraction gratings, one of which is in resonance
with the incident radiation. Hence, the radar ends up
measuring the component of the Fourier transform of
the spatial correlation function of the cloud droplets at
its own wavelength. Measurements at many wave-
lengths from millimeters to meters and many angles
(bistatic radar) can then provide the needed information
about the texture remotely. An essential ingredient of
this idea is the relation (6), stating that particle con-
centration variance scales quadratically rather than lin-
early with the mean concentration.

The quadratic (rather than linear) dependence of the
number density variance on the mean density is likely
to have other important applications. For example, Pois-
sonian clouds yield Poissonian distribution of the num-
ber of collisions experienced by a droplet per unit time
(just like in the ideal gas of molecules). Super-Poisson-
ian variance, on the other hand, broadens the collision
distribution. This puts ‘‘lucky’’ drops moving through
patches of locally high droplet concentration and ex-
periencing more than the average number of collisions
early in their development, in a position to grow rela-
tively rapidly. The super-Poissonian fluctuations in the
number of collisions can greatly accelerate growth of
such lucky droplets and help explain the vexing problem
of rapid broadening of drop size spectra and appearance
of the first raindrops. Similarly, distribution in the num-
ber of collisions experienced by a photon going through
a non-Poissonian cloud also undergoes the super-Pois-
sonian broadening. This may yield greater transmission
as the ‘‘unlucky’’ photons undergoing no collisions are
more likely to do so in correlated than in Poissonian
clouds.

In addition, in this paper we explain previous obser-
vations of the apparent applicability of the exponential
clustering to droplet statistics using kinematic consid-
erations of turbulence. We have also argued the ubiquity
of the super-Poissonian statistics by the following rea-
soning (depicted in Fig. 1): patchiness (texture) by its
very definition implies spatial correlation of particle
counts in spatially separated volumes; this, in turn, im-
plies super-Poissonian variance via the relation (6).

But cloud patchiness is likely to be ubiquitous be-
cause at least two entirely different mechanisms can lead
to regions of preferential concentration in clouds. One
applies to particles with some inertia that fall through
random vorticity fields and tend to collect along eddy
boundaries and in regions of low vorticity and high
strain. The other route applies to passive tracers as well,
where turbulence begins to mix an initial blob of cloud
water and later produces exponential tails of local con-
centration probability density and yields Eqs. (15) and
(18).

In passing, we note that since exponential-type clus-
tering yields variance of concentration which is qua-
dratic in mean liquid water content (LWC), one would
expect standard deviation of LWC to correlate strongly
with the mean LWC, similar to the distribution of rain
rates (Jameson and Kostinski 1999). Finally, in the two
appendices we discuss stationarity of data and the effects
of clustering on sampling strategies. In particular, it is
shown in appendix B that even such a harmless pro-
cedure as division of raw particle counts by a number
of liters in a sampling volume (to infer concentration)
may be misleading with respect to testing the Poissonian
character of fluctuations.
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APPENDIX A

An Example of Statistically Homogeneous Data
with Super-Poissonian Variance

It is often difficult to differentiate between data as-
sociated with a correlated stationary process from that
of an inhomogeneous random process when record du-
ration is limited. For example, a symptom of this am-
biguity is the characteristic correlation distance being
comparable to the length of the entire data record length.
Wunsch (1999, p. 245) recently stated the following.

But purely random processes, particularly those that have
even mildly ‘red’ spectra, have a behavior that comes as
a surprise to many, and there is a great risk of misinter-
pretation. That is, the purely random behavior of a rig-
orously stationary process often appears visually inter-
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FIG. A1. The number of 50-mm diameter droplets per 10-m path
increment (corresponding to the sampling volume of about 10 mm2

3 10 m 5 100 cm3) observed along a 2.75-km path in a cumulus
cloud. The dashed line denotes the mean value over the entire interval.

FIG. A2. The ensemble average (over eight groups) of the mean
number (computed for each group of 34 10-m path increments) as
well as the ensemble standard deviation (s) along the entire interval
in Fig. A1. The constancy of s and n indicates wide-sense homo-
geneity over the entire interval. Also note that the observed average
variance is over four times the mean, i.e., over four times that ex-
pected for a Poisson distribution.

FIG. A3. The autocovariance function for the 10-m counts of 50-
mm diameter droplets along the path in Fig. A1. Also shown is the
autocovariance function for the ‘‘equivalent’’ (same mean and number
of points) Poisson sequence of uncorrelated counts. Note the simi-
larity to the Poisson sequence and, hence, the lack of correlation in
the data on scales of 10 m and longer.

esting, particularly over brief time intervals, and creates
the temptation to interpret it as arising from specific and
exciting deterministic causes.

Fortunately, in the case of the data examined in this
paper such differentiation is possible because the cor-
relation length is much smaller than the duration of the
entire data record. In fact, the purpose of this appendix
is to present examples of statistically stationary data
segments that are nevertheless super-Poissonian.

For example, Fig. A1 shows a 2.7-km segment of the
50-mm particle count series corresponding to 10-m in-
tervals. We then divide the segment into eight statisti-
cally independent groups, each containing 34 data
points. The mean and standard deviations are plotted
for each subinterval. Since the observed coherence
length is less than 10 m, all 34 samples in each group
are independent. The error bars for the mean correspond
to one standard deviation computed using the variance
measured for each separate group, while the error bars
for the standard deviation are calculated using the var-
iance of the variance of the eight sets of 34 points. In
Fig. A2, the solid line error bars correspond to the av-
erage while the dashed lines correspond to the standard
deviation.

Figure A2 shows the results and compares it with the
mean and variance of the entire set (‘‘global’’ mean and
variance.) The series is well approximated as a wide-
sense stationary random process because the differences
among the means and the variances are within the error
bars. Hence, no statistically meaningful trends in either
the variance or the mean appear in these data.

Furthermore, Fig. A3 shows that there is little if any
correlation among particle counts for volumes separated

by 10 m or more. We conclude this because of the sim-
ilarity of the actual pair correlation function with the
one of the Poisson (uncorrelated) simulation with the
same parameters as those of the data. Yet, the variance
of the data is 4.25 times the equivalent Poisson variance.
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FIG. A4. The histogram of 10-m counts of 50-mm-diameter drops
is compared to the equivalent Poisson distribution having the same
mean as observed. Note the increased frequencies at both lower and
higher counts compared to a Poisson distribution, indicating droplet
clustering and significant deviations from Poisson statistics. Also note
that the observed variance s 2 is over four times larger than the Pois-
son variance ( ).2s P

FIG. B1. Illustration of a simple Monte Carlo simulation of two
clouds: a homogeneous Poissonian cloud, and a patchy one (con-
sisting of 600 patches whose concentrations are exponentially dis-
tributed as described by the geometric model of section 6). Each
circle in this figure represents 10 drops while each line with the boxes
represents the distance traversed for each sampling volume with each
box corresponding to a count reaching 100 droplets.

This is consistent with the histograms presented in Fig.
A4, which again show larger spread of the data as com-
pared with the equivalent Poisson simulation. All of this
is in agreement with the physics of the fluctuation-cor-
relation theorem (section 3). Indeed, the 10-m sampling
interval contains strong correlations occurring on, say,
10-cm scale. Hence, these contribute to the super-Pois-
sonian variance. Yet by the time we get to 10 m or
longer separations, the correlations decay to insignifi-
cant levels.

APPENDIX B

On the Importance of Fixed Sampling Volume in
Detecting Super-Poissonian Fluctuations with

Cloud Probes

Cloud probes often record droplet arrival times (e.g.,
Baker 1992). The distribution of the number of droplets
per unit volume, p(n), can be obtained from such data
but the sampling volume varies unless care is taken to
divide data into equal intervals. The concentration, for
example, number of particles per liter is often obtained
by adding up all the particles in a larger volume and
dividing the total by the number of liters (denoted as
a) in a variable sampling volume V. While the vari-
ability of sampling volumes has been discussed by many
authors, the specific context of super-Poissonian fluc-
tuations introduces additional concerns. The purpose of
this appendix is simply to alert the reader that even the
seemingly harmless operation of dividing the raw par-

ticle counts by a to infer the concentration is misleading
when the sampling volume varies.

Let the true distribution be p(n). Multiplying each
count by a then causes the mean of the new distribution
to increase by a but its variance to increase by a2 (sim-
ply by the definition of variance). This means that the
variance-to-mean ratio increases by a factor of a. This
ratio is unity for the Poisson process and the relation

5 n is not invariant under the operation of multi-2s n

plication or division. Hence, this can lead to spurious
non-Poissonian statistics and vice versa, underestimate
deviations from Poissonian statistics when dividing raw
counts by a . 1. Furthermore, because of the relation
(5), the division by a2 causes an erroneous appearance
of concentration correlations.

To illustrate a possible bias, consider a hypothetical
case of the sampling volume being governed by the
buffer dumps driven in large part by when the images
‘‘fill up’’ the buffer. The data collection then ceases, the
buffer is dumped, and the process repeats itself. For
example, sampling volumes of actual data reported here
varied between 0.5 and 3 l but concentration was re-
corded as number of droplets per liter.

In order to gain basic understanding of the effects of
such operation on the distribution of sampling volumes
in patchy clouds, we used the simplest possible Monte
Carlo simulation which captures the ‘‘buffer’’ problem.
We confined ourselves to a one-dimensional case and
prepared two clouds: a homogeneous (Poissonian)
cloud, and a patchy one (consisting of 600 patches
whose concentrations are exponentially distributed as
described in section 6). The clouds are illustrated in Fig.
B1. We then imposed a 100 droplet ‘‘buffer constraint’’
on our probe and let it traverse both clouds. Each circle
in the figure represents 10 drops while each line with
the boxes represents the distance traversed for each sam-
pling volume, with each box corresponding to a count
reaching 100 droplets.



914 VOLUME 57J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S

FIG. B2. Sampling volume distribution results of the Monte Carlo
simulation of a ‘‘buffer-limited’’ cloud probe pass through clouds of
Fig. B1. A 100-droplet buffer constraint is imposed on the buffer.
The agreement between the patchy (geometric) case and the data is
rather striking. Broad distributions of sampling volumes are indicative
of small-scale variability (patchiness) of clouds.

The results are illustrated and compared to actual data
in Fig. B2. The agreement between the patchy (geo-
metric) case and the data is striking (especially given
the simplicity of the simulation). Note that the very fact
that sampling volumes have a broad distribution is in-
dicative of small-scale variability (patchiness) of clouds.
Also note that high-concentration patches are sampled
more often than the relatively sparse regions or voids.
Therefore, the usual arithmetic (sample) mean estimator
of concentration acquires a bias that approaches a factor
of 2 in the ‘‘binary’’ case of alternating patches and
empty space.

Finally, one should also reconsider the commonly
used 1/ K convergence rule, where K is the numberÏ
of realizations or the number of individual experiments.
Indeed, consider convergence rates toward the average
concentration field for the cases of Poissonian and
patchy (geometric) distributions. Let m represent the
global mean number of droplets and let ki be an ith
realization of a randomly varying droplet count. Then,
once K small volume measurements have been accu-
mulated, we form the usual arithmetic mean estimate of
m as

K1
m̂ 5 k . (B1)O iK i51

By the central limit theorem, provided our measure-
ments are statistically independent, the estimate (19) of
mi(Di) converges to the true value as

2spdf2s } , (B2)est K

where and are the estimator and the pdf vari-2 2s sest pdf

ances, respectively.
The above formula yields two rather different results

for the cases of Poissonian and patchy clouds. In the
former case, the } m, while in the latter case, the2s pdf

pdf is approximately geometric and } m2. There-2s pdf

fore, the 1/ m rule for /m should be viewed with2sÏ pdf

caution in the patchy case; that is, increasing the mean
number of droplets per sampling volume is not partic-
ularly helpful. More importantly, the patchy case im-
poses a more stringent constraint on the collection of
statistically independent samples because one has to tra-
verse large distances to ensure that many patches have
been sampled. Hence, the 1/ K convergence of theÏ
estimator (19) is to be viewed with caution because K
must be interpreted as an ‘‘effective’’ number of inde-
pendent samples (spatially decorrelated patches).
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