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Abstract. The complete 3-uniform hypergraph of order v, denoted byK
(3)
v ,

has a set V of size v as its vertex set and the set of all 3-element subsets
of V as its edge set. If v ≡ 0 (mod 3), then the edge set of K

(3)
v contains

a collection I of v/3 vertex-disjoint edges, called a 1-factor. Let K
(3)
v − I

denote any hypergraph isomorphic to the one obtained by removing the

edge set of a 1-factor from that of K
(3)
v . For m > 3, a 3-uniform tight m-

cycle, denoted TCm, is any hypergraph isomorphic to the one with vertex
set Zm and edge set

{
{i, i + 1, i + 2} : i ∈ Zm

}
. Necessary and sufficient

conditions for the existence of TC6- and TC9-decompositions of K
(3)
v have

previously been found. We show that there exists a TC6-decomposition of

K
(3)
v − I if and only if v ≡ 0, 3, or 6 (mod 12) and that there exists a TC9-

decomposition of K
(3)
v − I if and only if v ≡ 0 (mod 3) and v ̸= 6. Results

similar to ours were obtained independently and simultaneously by Keszler

and Tuza (Spectrum of 3-uniform 6- and 9-cycle systems over K
(3)
v − I,

arXiv:2212.11058.)
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