Stirling permutations for partially ordered sets

Richard A. Brualdi* and Geir Dahl

Abstract

We generalize the notion of a Stirling permutation of the multiset $\{1,1,2,2, \ldots, n, n\}$ based on the usual linear order of the integers $\{1,2, \ldots, n\}$ to any finite partially ordered set \mathcal{P}, a \mathcal{P}-Stirling permutation. We give an algorithmic characterization of \mathcal{P}-Stirling permutations. A partially ordered set determines a transitive directed graph, and a further extension of Stirling permutations to directed graphs is discussed.

References

[1] J.A. Bondy and U.S.R. Murty, Graph theory, Graduate Texts in Mathematics, vol. 244 Springer, New York, 2008. https://doi.or g/10.1007/978-1-84628-970-5.
[2] R.A. Brualdi, Stirling pairs of permutations, Graphs Combin. 36(4) (2020), 1145-1162.
[3] R.A. Brualdi and G. Dahl, Multipermutations and stirling multipermutations, Submitted (2022), .
[4] R. Diestel, Graph theory, Graduate Texts in Mathematics, vol. 173 fourth edn., Springer, Heidelberg, 2010. https://doi.org/10. 100 7/978-3-642-14279-6.
[5] I. Gessel and R.P. Stanley, Stirling polynomials, J. Combinatorial Theory Ser. A 24(1) (1978), 24-33.
[6] S. Janson, Plane recursive trees, stirling permutations and an urn model, in Fifth Colloquium on Mathematics and Computer Science, Kiel, Germany, (2008), hal-01194667, 1126-1142. https://inria.ha l.science/hal-01194667/document.

[^0]
[^0]: *Corresponding author: brualdi@math.wisc.edu

