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Abstract. A decomposition G ={G0, G1, . . . , Gn−1} of a graph Kn,n is a
partition of the edge set of Kn,n into edge disjoint subgraphs G0, . . . , Gn−1

(called pages) in which all Gi, i ∈ {0, 1, . . . , n − 1} are isomorphic to a
specific graph G, and G is called a decomposition of Kn,n by G. A family
of decompositions {G0,G1, . . . ,Gk−1} of a complete bipartite graph Kn,n is
a collection of k mutually orthogonal graph squares (MOGS) if Gi and Gj

are orthogonal for all i, j ∈ {0, 1, . . . , k − 1} and i ̸= j. For any subgraph
G of Kn,n with n edges, N(n,G) represents the greatest number k in the
largest feasible set {G0,G1, . . . ,Gk−1} of (MOGS) of Kn,n by G. In this
paper, we present several novel results pertaining to mutually orthogonal
graph squares of the complete bipartite graph. Our focus lies in exploring
starter functions of (MOGS), as well as utilizing the technique of Kronecker
product of (MOGS) to construct new mutually orthogonal sets of disjoint
union stars.
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