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Abstract. A decomposition G ={Gy,G1,...,Gp_1} of a graph K,, ,, is a
partition of the edge set of K, , into edge disjoint subgraphs Gy, ...,Gnr—1
(called pages) in which all G;, i € {0,1,...,n — 1} are isomorphic to a
specific graph G, and G is called a decomposition of K, , by G. A family
of decompositions {Go,G1,...,Gk—1} of a complete bipartite graph K, ,, is
a collection of k mutually orthogonal graph squares (M0OGS) if G; and G;
are orthogonal for all 4,5 € {0,1,...,k — 1} and 7 # j. For any subgraph
G of K, , with n edges, N(n,G) represents the greatest number k in the
largest feasible set {Go, G1,...,Gk—1} of MOGS of K, ,, by G. In this paper,
we present several novel results pertaining to mutually orthogonal graph
squares of the complete bipartite graph. Our focus lies in exploring starter
functions of MOGS, as well as utilizing the technique of Kronecker product
of MOGS to construct new mutually orthogonal sets of disjoint union stars.
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