Mixed hexagon systems

Robert Gardner* and Simeon Ignace

Dedication. In memory of the late, great Dean Hoffman of Auburn University. He was the Master's thesis advisor and a mentor for the first author. He once commented to the first author that mixed triple systems were "a cute idea!"

Abstract. A decomposition of the complete mixed graph on v vertices into a partial orientation of the 6 -cycle with two edges and four arcs is a mixed hexagon system of order v. Necessary and sufficient conditions for the existence of a mixed hexagon system of order v are given for each of the 25 such partial orientations of the 6 -cycle.

References

[1] B. Alspach and H. Gavlas, Cycle decompositions of K_{n} and $K_{n}-I$, J. Combin. Theory Ser. B, 81 (2001), 77-99.
[2] M. Buratti, Rotational k-cycle systems of order $v<3 k$; another proof of the existence of odd cycle systems, J. Combin. Des., 11(6) (2003), 433-441.
[3] R. Gardner, Triple systems from mixed graphs, Bull. Inst. Combin. Appl., 27 (1999), 95-100.
[4] F. Harary and E. Palmer, Enumeration of mixed graphs, Proc. Amer. Math. Soc., 17(3) (1966), 682-687.
[5] S. Hung and N. Mendelsohn, Directed triple systems, J. Combin. Theory Ser. A, 14 (1973), 310-318.
[6] C.C. Lindner and C.A. Rodger, Design Theory Second Edition, Discrete Mathematics and Its Applications Series, CRC Press (2008).

* Corresponding author: gardnerr@etsu.edu
[7] N. Mendelsohn, A natural generalization of Steiner triple systems, Computers in Number Theory, eds. A.O. Atkin and B. Birch, Academic Press, London, 1971.
[8] M. Meszka and A. Rosa, Cyclic and rotational six-cycle systems, Bull. Inst. Combin. Appl., 87 (2019), 41-46.
[9] M. Meszka and A. Rosa, Six-cycle systems, Math. Slovaca, 71(3) (2021), 543-564.
[10] A. Rosa, On cyclic decompositions of the complete graph into ($4 m+2$)gons, Mat.-Fyz. Časopis SAV, 16 (1966), 349-352.
[11] A. Rosa and C. Huang, Another class of balanced graph designs: Balanced circuit designs, Discrete Math., 12 (1975), 269-293.
[12] M. Šajna, Cycle decompositions III: Complete graphs and fixed length cycles, J. Combin. Des., 10(1) (2002), 27-78.

