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Abstract. Let G = (V,E) be a finite, simple, undirected graph without
isolated vertices. A bijective map f : V ∪ E → {1, 2, . . . , |V |+ |E|} gives a
labeling of the vertices and edges of G. With each vertex v, we associate a
weight w(v) as the sum of all labels of vertices that are neighbors of v (not
including v), together with the labels of edges incident at v. The labeling
given by f is called total local antimagic if adjacent vertices have distinct
weights. Furthermore, f is called a super vertex total local antimagic label-
ing if vertices have labels 1, 2, . . . , |V |. Similarly, f is called a super edge
total local antimagic labeling if the edges have labels 1, 2, . . . , |E|. The la-
beling f induces a proper vertex coloring of G. The super vertex (edge) total
local antimagic chromatic number of a graph G is the minimum number of
colors used over all colorings of G induced by the super vertex (edge) total
local antimagic labeling of G. In this paper, we discuss these parameters
for some families of graphs.
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