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Abstract. Let G = (V,E) be a finite, simple, undirected graph without
isolated vertices. A bijective map f ∶ V ∪ E → {1,2, . . . , ∣V ∣ + ∣E∣} gives a
labeling of the vertices and edges of G. With each vertex v, we associate a
weight w(v) as the sum of all labels of vertices that are neighbors of v (not
including v), together with the labels of edges incident at v. The labeling
given by f is called total local antimagic if adjacent vertices have distinct
weights. Furthermore, f is called super vertex total local antimagic labeling
if vertices have labels 1,2, . . . , ∣V ∣. Similarly, f is called super edge total
local antimagic labeling if the edges have labels 1,2, . . . , ∣E∣. The labeling
f induces a proper vertex coloring of G. The super vertex (edge) total local
antimagic chromatic number of a graph G is the minimum number of colors
used over all colorings of G induced by the super vertex (edge) total local
antimagic labeling of G. In this paper, we discuss these parameters for
some families of graphs.

References

[1] N. Alon, G. Kaplan, A. Lev, Y. Roditty and R. Yuster, Dense graphs are
antimagic, J. Graph Theory 47 (2004), 297–309.

[2] S. Arumugam, K. Premalatha, M. Bac̆a and A. Semaničová-Feňovč́ıková,
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