A combinatorial proof for the Fibonacci dying rabbits problem

Roberto De Prisco*

Abstract

We consider the generalized Fibonacci counting problem with rabbits that become fertile at age f and die at age d, with $1 \leq f \leq d$, and d finite or infinite. We provide a combinatorial proof of a recurrence relation for the number of rabbits at each generation. The proof is based exclusively on a counting argument and uses only elementary mathematics. The recurrence relation generalizes both the original Fibonacci sequence, and several other Fibonacci-related sequences, such as the Padovan sequence, and the Tribonacci, Tetranacci, and alike sequences.

References

[1] Brother U. Alfred, Exploring Fibonacci numbers, Fibonacci Quart., 1(1) (1963), 57-63.
[2] Brother U. Alfred, Dying rabbit problem revive, Fibonacci Quart., 1(4) (1963), 53-56.
[3] R.M. Capocelli, and P. Cull, Generalized Fibonacci Numbers are Rounded Powers, in "Applications of Fibonacci Numbers, Vol. 3", G.E. Bergum, A.N. Philippou and A.F. Horadam, eds., Springer, Dordrecht, (1990), 57-62.
[4] J.H.E. Cohn, Letter to the editor, Fibonacci Quart., 2(2) (1964), p. 108.
[5] V.E. Hoggatt, Generalized rabbits for generalized Fibonacci numbers. Fibonacci Quart., 7(5) (1969), 482-487.
[6] V.E. Hoggatt and D.A. Lind, The dying rabbit problem, Fibonacci Quart., 7(5) (1969), 482-487.

[^0]A combinatorial proof for the Fibonacci dying rabbits PROBLEM
[7] T. Koshy,Fibonacci and Lucas Numbers with Applications, John Wiley and Sons, NY, 2001.
[8] M.D. Miller, On Generalized Fibonacci Numbers, Amer. Math. Monthly, 78(10) (1971), 1108-1109.
[9] T. Noe and T. Piezas III and E. Weisstein, Webpage: Fibonacci n-step number, https://mathworld.wolfram.com/Fibonaccin-StepNumbe r.html, Accessed: 2024-04-06.
[10] S. Vajda, Fibonacci \& Lucas Numbers, and the Golden Section: Theory and Applications, John Wiley and Sons, NY, 2001.
[11] A.M. Oller-Marcén, The dying rabbit problem revisited, Integers, 9 (2009), 129-138.
[12] The On-Line Encyclopedia of Integer Sequences. https://oeis.org/, Accessed: 2024-04-06.

[^0]: *Corresponding author: robdep@unisa.it

