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Abstract. We give results concerning two problems on the recently intro-
duced flip colourings of graphs. For positive integers b, r with b < r, we say
that a (b + r)-regular graph is a (b, r)-flip graph if there exists a red/blue
edge-colouring such that the red degree of every vertex is r, the blue de-
gree of every vertex is b, yet in the closed neighbourhood of every vertex
there are more blue edges than red edges. We prove that for integers b, r
with 4 ≤ b < r < b + 2

⌊
b+2
6

⌋
2 small constructions of (b, r)-flip graphs on

Θ(b+ r) vertices are possible. Furthermore, we prove that there exist k-flip
sequences (a1, . . . , ak) where k > 4, such that ak can be arbitrarily large
whilst ai is constant for 1 ≤ i < k

4 .

1 Introduction
Flip colourings of graphs were introduced in [?caro2023flip], as yet an-
other example of local versus global phenomena studied in graph theory,
such as [?ABDULLAH20151,?caro2018effect,?FISHBURN1986165]. For pos-
itive integers b, r with b < r, we say that a (b+r)-regular graph is a (b, r)-flip
graph if there exists an edge-colouring f : E(G) → {blue, red} satisfying the
following:

(i) The subgraphs induced by the blue and red edges are b- and r-regular,
respectively, resulting in a global majority ordering since b < r, where
across the entire graph ‘red’ wins against ‘blue’.

(ii) On the other hand, for every vertex v, the number of blue edges in the
closed neighbourhood of v is greater than the number of red edges,
resulting in a locally opposite majority ordering where locally ‘blue’
wins against ‘red’.

We term such a graph as a (b, r)-flip graph due to the local versus global
majority flip they demonstrate.
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Several open problems concerning flip colourings were posed in [?caro2023flip],
some of which we consider here, whilst others have been studied in [?sheffield2025].
Before introducing the general problem for k ≥ 2 colours, we establish some
notational conventions.

The open neighbourhood NG(v) is the set of neighbours of a vertex v in a
graph G, and the closed neighbourhood NG[v] is NG(v) ∪ {v}. Let k ∈ N
and let f : E(G) → {1, . . . , k} be an edge-colouring of G. For 1 ≤ j ≤ k,
we also establish the following notation:

(i) Given a subset S of V (G), EG
j (S) is the set of edges coloured j in the

vertex-induced subgraph of G by S, and eGj (S) = |EG
j (S)|.

(ii) For a vertex v, let eGj [v] = eGj
(
NG[v]

)
and eGj (v) = eGj

(
NG(v)

)
.

(iii) For a vertex v, degj(v) is the number of edges incident to v coloured j.

When there is no ambiguity, we simplify our notation by removing any
symbolic reference to the graph.

We are interested in the following problem: Given k ≥ 2, a d-regular graph
G, and an increasing positive integer sequence a1 < a2 < · · · < ak such
that d =

∑k
j=1 aj , does there exist an edge-colouring on k colours such

that

(i) the set of edges coloured j spans an aj-regular subgraph of G, namely
degj(v) = aj for every v ∈ V , and

(ii) for every vertex v ∈ V , ek[v] < ek−1[v] < · · · < e1[v].

If such an edge-colouring exists, then G is said to be an (a1, . . . , ak)-flip
graph, or more simply a k-flip graph, and (a1, . . . , ak) is called a k-flip
sequence of G. An illustrative example is given in Figure 1.1.

The case when k = 2 is fully characterised by the following theorem.

Theorem 1.1 (Caro et al. [?caro2023flip, Theorem 3.1]). Let r, b ∈ N. If
3 ≤ b < r ≤

(
b+1
2

)
− 1, then there exists a (b, r)-flip graph, and both the

upper and lower bounds are sharp.

Given a k-flip sequence (a1, . . . , ak), a problem of interest is that of find-
ing the smallest order h(a1, . . . , ak) of a graph realising it. In the case
when k = 2, the following theorem gives the best known upper bound on
h(b, r).
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Figure 1.1: Smallest known (3, 4)-flip graph (on the left), with the subgraph
induced by the closed neighbourhood of any vertex v illustrated on the
right. This is a (3, 4)-flip graph since: degblue(v) = 3 < 4 = degred(v) but
eblue[v] = 7 > 6 = ered(v).

Theorem 1.2 (Caro et al. [?caro2023flip, Corollary 3.6]). Let b, r ∈ N
such that

3 ≤ b < r ≤
(
b+ 1

2

)
− 1.

Then,

h(b, r) ≤ 2

(
r + b+ 1−

⌊
5 +

√
1 + 8(r − b)

2

⌋)⌊
5 +

√
1 + 8(r − b)

2

⌋
.

Smaller constructions for certain 2-flip sequences, such as (3, 4), than those
given by this upper bound are known. For 4 ≤ b < r < b + 2

⌊
b+2
6

⌋
2, we

shall improve this to h(b, r) ≤ 16
(
2 +

⌊
r
2

⌋
+
⌊
b+2
2

⌋
− 2
⌊
b+2
6

⌋)
For three colours, as in the case for two colours (Theorem 1.1), the largest
colour-degree is quadratically bound in terms of the smallest.

Theorem 1.3 (Caro et al. [?caro2023flip, Theorem 4.1]). If (a1, a2, a3) is
a 3-flip sequence, then

a3 < 2(a1)
2.

However, for four or more colours, it is known that no such relationship
exists, as highlighted in the following.
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Theorem 1.4 (Caro et al. [?caro2023flip, Theorem 4.3]). Let k ∈ N with
k > 3. Then there is some constant m = m(k) ∈ N such that for all N ∈ N
there exists a k-flip sequence (a1, a2, . . . , ak) where a1 = m and ak > N .

Let q(k) be the largest integer satisfying q(k) < k such that there exists
some h(k) ∈ N and for all N ∈ N there is a k-flip sequence (a1, . . . , ak)
where aq(k) = h(k) and ak > N . In other words, q(k) is the largest index
in a k-flip sequence such that aq(k) can be some fixed value h(k), but qk
can be arbitrarily large. By Theorem 1.4 we establish that q(k) ≥ 1 for all
k > 3. Our contribution shall be that

max
{
1,
⌈
k
4

⌉
− 1
}
≤ q(k) <

{
k
3 if k ≡ 0 (mod 3),⌈
k
2

⌉
otherwise,

for k > 3.

Two foundational concepts employed heavily throughout this paper are
Cayley graphs and sum-free sets, which we introduce next. Let Γ be a
group. We denote the identity of Γ by 1Γ. All groups considered are
assumed to be finite. We use the standard notation Zn for the group of
integers under addition modulo n.

Let S be a subset of Γ such that S is inverse-closed and does not contain
the identity. The Cayley graph Cay (Γ;S) has vertex set Γ and edge set{
{g, gs} : s ∈ S, g ∈ Γ

}
. The set S is termed as the connecting set.

Let Γ be an Abelian group and let A,B ⊆ Γ. The sum-set A + B is
the set {a + b : a ∈ A, b ∈ B}. By 2A we denote the set A + A whilst
by A−1 we denote the set of inverses of A. We say that A is sum-free if
2A ∩A = ∅.

In Section 2 we outline a number of properties of products and packings
of edge-coloured graphs. Section 3 is dedicated to improving the upper
bound on h(b, r), while Section 4 presents lower and upper bounds on q(k)
for k ≥ 4. In Section 5 we give some concluding remarks and further open
problems to those in [?caro2023flip].

2 New edge-coloured graphs from old
In this section we briefly outline the toolset required, looking at a number of
graph operations and how they affect edge-colourings. Namely, we consider
the Cartesian and strong products of graphs, as well as the packing of
graphs.
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u

v

⊠
−−−−→ w

Figure 2.1: Illustration of Lemma 2.2, with the closed neighbourhood of
w = (u, v) in K3 ⊠ P3 highlighted.

2.1 Products of edge-coloured graphs
We begin by recalling the definition of the strong product of two graphs G
and H, and in particular how an edge-colouring of G⊠H is inherited from
edge-colourings of its factors.

Definition 2.1 (Strong product). The strong product G⊠H of two graphs
G and H is the graph such that V (G⊠H) = V (G)× V (H) and such that
there is an edge {(u, v), (u′, v′)} in G ⊠H if and only if either u = u′ and
v ∼ v′ in H, or v = v′ and u ∼ u′ in G, or u ∼ u′ in G and v ∼ v′ in H.

We extend the edge-colourings of G and H to an edge-colouring of G⊠H
as follows. Consider the edge e = {(u, v), (u′, v′)} in G⊠H. If u = u′, then
e inherits the colouring of the edge {v, v′} in H; otherwise if u ̸= u′, the
colouring of the edge {v, v′} in G is inherited. This colouring inheritance
is illustrated in Figure 2.1, with its properties summarised in Lemma 2.2.

Lemma 2.2. Let G and H be edge-coloured from {1, . . . , k}. Then in the
coloured strong product G⊠H, for any 1 ≤ j ≤ k and (u, v) ∈ V (G⊠H),

(i) degj
(
(u, v)

)
= degHj (v) + degGj (u)

(
1 + degH(v)

)
,

(ii) ej
[
(u, v)

]
= eHj [v]

(
1+degG(u)

)
+ eGj [u]

(
1+degH(v)+2

∑k
i=1 e

H
i [v]

)
.

Another useful product is the Cartesian product, which we recall below.

Definition 2.3 (Cartesian product). The Cartesian product G □ H of the
graphs G and H is the graph such that V (G □ H) = V (G) × V (H) and
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v

□
−−−−→ w

Figure 2.2: Illustration of Lemma 2.4, with the closed neighbourhood of
w = (u, v) in K3 □ P3 highlighted.

there is an edge {(u, v), (u′, v′)} in G □ H if and only if either u = u′ and
v ∼ v′ in H or v = v′ and u ∼ u′ in G.

We extend the edge-colourings of G and H to an edge-colouring of G □ H
as follows. Consider the edge e = {(u, v), (u′, v′)} in G □ H. If u = u′, then
e inherits the colouring of the edge {v, v′} in H; otherwise if v = v′, the
colouring of the edge {u, u′} in G is inherited. This colouring inheritance
is illustrated in Figure 2.2, with its properties summarised in Lemma 2.4.

Lemma 2.4. Let G and H be edge-coloured from {1, . . . , k}. Then in the
coloured Cartesian product G □ H, for any 1 ≤ j ≤ k and (u, v) ∈
V (G □ H),

i. degj
(
(u, v)

)
= degGj (u) + degHj (v),

ii. ej
[
(u, v)

]
= eGj [u] + eHj [v].

2.2 Packing of edge-coloured graphs
In this section we consider, in particular, the packing of edge-coloured Cay-
ley graphs. We first formally define graph packing.

Definition 2.5 (Packing). Two graphs G and H are said to pack if there
exists bijections g : V (G) → {1, . . . , n} and h : V (H) → {1, . . . , n} such
that the images of E(G) and E(H) under g and h, respectively, do not
intersect.

The packing of G and H is the graph with vertex set {1, . . . , n} and edge set
being union of the images of E(G) and E(H) under g and h, respectively.
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An edge-colouring is naturally inherited by a packing of G and H, by keep-
ing the original colour of every single edge. Note that by the definition of
a packing, the edge-colouring is well-defined.

Counting the colour-degree of every vertex in a packing of G and H, in terms
of the colour-degrees of G and H, is straight-forward; however, counting
the coloured closed neighbourhood sizes is more difficult. In certain cases,
such as when G and H are monochromatically coloured Cayley graphs
on an Abelian group, we can do such counting. This is summarised in
Proposition 2.6.

Let S and T be two disjoint inverse-closed subsets of Γ not containing
1Γ. Consider the two Cayley graphs G = Cay (Γ;S) and H = Cay (Γ;T ).
Then the Cayley graph Cay (Γ;S ∪ T ) is a packing of G and H. Cayley
graphs enjoy a number of properties, most notably that they are vertex-
transitive.

Proposition 2.6. Let Γ be an Abelian group and let R,B be disjoint inverse-
closed subsets of Γ which do not contain 1Γ. Let G = Cay (Γ;B) and
H = Cay (Γ;R) be monochromatically edge-coloured using colours 1 and 2,
respectively. Then in Cay (Γ;B ∪R), for v ∈ Γ,

(i) deg1(v) = degG(v) and deg2(v) = degH(v);

(ii) e1[v]− e2[v] =
(
eG1 [v]− eH2 [v]

)
+
(
eH2
(
NG(v)

)
− eG1

(
NH(v)

))
;

(iii) if (R+B) ∩R = ∅ and eG1 [v] > eH2 [v], then e1[v] > e2[v].

Proof. It suffices to consider a single vertex, say 1Γ, by virtue of the vertex-
transitivity of Cayley graphs. Note that B = NG(1Γ) and R = NH(1Γ).
More so, since R and B are disjoint, the edge-colouring of the union is
well-defined and N(1Γ) = B ∪̇ R. Clearly all the edges incident to 1Γ
are incident to 1Γ in either G or H, and therefore deg1(v) = degG(v) and
deg2(v) = degH(v). We now count the number of edges coloured 1 in
the subgraph induced by N(1Γ). We have three cases for an edge {u, v}
coloured 1:

1. Both u and v are in B, of which there are eG1 (B) such edges.

2. Both u and v are in R, of which there are eG1 (R) such edges.

3. The vertex u is in B, and the vertex v is in R. We show that the num-
ber of such edges is 2eH2 (B), i.e., twice the number of edges coloured
2 amongst the neighbours of 1Γ in G.
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1Γ

u = xv
x = uv−1

v
v−1

Figure 2.3: Illustration of the counting argument in the proof of Propo-
sition 2.6, where the red edge {u, x} between two blue neighbours of 1Γ
corresponds to two blue edges, each incident to a blue and red neighbour
of 1Γ.

Since {u, v} is coloured 1, then it is an edge in the Cayley graph G. There-
fore there is some x ∈ B such that u = xv. Since v−1 ∈ R, then {u, x} is
an edge in H. Hence x = uv−1, and since Γ is Abelian and u ∈ B, {x, v−1}
is an edge in G.

In other words, for every edge {u, x} in H, where u, x ∈ B and u = xv for
some v ∈ R, there are two edges {u, v} and {x, v−1} in G with one vertex in
R and one vertex in B. This counting argument is illustrated in Figure 2.3.
Hence, e1[1Γ] = eG1 [1Γ] + eG1 (R) + 2eH2 (B). Repeating the argument for
e2[1Γ] and subtracting, we get (ii) as required.

Now, suppose that (R + B) ∩ R = ∅ and eG1 [v] > eH2 [v]. Then given any
u ∈ R and v ∈ B, uv /∈ R and therefore {u, uv} is not an edge in the
subgraph of Cay (Γ;B ∪R) induced by R. In other words, this subgraph
has no edges coloured 1, and therefore eG1 (R) = 0. Therefore (iii) follows
from (ii).

3 Bounding h(b, r) through Cayley flip graphs
If we can construct Cayley graphs satisfying the conditions in Proposi-
tion 2.6(iii) and |B| < |R|, we can then construct a

(
|B|, |R|

)
-flip graph

(which in particular turns out to be another Cayley graph). Note that the
requirement e1[v] > e2[v] necessitates that |B| ≥ 3. Moreover, from the
proof of Proposition 2.6(iii), we have that in this case(

|B|+ 1

2

)
≥ eG1 [v] + eH2

(
NG[v]

)
> eH2 [v] ≥ |R|,
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and therefore the constraints of Theorem 1.1 are satisfied. In the proof of
the following theorem we demonstrate not only that such constructions are
feasible but also that they can be done with a small number of vertices.

Theorem 3.1. Let b, r ∈ N such that 4 ≤ b < r < b+ 2
⌊
b+2
6

⌋
2. Then,

h(b, r) ≤ 8λb,r

(
2 +

⌊
r

2

⌋
+

⌊
b+ 2

2

⌋
− 2

⌊
b+ 2

6

⌋)
where λb,r = max{1, (b mod 2) + (r mod 2)}.

A key step in our proof will be the choice of suitably large subsets of Zn

that are both inverse-closed and sum-free. Sum-free sets in Abelian groups
have been studied vastly and are of interest in additive combinatorics and
number theory, see [?Alon_Kleitman_1990,?GreenBen2005Ssia,?TaoVan].
We therefore begin with the following useful lemma.

Lemma 3.2. Let A0, B0 be non-empty disjoint integer intervals of
(
n
8 ,

n
4

)
in Zn, such that max(A0) < min(B0). Let B1 ⊆ B0 be an integer interval,
A = A0 ∪A−1

0 , and B = B0 ∪B−1
0 ∪ 2B1 ∪ 2B−1

1 . Then, (A+B)∩A = ∅.
Moreover if n is even,

(
A+

{
n
2

})
∩A = ∅, and furthermore if min(B1) ≥ 3n

16 ,
then

({
n
2

}
+B

)
∩A = ∅.

Proof. Since A0 and B0 are disjoint integer intervals of
(
n
8 ,

n
4

)
such that

max(A0) < min(B0), then there exist integers m, l,M,L such that n
8 <

m < l < L < M < n
4 , A0 = [m, l], and B0 = [L,M ]. Observe that the sets

A0, B0, 2B1 and their inverses are all disjoint, and in the case when n is
even, none include the involution n

2 .

Now, min
(
A0 + 2B−1

0

)
= (m− 2M) mod n > max(A0) and

max
(
A0 + 2B−1

0

)
= l − 2L < −l = min

(
A−1

0

)
.

Hence A0 < A0 + 2B−1
0 < A−1

0 , and therefore since B1 ⊆ B0, we have(
A0 + 2B−1

1

)
∩ A = ∅. A similar argument follows for every possible

summation, in order to obtain that (A+B) ∩A = ∅, as required.

Now suppose that n is even. Since A +
{

n
2

}
⊆
[
n
4 ,

3n
8

]
∪
[
5n
8 , 3n

4

]
then(

A+
{

n
2

})
∩A = ∅ as required. Also,

{
n
2

}
+B0∪B−1

0 ⊆
[
n
4 ,

3n
8

]
∪
[
5n
8 , 3n

4

]
.

Moreover, min
({

n
2

}
+ 2B−1

1

)
> 0. If min(B1) ≥ 3n

16 , then

max
({

n
2

}
+ 2B−1

1

)
= n

2 − 2min(B1) ≤ n
8
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T−1
0 T0

2T22T−1
2

R−1
0

R0

Figure 3.1: Illustration of the closed neighbourhood of 1 in the Cayley graph
construction for (b, r) = (6, 7) and n = 56 in the proof of Theorem 3.1, with
the choice of R0, T0 and T2 highlighted.

and consequently
({

n
2

}
+2B−1

1

)
∩A = ∅. By a similar argument we obtain

that
({

n
2

}
+2B1

)
∩A = ∅ and hence

({
n
2

}
+B

)
∩A = ∅, as required.

Proof of Theorem 3.1. Let n ∈ N such that

n = 8
(
2 +

⌊
r
2

⌋
+
⌊
b+2
2

⌋
− 2
⌊
b+2
6

⌋)
and consider Zn, the additive group modulo n. By this choice of n, the
interval

(
n
8 ,

n
4 r
)

has two disjoint integer intervals R0 and T0 of sizes
⌊
r
2

⌋
and⌊

b+2
2

⌋
− 2
⌊
b+2
6

⌋
, respectively. Choose these intervals such that max(R0) <

min(T0). Now,⌊
b+2
2

⌋
− 2
⌊
b+2
6

⌋
=
⌊
b+2
6

⌋
+
⌊
1
2

(
b+ 2− 6

⌊
b+2
6

⌋)⌋
=
⌊
b+2
6

⌋
+
⌊
(b+2) mod 6

2

⌋
,

and therefore T0 has at least
⌊
b+2
6

⌋
integers. By our choice of n, we can

choose T0 such that it has a sub-interval T2 of size
⌊
b+2
6

⌋
and min(T2) ≥ 3n

16 .

Define the sets R1 = R0 ∪̇R−1
0 and T1 = T0 ∪̇T−1

0 , which are inverse-closed
and sum-free. Define B1 = T1 ∪̇ 2T2 ∪̇ 2T−1

2 . Since T2 is an integer interval
and 2T2 is the sum-set of T2 with itself, then |2T2| = 2|T2| − 1. Moreover,
|T2| = |T−1

2 | and |T0| = |T−1
0 |. Therefore,

|T1|+ |2T2|+
∣∣2(T−1

2

)∣∣ = 2|T0|+ 4|T2| − 2

= 6
⌊
b+2
6

⌋
+ 2
⌊
(b+2) mod 6

2

⌋
− 2

and hence |B1| = b− (b mod 2).
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The sets R1 and B1 have even size, and we may need to add some involutions
to them to get the size equal to r and b, respectively. Three cases may arise:

1. Both r and b are even, and therefore |R1| = r and |B1| = b. In this
case let Γ = Zn, R = R1, and B = B1. In this case λb,r = 1.

2. Either r is odd or b is odd, in which case we let Γ = Zn. If r is odd,
we define R = R1 ∪ {n

2 } and B = B1. Else, if b is odd, we define
R = R1 and B = B1∪{n

2 }. Consequently, R and B are inverse-closed
and have size r and b, respectively. Moreover, R is sum-free. In this
case λb,r = 1.

3. Both r and b are odd, in which case we let Γ = Z2 × Zn. Define
B =

(
{0}×B1

)
∪
{
(0, n

2 )
}

and R =
(
{0}×R1

)
∪
{
(1, 0)

}
, noting that

(0, n
2 ) and (1, 0) are involutions in Z2 × Zn. Moreover, R is sum-free

by choice of R1 and by the properties of the direct product. In this
case λb,r = 2.

Consider H = Cay (Γ;R) coloured monochromatically using colour 2. Since
R is sum-free, then eH2 [v] = r = degH2 (v) for any v in Γ.

Now consider H = Cay (Γ;B) coloured monochromatically using colour 1.
For any v in Γ, degG1 (v) = b. Moreover, there are at least 2

⌊
b+2
6

⌋
2 edges

in the open neighbourhood of v, since the group is Abelian, and therefore
the

⌊
b+2
6

⌋
2 sums from T2 to 2T2, and from T−1

2 to 2T−1
2 , all contribute an

edge to the open neighbourhood. Hence,

eG1 [v] ≥ b+ 2
⌊
b+2
6

⌋2
> r = eH2 [v].

Finally, observe that by construction, as a consequence of Lemma 3.2 and
properties of the direct product, (R+B)∩R = ∅. By Proposition 2.6(iii),
Cay (Γ;R ∪B) is a (b, r)-flip graph, and by our choice of Γ we obtain the
bound on h(b, r).

It is worth comparing this bound to the one given in Theorem 1.2 (from
[?caro2023flip]), noting that the new bound offers a significant improve-
ment. This is illustrated in Figure 3.2, for fixed b and 1 < r − b <
2
⌊
b
6

⌋
2.

Observe, however, that the existing bound in Theorem 1.2 holds for a wider
range of values of b, suggesting that further work is to be done towards a
unified bound.
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Figure 3.2: Comparison of the bounds in Theorems 1.2 and 3.1, shown here
with marks △ and •, respectively, for b = 11 and b = 25 over the common
range for r between the two bounds.

4 Bounding q(k)

In this section we consider the problem in [?caro2023flip] on establishing
bounds on q(k) for k > 3,

max
{
1,
⌈
k
4

⌉
− 1
}
≤ q(k) <

{
k
3 if k ≡ 0 (mod 3),⌈
k
2

⌉
otherwise.

(1)

4.1 Upper bounds on q(k)

We begin by proving the upper bound in (1). The following ideas stem
from a communication by Caro [?caroPersonalComm].

Theorem 4.1. Let k ∈ N, k ≥ 2. Then q(k) <

{
k
3 if k ≡ 0 (mod 3),⌈
k
2

⌉
otherwise.

Proof. The cases k = 2 and k = 3 immediately follow from Theorems
1.1 and 1.3. Hence consider k ≥ 4. Let G be an (a1, . . . , ak)-flip graph.
Consider the case when k ≡ 0 (mod 3) and let p = k

3 . Re-colour the edges of
G such that the p colours p(j−1)+1, . . . , pj are coloured j for j ∈ {1, 2, 3}.
For j ∈ {1, 2, 3}, define bj =

∑s
i=1 a(i−1)s+j . Note that b1 < b2 < b3 by the

monotonicity of the k-flip sequence and the fact that each bj is a sum of
s terms.

Applying a similar argument to the coloured closed neighbourhood sizes,
one observes that G is a (b1, b2, b3)-flip graph.
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By Theorem 1.3, it follows that b3 ≤ 2(b1)
2 and hence ak ≤ 2k2(as)

2.
Therefore ak is bound in a k

3
, and hence q(k) < k

3 when k ≡ 0 (mod 3).

Otherwise, consider t =
⌈
k
2

⌉
. Let c1 =

∑t
i=1 ai and c2 =

∑k−t
i=1 at+i. Two

cases are possible: either 2t = k or 2t− 1 = k. In the case that 2t− 1 = k,
it need not necessarily be that case that c1 < c2. Indeed, suppose that
c1 ≥ c2. Then tat ≥ ak and hence ak is bounded in a⌈k/2⌉.

Consider the cases when 2t = k or 2t − 1 = k but c1 < c2. In both these
cases, by a similar argument to the case when k ≡ 0 (mod 3), we have that
G is a (c1, c2)-flip graph. By Theorem 1.1 it follows that c2 <

(
c1+1
2

)
, and

hence ak is quadratically bound in a⌈k/2⌉. It follows that q(k) <
⌈
k
2

⌉
.

4.2 Lower bounds on q(k)

In this section we prove the lower bound in (1). We first note the follow-
ing useful result on the existence of flipping intervals, which are realised
by flip graphs having a difference of 1 in the sequence of coloured closed
neighbourhood sizes. This will be a critical step in our proof of the lower
bound.

Theorem 4.2. Let q, b ∈ N such that q > 1, b ≥ 101 and⌊
1
4

(
b2 − 10b

3
2

)⌋
≥ q − 1.

Then [b, b + q − 1] is a flipping interval realised by a q-flip graph G with
ej [v]− ej+1[v] = 1 for all 1 ≤ j < q and v ∈ V (G).

Proof. This follows immediately from the construction in the proofs of The-
orem 5.2 and Corollary 5.3 of [?caro2023flip].

We next show that, if q-flip graphs satisfying particular properties exist,
then (a1, . . . , ak)-flip graphs exist for k > 4q, where ak can be arbitrarily
large whilst ai is constant for 1 ≤ i ≤ q.

Lemma 4.3. Let q, k ∈ N such that 1 < q < k
4 . Let D1, . . . , Dq ∈ N such

that Dq(k−4q) > 1+ ξq(q−1)+5
(
k−q
2

)
where ξ = max1≤j<q{Dj −Dj+1}.

If there exists a (a1, . . . , aq)-flip graph F such that for every v ∈ V (F ) and
1 ≤ j ≤ q, eFj [v] = Dj , then given any N ∈ N there exists a (a1, . . . , ak)-flip
graph for some aq+1, . . . , ak ∈ N where ak > N .
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Proof. Let Γ be a sufficiently large finite group such that Γ has k − q − 1
disjoint and inverse-closed subsets Sj where |Sj | = k−q−j for 1 ≤ j < k−q

and such that S =
⋃k−q−1

j=1 Sj is sum-free in Γ.

Consider K = Cay (Γ;S) with an edge-colouring such that the edges labelled
in Sj are coloured using q+ j. Hence for any v ∈ Γ, degKq+j(v) = k− q− j,
and by the sum-free condition on S, eKq+j [v] = k − q − j.

Now consider the coloured Cartesian product F □K, which is k−1 coloured
since F is coloured using 1, . . . , q and K is coloured using q + 1, . . . , k − 1.
By Lemma 2.4, for a given colour j the graph has colour-degree aj inherited
from F for 1 ≤ j ≤ q, and aj = k − j inherited from K when q < j < k.
Likewise, the number of edges coloured j in a closed neighbourhood is Dj

inherited from F for 1 ≤ j ≤ q and Dj = k − j inherited from K for
q < j < k.

Finally, note that F □ K is µ-regular with µ =
(
k−q
2

)
+
∑q

i=1 ai. Let t ∈ N
such that

t ≥
1 + µ+ 2

∑k
i=1 Di

(k − q)minq<i<k{Di −Di+1}

and let H be a ρ-regular bipartite graph with ρ = (k − q)t +
(
k−q
2

)
. For

1 ≤ j ≤ k − q, colour t+ j − 1 matchings of H using q + j.

Let G be the coloured product H⊠ (F □ K). By Lemma 2.2, for v ∈ V (G)
and 1 ≤ j ≤ k, the edge-colouring in G is such that

degj(v) =

{
aj 1 ≤ j ≤ q,

aj + (t+ i− q − 1)(1 + µ) q < j ≤ k,

and

ej [v] =

{
Dj(ρ+ 1) 1 ≤ j ≤ q,

Dj(ρ+ 1) + (t+ j − q − 1)
(
1 + µ+ 2

∑k
i=1 Di

)
q < j ≤ k.

We intend to show that G as constructed and edge-coloured is a k-flip
graph. Observe that for 1 ≤ j ≤ k, aj < 1 + µ. Hence for j = q we have
that

degq(v) = aq < 1 + µ < aq+1 + t(1 + µ) = degq+1(v),

and for j > q we have that degj+1(v)− degj(v) = µ > 0. Consequently the
colour-degree sequence in G is strictly increasing.
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Since for 1 ≤ j < q we have Dj > Dj+1, then in G we have ej [v] > ej+1[v].
Next note that ρ+1 = (k−q)tκ for some κ > 1. Hence (Dq−Dq+1)(ρ+1) >
(Dq −Dq+1)(k − q)t. Therefore to show that eq[v] > eq+1[v], it suffices to
show

(Dq −Dq+1)(k − q) > 1 + µ+ 2

k∑
i=1

Di.

From the lower bound on Dq in the theorem statement, we have that

Dq(k− q) > 1 + (3q)Dq + ξq(q − 1) + 5
(
k−q
2

)
> 1+

q∑
i=1

ai +(2q)Dq + ξq(q − 1)+ 5
(
k−q
2

)
∵ a1 <· · ·<aq ≤Dq

= 1 + µ+ (2q)Dq + ξq(q − 1) + 4
(
k−q
2

)
∵ µ =

q∑
i=1

ai +
(
k−q
2

)
≥ 1 + µ+ 2

q∑
i=1

Di + 4
(
k−q
2

)
∵ Dq−i ≤ Dq + iξ

= 1 + µ+ 2
k∑

i=1

Di + 2
(
k−q
2

)
∵
(
k−q
2

)
=

k∑
i=q+1

Di

= Dq+1(k − q) + 1 + µ+ 2
k∑

i=1

Di ∵ Dq+1 = k − q − 1

as required, and therefore the colours q and q + 1 flip in G.

Consider the final case when q < j < k. By the choice of t and κ > 1, we
have that

(Dj −Dj+1)(ρ+ 1) = (Dj −Dj+1)(k − q)(tκ) > 1 + µ+ 2

k∑
i=1

Di

which we can re-arrange to get ej [v] > ej+1[v]. Hence the sequence of closed
neighbourhood sizes is strictly decreasing as required.

It follows that G is a flip graph on k colours, such that for any vertex v the
difference between degq(v) and degk(v) grows in t as t → ∞.

We are finally in a position to prove the lower bound in (1).

Theorem 4.4. Let k ∈ N such that k > 3. Then for any q ∈ N such that
q = 1 or q < k

4 , there exists a1, . . . , aq ∈ N such that given any N ∈ N there
exists a (a1, . . . , ak)-flip graph for some aq+1, . . . , ak ∈ N where ak > N .

Flip colouring of graphs II

15



Proof. The case q = 1 follows immediately from Theorem 1.4. Hence con-
sider the case when 1 < q < k

4 .

Let b ∈ N be sufficiently large such that

b ≥ max

{
101,

1 + q(q − 1) + 5
(
k−q
2

)
k − 4q

}
and ⌊

1
4

(
b2 − 10b

3
2

)⌋
≥ q − 1.

By Corollary 4.2 and the choice of b, there exists a (b, . . . , b+q−1)-flip graph
F where for every vertex v ∈ V (F ) and 1 ≤ j < q, ξ = max1≤j<q{ej [v] −
ej+1[v]} = 1. Moreover,

eq[v](k − 4q) ≥ (b+ q − 1)(k − 4q) > b(k − 4q) ≥ 1 + ξq(q − 1) + 5
(
k−q
2

)
and therefore the result follows as an immediate consequence of Lemma 4.3.

5 Concluding remarks
In this paper we set out to answer two problems of [?caro2023flip] con-
cerning bounds on h(b, r) and q(k) for flip graphs. Given k > 4, since
h(a1, . . . , ak) > ak, as a consequence of Theorem 4.4 we have that there
exist k-flip sequences where ai are fixed for 1 ≤ i < k

4 , but ak → ∞.
In particular one observes that consequently h(a1, . . . , ak) is not bounded
above by a polynomial in ai for 1 ≤ i < k

4 .

This contrasts the cases k = 2 and k = 3, where h(a1, a2) and h(a1, a2, a3)
are quadratically bound in a1. In light of this, we pose the following prob-
lem.

Problem 5.1. For k ≥ 4, is there a smallest integer p(k), k
4 ≤ p(k) ≤ k,

such that h(a1, . . . , ak) is polynomially bound in ap(k)?

Expanding the range of admissible values r for fixed b such that h(b, r) is
Θ(b + r) is another problem of interest, possibly requiring more delicate
arguments involving sum-free sets in non-Abelian groups.

Problem 5.2. For b, r ∈ N such that 3 ≤ b < r ≤
(
b+1
2

)
− 1, what is the

largest value of r such that h(b, r) = Θ(b+ r)?
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