

q -Analogues involving MacMahon's q -Catalan polynomials

JOHN M. CAMPBELL AND EMRAH KILIÇ

Abstract. Some terminal sum identities involving Catalan numbers have been introduced by Chu and Kılıç through the use of classical hypergeometric identities. In contrast to the q -analogues of these results that may be obtained with the use of ${}_r\phi_s$ -series analogues in place of the classical identities applied by Chu and Kılıç, we obtain inequivalent q -Catalan identities through a discrete difference equations-based approach. These provide q -analogues of results from Chu and Kılıç and are obtained with the use of the q -difference case of Zeilberger's algorithm in conjunction with MacMahon's q -Catalan polynomials, and they are motivated by Andrews' results on q -analogues of Catalan number identities due to Touchard, Koshy, and Jonah. We also apply our results to introduce several Fibonomial sum identities.

References

- [1] G. E. Andrews, q -Catalan identities, in “The legacy of Alladi Ramakrishnan in the mathematical sciences”, pp. 183–190, Springer, New York, 2010.
- [2] X. Chen and W. Chu, Full q -analogue for an identity of λ -extended Catalan numbers, *Bull. Braz. Math. Soc. (N.S.)* **52** (2021), 461–465.
- [3] W. Chu and E. Kılıç, Binomial sums involving Catalan numbers, *Rocky Mountain J. Math.* **51** (2021), 1221–1225.
- [4] J. Fürlinger and J. Hofbauer, q -Catalan numbers, *J. Combin. Theory Ser. A* **40** (1985), 248–264.

Key words and phrases: Catalan number, q -Catalan number, difference equation, Zeilberger's algorithm, Fibonomial coefficient

Mathematics Subject Classifications: 05A30, 05A10

Corresponding author: Emrah Kılıç <emhkilic@gmail.com>

- [5] I. Gessel and D. Stanton, Applications of *q*-Lagrange inversion to basic hypergeometric series, *Trans. Amer. Math. Soc.* **277** (1983), 173–201.
- [6] H. W. Gould, The bracket function and Fontené-Ward generalized binomial coefficients with application to Fibonomial coefficients, *Fibonacci Quart.* **7** (1969), 23–40, 55.
- [7] V. J. W. Guo and C. Krattenthaler, Some divisibility properties of binomial and *q*-binomial coefficients, *J. Number Theory* **135** (2014), 167–184.
- [8] B. He and K. Wang, Some congruences on *q*-Catalan numbers, *Ramanujan J.* **40** (2016), 93–101.
- [9] V. E. Hoggatt, Jr., Fibonacci numbers and generalized binomial coefficients, *Fibonacci Quart.* **5** (1967), 383–400.
- [10] E. Y. Jin and M. E. Nebel, New proofs of two *q*-analogues of Koshy's formula, *Proc. Amer. Math. Soc.* **143** (2015), 5027–5042.
- [11] E. Kılıç, H. Ohtsuka, and I. Akkuş, Some generalized Fibonomial sums related with the Gaussian *q*-binomial sums, *Bull. Math. Soc. Sci. Math. Roumanie* **55** (2012), 51–61.
- [12] E. Kılıç and H. Prodinger, Evaluation of sums involving Gaussian *q*-binomial coefficients with rational weight functions, *Int. J. Number Theory* **12** (2016), 495–504.
- [13] E. Kılıç and H. Prodinger, Formulae related to the *q*-Dixon formula with applications to Fibonomial sums, *Periodica Math. Hungarica* **70** (2015), 216–226.
- [14] C. Krattenthaler, *q*-Lagrangeformel und inverse Relationen, PhD Thesis, University of Vienna, 1983.
- [15] C. Krattenthaler, A new *q*-Lagrange formula and some applications, *Proc. Amer. Math. Soc.* **90** (1984), 338–344.
- [16] M. Lassalle, Narayana polynomials and Hall-Littlewood symmetric functions, *Adv. in Appl. Math.* **49** (2012), 239–262.
- [17] N. N. Li and W. Chu, *q*-Derivative operator proof for a conjecture of Melham, *Discrete Appl. Math.* **177** (2014), 158–164.
- [18] D. Marques and P. Trojovský, On some new sums of Fibonomial coefficients, *Fibonacci Quart.* **50** (2012), 155–162.
- [19] H. Pan, Touchard type identity for *q*-Narayana numbers, *J. Combin. Theory Ser. A* **188** (2022), Paper No. 105595, 16.
- [20] M. Petkovsek, H. S. Wilf, and D. Zeilberger, *A = B*, A K Peters, Ltd., Wellesley, MA, 1996.

- [21] J. Seibert and P. Trojovský, On some identities for the Fibonomial coefficients, *Math. Slovaca* **55** (2005), 9–19.
- [22] P. Trojovský, On some identities for the Fibonomial coefficients via generating function, *Discrete Appl. Math.* **155** (2007), 2017–2024.
- [23] R. R. Zhou and W. Chu, Identities on extended Catalan numbers and their *q*-analogs, *Graphs Combin.* **32** (2016), 2183–2197.