

A unified treatment of some classic combinatorial inequalities using the variance method

DOUGLAS R. STINSON

Abstract. The “variance method” has been used to prove many classical inequalities in design theory and coding theory. The purpose of this expository note is to review and present some of these inequalities in a unified setting. I also discuss some examples from my own research where I have employed these techniques.

References

- [1] N. G. de Bruijn and P. Erdős, On a combinatorial problem, *Indagationes Math.* **10** (1948), 421–423.
- [2] B. Chor and O. Goldreich, On the power of two-point based sampling, *J. Complexity* **5** (1989), 96–106.
- [3] C. J. Colbourn, D. R. Stinson, and S. Veitch, Constructions of optimal orthogonal arrays with repeated rows, *Discrete Math.* **342** (2019), 2455–2466.
- [4] R. A. Fisher, An examination of the different possible solutions of a problem in incomplete blocks, *Ann. Eugenics* **10** (1940), 52–75.
- [5] K. Gopalakrishnan and D. R. Stinson, A simple analysis of the error probability of two-point based sampling, *Inform. Process. Lett.* **60** (1996), 91–96.
- [6] S. M. Johnson, A new upper bound for error-correcting codes, *IRE Trans. on Inform. Theory* **8** (1962), 203–207.
- [7] H. B. Mann, A note on balanced incomplete-block designs, *Ann. Math. Statist.* **40** (1969), 679–680.
- [8] R. C. Mullin and S. A. Vanstone, On regular pairwise balanced designs of order 6 and index 1, *Util. Math.* **8** (1975), 349–369.

- [9] R. L. Plackett and J. P. Burman, The design of optimum multifactorial experiments, *Biometrika* **33** (1946), 305–325.
- [10] C. R. Rao, Factorial experiments derivable from combinatorial arrangements of arrays, *Suppl. J. Roy. Statist. Soc.* **9** (1947), 128–139.
- [11] T. H. Spencer, Provably good pattern generators for a random pattern test, *Algorithmica* **11** (1994), 429–442.
- [12] R. G. Stanton, P. Eades, J. van Rees, and D. D. Cowan, Computation of some exact g -coverings, *Util. Math.* **18** (1980), 269–282.
- [13] R. G. Stanton and J. G. Kalbfleisch, The λ - μ problem: $\lambda = 1$ and $\mu = 3$, In “Proc. Second Chapel Hill Conf. on Combinatorics” (1972), pp. 451–462.
- [14] D. R. Stinson, Applications and generalizations of the variance method in combinatorial designs, *Util. Math.* **22** (1982), 323–333.
- [15] D. R. Stinson, *Combinatorial designs: Constructions and analysis*, Springer-Verlag, New York, 2004.
- [16] D. R. Stinson, Nonincident points and blocks in designs, *Discrete Math.* **313** (2013), 447–452.
- [17] D. R. Stinson, Bounds for orthogonal arrays with repeated rows, *Bull. Inst. Combin. Appl.* **85** (2019), 60–73.

DOUGLAS R. STINSON

DAVID R. CHERITON SCHOOL OF COMPUTER SCIENCE

UNIVERSITY OF WATERLOO

WATERLOO, ONTARIO N2L 3G1, CANADA

dstinson@uwaterloo.ca