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Disclaimer 

For the sake of not writing a novel, I assume that you have had some experience with programming 

and manipulating a Robotic arm with a Pendant, so this guide will only explain how the concepts of 

programming a Robotic arm relate to the program, RobotRun. 

Installation 

The RobotRun project can be accessed on GitHub: 

https://github.com/skuhl/RobotRun.git 

 

The most recent build of RobotRun can be found in an archive file (i.e. RobotRun.zip) on the master 

branch of the repository, though this build may not be the most stable version. 

 

Alternatively, the most recent stable version of RobotRun can be found on this website: 

 http://www.cs.mtu.edu/~kuhl/robotics/ 

 

After downloading the relevant version of the program, unzip it somewhere on your hard drive. If 

you have another version of the RobotRun software already on your computer, then you can copy 

the tmp subdirectory from that version of RobotRun and paste it into the new version of the 

RobotRun software, thus you will have access to all the data from the old version. 

  

In order to use the video/audio recording functionality, you will need to install ffmpeg 

(https://www.ffmpeg.org/).Running the Program 

 

Navigate to the folder where you unzipped it and “RobotRun.exe” (if on Windows) or just 

“RobotRun” (if on Linux). 

 

https://github.com/skuhl/RobotRun.git
http://www.cs.mtu.edu/~kuhl/robotics/
https://www.ffmpeg.org/
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When you start the program, you will see a screen similar to the following:

 
 

1. The robot. The active robot begins centered in the screen and can be control via the Pendant 

window. The user has the option to add a second robot (see Miscellaneous Window section), which 

is independent of the original robot. 

2. Window Tabs Bar. The button bar on top left edge of the screen controls what window is 

currently active within the program. By default, there are four windows available: Pendant, the 

Object Creation, Object Editing, and the Scenario. The Robot 1, Robot 2, and Camera windows are 

hidden (see miscellaneous window section). 

3. Main Display. The far left column of the screen is where a number of fields are displayed. Some 

common fields are the Coordinate System, the Robot’s Jog Speed, the Active Scenario, and the 

Robot’s Joint Angle/Orientation Display. Some fields are variable and are only displayed in certain 

situations. For example, the Robot’s User frame orientation is only displayed when a User frame is 

active. 
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Camera Control 

Most camera control is done with the mouse: 

 Pan the camera by dragging the middle mouse button. 

 Rotate the camera by dragging the right mouse button. 

 Zoom the camera by moving the mouse wheel. 

 

There are also default views defined by small buttons, which appear alongside the active window’s 

right-hand side.

 
 

The buttons highlighted in the screenshot above define the six default views: 

1. Front View (F): the default camera position. 

2. Back View (Bk): the complement view of the front view. 

3. Left View (L): facing towards the front of the Robot. 

4. Right View (R): facing towards the back of the Robot. 

5. Top View (T): looking down on the Robot. 

6. Bottom View (Bt): looking up at the Robot. 
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All of these views’ positions are named with respect to the camera’s default position (shown in the 

screen shot above). Though, the descriptions of each view assumes that the Robot is in its default 

position (i.e. all joint angles equals zero). 

The Pendant Window 

The Pendant Window houses the UI used to program and interact with the active robot, teach and 

edit frames, and save and use Data and Position Registers. The active screen determines the output 

displayed on the text area at the top of the Pendant. The Pendant has numerous screens including 

the program navigation screen, where the list of programs is displayed, and the active frames 

screen, which displays the current active Tool and User frames. 

The Arrow Buttons. 

UP, DOWN, LEFT, RIGHT: 

The arrow buttons are used to navigate the contents 

of the active screen, though not all screens implement 

all arrow buttons. 

The Numpad 

BKSPC, NUM0 - NUM9, PERIOD, DASH: 

The buttons NUM0 - NUM9 are used in combination 

with PERIOD and DASH to input any numeric input 

(register values, frames, etc.). BKSPC and the delete 

function (RIGHT, when SHIFT is on) are functional 

for some numeric input as well. 

ENTER 

ENTER is used to confirm any input as well as 

confirming many screen transitions. 

PREV 

Generally returns to the previous screen. Although, 

some screen transitions invalidate the previous 

screen function. 

 

 

 

When the second robot is added to the application, then the user has the ability to switch between 

the two robots, although only one robot can be active at a time (the other of which is inactive). The 

pendant is shared between robots. However, the user interacts with active robot through the 

pendant, except in the case of robot call instructions. 

The Shift and Step Buttons 

The SHIFT and STEP buttons are toggle able buttons on the far left and right (respectively) of the 

Pendant near the top of the button section. These buttons are highlighted in red when they are on 

and are the normal gray button color when they are off. 
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SHIFT: 

In general, any function that would cause the Robot to move, or records a position requires SHIFT to 

be on in order to work. The state of SHIFT also influences a number of other miscellaneous things, 

which will be explained in later sections. 

 

STEP: 

Currently STEP has only one function: when it is on, running a program will cause the program to 

execute only the current instruction and move to the next instruction. If STEP is off, then running a 

program will cause the program to run from the currently selected instruction to the end of the 

program. 

The Function Buttons 

Five function buttons (F1, F2, F3, F4, and F5) form a bar across the middle of the Pendant (as shown 

in the screen shot below). The behavior of these buttons varies based on the active screen. A 

function label will appear above any function keys, which have a role for the active screen on the 

text area above each respective function button, surrounded by square brackets. 

 

Below is a screen shot of the Pendant when the active screen is 

data register navigation. 

       

In this instance, F1, F2, and F3 have a purpose, since they 

each have the function labels ([Clear], [Copy], and [Switch], 

respectively).  

 

 

 

 

 

 

It is important to note that the state of the SHIFT button does 

influence function buttons in two ways: 

 

1. Function buttons may have two behaviors: one when SHIFT 

is off and one when SHIFT is on. 

 

For example, when either frame navigation screen is active, the F1 button has two 

behaviors illustrated by the screen shots below. SHIFT is off in the left screen shot and on in 

the right screen shot. 

 

2. Any function that records the position of the Robot, or causes the Robot to move will only 

work if SHIFT is on. 
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In the tool or user frame teaching screens, the F5 button will move the Robot to the 

currently highlighted teach point, if the point is initialized. However, this will only work if 

SHIFT is on. The function label is displayed regardless of the state of SHIFT 

  



10 
 

Jogging the Robot 

The main buttons involved with jogging the Robot are surrounded in red boxes in the left screen 

shot below and the joints with their respective numbers are displayed in the right screen shot. 

 

The twelve jog buttons form the rightmost column. Each row or pair of buttons corresponds to one 

axis (or joint) motion. The left button, in the pair, is negative motion and the second is positive 

motion for that axis (or joint). Each button is labeled based direction of motion as well as the axis 

(or joint), to which it corresponds. For example, the third row of Jog buttons correspond to the 

translational motion across the z axis of the active frame (or the motion of the Robot’s third joint). 

When the Robot is jogging, the jog buttons will be highlighted based on the motion of the Robot. So, 

if the Robot is currently moving the +X direction, then the +X/J1 button will be highlighted in red. If 

the Robot is jogging on an axis (or joint) and the button representing that motion or the 

complement motion is pressed, then the Robot’s motion on that axis (or joint) will halt. 

 

When the Robot is moving in any other coordinate frame, but Joint, then it is possible that a motion 

fault will occur. The motion fault flag indicates that the motion of the Robot from some position to 

another position is undefined by our Inverse Kinematics algorithm. When a motion fault occurs, 

then the Robot will stop moving and not respond to any motion commands until the motion fault 
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flag is disabled. When the motion fault flag is active, a message will appear on the right side of the 

window in red text. Click the RESET button, when SHIFT is on, to disable the motion fault flag. 

 

-X/J1, +X/J1, -Y/J2, +Y/J2, -Z/J3, +Z/J3: 

The top six jog buttons are the translational jog buttons, which are involved in linear motion of the 

Robot (or the first three joints’ motion) across the x, y, and z axes of the active frame. 

 

XR/J4, +XR/J4, YR/J, YR/J5, ZR/J6, ZR/J6: 

The bottom six jog buttons are the rotational jog buttons, which are involved in the rotation motion 

of the Robot (or the last three joints’ motion) around the x, y, and z axes of the active frame. 

 

HOLD: 

The HOLD button stops any and all Robot motion. 

 

+%, -%: 

The +% and -% buttons control the speed, at which the Robot jogs. The set of possible Robot jog 

speed values is {1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100}. When SHIFT is off, 

+% and -% will jump to the closest value greater than and less than the current jog speed of the 

Robot, in set of possible values. When SHIFT is on, +% and -% will jump forward and backward 

respectively to closet of value in the subset {1, 5, 50, 100}. 

 

RESET: 

The RESET button will, when SHIFT is on, disable the motion fault flag and allow the Robot to move 

again after a motion fault occurs. 

Main Menu 

The main menu is an intermediate screen, which links to the frame, macro, manual function, and 

I/O register menus. You can navigate the main menu screen with the UP and DOWN buttons. Press 

ENTER to transition the screen associated with the active line in the main menu screen. 

 

MENU: 

Transitions pendant screen to the main menu screen, from which you can access the frame, I/O 

register, macro, or manual function screens. 

I/O Registers 

Each robot has a set of I/O registers, one for each end effector. The I/O register value defines the 

state of the end effector associated with the register. I/O registers can be modified with I/O register 

instructions, register statements, (see instruction section) or in the I/O register screen. The I/O 

register screen can be accessed through the main menu screen (see the previous section). 

 

In the I/O register screen, you can navigate between registers with the UP and DOWN buttons. 

Pressing ENTER will toggle the state of the respective I/O register between ON and OFF. Only the 
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suction and claw gripper are affected by the state of their respective I/O registers, since they are 

the only end effectors that interact with world objects (see the World Object section for more 

details). 

 

Frames 

Aside from the Joint and World frames, there are 10 Tool and 10 User frames that you can define. 

By default all user-defined frame are equivalent to the World frame (indicated by X, Y, Z, W, P, and R 

equal to zero).  

 

Active frames screen 

The active frames screen can be reached by pressing COORD, when SHIFT is on, in any screen. In 

this screen, you may set the active Tool or User frame by navigating to the correct line and using the 

Numpad to input the corresponding integer associated with the frame you wish to activate. 

Inputting zero for either one frame line will deactivate the active frame. Additionally, the user 

frame navigation (uframe nav) and tool frame navigation (tframe nav) screens can be reached from 

the active frames screen: navigate to the correct line and press F1. 

 

Here is a screenshot of the active frames screen, in which the line for the active User frame is 

highlight. 

 

Also, in this example, there are no active Tool or User frames, because the values are zero. 

3-Point, 4-Point, and 6-Point teaching methods 

To edit a frame you must be in either the tframe nav or uframe nav screens. Use UP and DOWN to 

navigate to one of the lines on the active screen, which corresponds to the frame you wish to edit 

and press ENTER. In the next screen press F2 to list the methods of teaching. Depending on which 

type of frame you are teaching you will have some different options. For this section I will focus on 

the teach point methods: the Tool 3-Point and 6-Point, and the User 3-Point and 4-Point methods.  

 

All the teach point methods are taught in the same way. Simply jog the Robot to a position and press 

F5, when SHIFT is on, to save the current position of the Robot. The active screen display for all 

teach point methods will display a list of points and an indication as to whether or not that point 

has been taught. You can use the UP and DOWN buttons to highlight different points. However, F5 

will save the Robot’s position to the currently selected point replacing the existing value of the 

point! 
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Any saved points will also be displayed in the environment as small colored points, when teaching 

with a teach point method. The screenshot below illustrates a fully taught 6-Point Tool frame: 

 

Points 1-3. The three approach points are all gray and only apply to the tool frame’s end effector 

offset. 

Point 4. The Orient Origin point is orange. 

Point 5. The X-Axis Direction point is red. 

Point 6. The Y-Axis Direction point is light green. 

**The Axis Origin point is blue and only applies to the User frame’s 4-Point teach method (hence 

why it does not show up for the Tool frame’s 6-Point method) 

 

The points 4 – 6, in the screenshot, apply to the User frames teach methods as well, since the User 

frame only teaches the axes. It is worth noting that for both the 3-Point and 6-Point teach methods 

of the Tool frame, all three points must be close to orthogonal, or else the frame will not be valid. 

For the teaching of the axes in either the 3-Point or 4-Point User, or the 6-Point Tool teach methods, 

the X-Axis and Y-Axis points should form orthogonal vectors, each with respect to the Orient Origin 

point. Though, as long as the three points are not collinear, then the frame will be valid. 

 

In order for a teach point method to be successful: 

1. All points must be initialized. 

2. For Tool frames, all three approach points must be close to orthogonal. 

3. If they exist, the X-Axis, Y-Axis, and Orient Origin points cannot be collinear. 
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Press ENTER to save and update the frame. If the frame is not set to active, or is not updated, then 

the frame was not valid. 

 

Direct entry teaching method 

Alternatively to the teach point methods, you may define a frame by specifying the X, Y, Z, W, P, R 

values, explicitly. Similarly to the teach point methods, the direct entry method can be found in each 

frames view screen by pressing F2. When you enter the direct entry screen, the active screen 

display will look similar to this: 

 
 

Use UP and DOWN to navigate between the six different input fields for the frame direct entry. 

Similar to the active frames screen, you will use the Numpad to input each value, except you may 

input any real number between -9999 and 9999, inclusive. The BKSPC button and delete function 

work in the direct entry screen as well. Once you have specified your desired frame values (all fields 

must be initialized!), then press ENTER to confirm the direct entry. 

 

 

I should mention that any points you teach for any point teach method as well as the direct entry 

values of a frame are saved independent of the frame’s current active X, Y, Z, W, P, and R values. So, 

you can teach points for a frame method and not update the frame with the method without fear of 

losing your taught points. Though, the three approach points are shared amongst the 3-Point and 6-

Point methods of a frame. The same is true of the X-Axis, Y-Axis, and Orient Origin points for a User 

frame. 

 

Setting/resetting frames 

Aside from the methods mentioned in the active frames screen section, you can set the active Tool 

or User frame within the tframe nav and uframe nav screens respectively. When in the correct in the 

active screen, highlight either line corresponding the frame you wish to activate and press F1, when 

SHIFT is off. In a similar fashion, you can reset a frame to the World frame (erasing all taught points 

in the process) by pressing F1, when SHIFT is on. 

 

COORD: 



15 
 

There are four types of frames: Joint, World, Tool, and User. When SHIFT is off, COORD will 

transition to the next frame type based on the sequence: 

Joint → World → Tool → User → Joint 

 

If no active tool or user frame are set, then the tool and user coordinate frames function the same as 

the world frame. 

Global Registers 

The RobotRun software features 100 data and 100 position registers, which can be manipulated by 

the user or through program execution. For this section, I will focus on how the user can directly 

modify global registers. Refer to the Instruction section for information regarding program register 

instructions. 

 

Navigating to registers 

Both register screens can be accessed from the register navigation screen:

 
 

The DATA button will transition to the register navigation screen from any other screen. Use UP 

and DOWN to select the register screen you wish to view and press ENTER. A list of registers will 

appear in the active screen display similar to the screenshots below: 
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You can switch between the two register screens by pressing F3, when either screen is active. 

 

Editing registers 

To edit the value of a register, use UP and DOWN to select the register you wish to edit, use RIGHT 

to move to the second column, and press ENTER. For data registers, you will simply be prompted at 

the bottom of the screen to input a real number value. Use the Numpad buttons to input the value 

and press ENTER to confirm your input. For position registers, a new screen will appear, with the 

position values (either joint or Cartesian) displayed with the prefix associated with each value 

similar to the frame direct entry method. Also, you will input values for a position register in a 

similar fashion to a frame direct entry as well. Press ENTER to confirm your position entry. 

 

You can also copy the values of an initialized register to another register. Use UP and DOWN to 

navigate to the register you wish to duplicate and press F2. You will be prompted for the index 

value of the register you want to copy the selected register into. Use the number buttons (NUM0 – 

NUM9) to input the register index and press ENTER. 

 

In addition, you can completely clear a register entry (comment included) by navigating to the 

entry you wish to remove with UP and DOWN followed by pressing F1. There is no confirmation for 

clearing a register, so if press F1, then the currently highlighted register will be cleared! 

 

Position registers have some special functionality as well. You can move the Robot to the position 

specified in a position register by navigating to the desired register and pressing F4, when SHIFT is 

on. Moreover, you can save the current position of the Robot into a position register with F5, when 

SHIFT is on. The position registers are treated with respect to the active User frame, or the World 

frame if no User frame is active for the F4 and F5 functions. 

 

 

Commenting Registers 

You can edit the comment associated with a register by first navigating to the register, of which you 

wish to edit the comment, with UP and DOWN and then pressing ENTER. The comment edit screen 

looks similar to this: 

 
 



17 
 

You can navigate the comment, character by character, with LEFT and RIGHT. RIGHT will append a 

blank character to the end of the comment if you move past the last character of the comment until 

the maximum length of a comment, 20 characters, is reached. Each function button has a sequence 

of characters associated with it (shown in the function label). When you press a of the function 

button, the current character you have selected in the comment will be overridden with a value 

from the character sequence associated with the function button you pressed based on the number 

of times you pressed that function button in succession. In the case of the example above, the first 

character in the comment, ‘A’, is selected. So, if I pressed F3 once, then ‘A’ would be overridden by 

‘M’. If I pressed F3 twice in succession, then ‘M’ would replace ‘A’, on the first press, and ‘N’ would 

replace ‘M’, on the second press. In this way, you can move to a specific index in the comment string 

and cycle through the character sequence associated with a function button to build the comment. 

You can switch between lower and uppercase characters with UP and DOWN and the function 

labels will change according to the case that is active. Integer values 0 through 9 are also valid 

characters in the comments. Also, you can use BKSPC and the delete function to remove characters 

from the working comment. Once you have built your desired comment, then press ENTER to 

confirm the comment. 

 

DATA: 

Pressing the DATA button will bring up the register navigation screen, which simply allows you to 

choose between the two register screens: data and position registers. 
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Programs 

 

SELECT: 

Press SELECT to transition to the program navigation screen, which displays a list of all 

saved/created programs. Use UP and DOWN to navigate the list of programs. 

 

EDIT: 

EDIT normally, will load the program instruction navigation screen for the last edited program. If 

no program has been selected to edit, then the program navigation screen is loaded instead. 

Furthermore, in the program navigation screen, EDIT functions the same as ENTER. 

 

Creating a program 

Transition to the program navigation screen and press F1 to create a program. Then you must 

name the program, which is an identical process to commenting registers. Press ENTER to confirm 

the program name. You can rename a program by navigating to the program you want to edit and 

pressing F2. In the same way you can delete or copy a program by pressing F4 and F3, respectively. 

Though, when you copy a program, you must provide a name for the copy and you must confirm 

program deletion with F4 or cancel with F5. 

 

Editing programs 

To edit a program, you must first transition to the instruction navigation screen of a program. This 

screen can reached by pressing SELECT, navigating to the program you wish to edit and pressing 

ENTER. 

 

Saving programs 

When you open the program navigation screen or press the ‘s’ key on the keyboard all programs 

are saved. Programs are not saved under any other circumstance! 

 

Running programs 

 

FWD: 

When in the instruction navigation screen of a program, you can execute the program, from the 

currently selected line by pressing FWD, when SHIFT is on. If STEP is off, then execution of the 

program will continue on until the end of the program is reached or an error occurs. If STEP is on, 

then only the currently selected instruction will execute. 

 

BWD: 

When in the instruction navigation screen, you can execute the previous motion instruction based 

on the instruction currently selected by the cursor. BWD will only function, when step is set and the 

instruction prior to the active instruction is a motion instruction. 
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Instructions 

 

When in a program instruction navigation screen, you can view all the instructions associated with 

a program and navigate the lines of instructions with UP and DOWN. Some instructions span 

multiple columns on a single line and you use LEFT and RIGHT to navigate the columns of a specific 

instruction. Whenever you create a new instruction (either with F1, when SHIFT is on, or F2), the 

new instruction will override the instruction, on the line you currently have selected. So, it is wise 

to only add new instructions at the line denoted with END. If you want to insert instructions into a 

specific place in the program, then use the insert option, when can be reached by pressing F5 in the 

instruction navigation screen of a program. 

Motion 

To create a new motion instruction set SHIFT to on and press F2. A motion instruction has at least 

one position associated with it, which contains the main point of the motion instruction. A point is 

comprised of angle values and Cartesian values (X, Y, Z, W, P, and R), which define the orientation of 

the Robot with respect to its joint angles (angle values) and some frame (Cartesian values). In 

addition, each position has a register reference (type and index) and a speed and termination value. 

 

Furthermore, a motion instruction has several fields: 

 motion type 

There are three motion types: joint, linear, and circular. A joint motion instruction will move 

the Robot based on the joint values associated with the main point. A linear motion 

instruction will move based on the Cartesian values associated with the main point. A 

circular motion instruction has a secondary position. This type of instruction requires a 

preceding motion instruction definition in order to execute. The previous position defines 

the start point and the secondary position defines the endpoint of an arc on the circle, 

whose center point is defined by the main point of the motion instruction. 

 

 register type 

A motion instruction can reference a global position register (PR), which are shared 

amongst all programs, or a local position (P), which is specific to a program. In addition, 

there is a third position type, camera object (WO), which references the position of a world 

object, in the active scenario based on the perspective of the camera. 

  

 register index 

Both the positions of a program and the global position registers are organized in the form 

of an array. Hence, the register index of a motion instruction references the position 

associated with its register index. There are 100 global position registers with indices 1 

through 100. Also, each program has 1000 local positions with indices 1 through 1000. 

 

 speed 
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The speed of a motion instruction is defined based on its motion type. Joint motion 

instructions has a percent speed, which is within the range of integers, 1 through 100. A 

linear or circular motion instruction has a speed (mm/s) within the range of integers, 5 

through 1000. 

 

 termination 

The termination of a motion instruction is an integer value ranging from 0 to 100. A 

termination value of 0 will be displayed as FINE on the screen and is the default for all 

motion instructions. This field only applies when executing multiple motion instructions in 

succession. 

 

 offset 

You can define a position register offset for a motion instruction, which will be applied to 

the position of the motion instruction’s defined position (both points for a circular motion 

instruction). The offset is not set by default, so it appears as a blank space! To set an offset, 

simple move to the last column on the first line of a motion instruction in the pendant 

screen and press F4, then select PR[…]. Now, you can move over another column on the 

same line and press R4 again to set the index of the position register, which will be used as 

the offset. If the position register is defined, then its values, should appear at the bottom of 

the pendant screen. 

 

The ‘@’ will appear on a motion instruction, if the point of the motion instruction’s position 

reference equals the Robot’s current orientation. Moreover, you can manually edit a local position 

of a motion instruction by navigating to the position label column (i.e. ‘P[‘ or ‘GP[‘ ) and pressing F5. 

The position edit screen functions identically to the position register edit screen. 

I/O 

To create a new I/O instruction, when in a program instruction navigation screen, press F2, then 

ENTER. I/O instructions modify the state of one of the Robot’s end effector registers. You can view 

the state of the I/O registers and what register references what end effector, when you create a new 

I/O instruction. Each register can either have the value on or off. 

Frame 

To create a new frame instruction, when in a program instruction navigation screen, press F2 and 

navigate to the frames line and press ENTER. A frame instruction will change the current active 

User or Tool frame. The frame type fields TFRAME and UFRAME refer to active Tool frame and 

active User frame respectively. The frame index value is an integer value within the range 0 through 

10, which refers to a specific frame. A value above 0 will set the active frame to another frame. A 

value of 0 will remove the active frame without replacing it with another frame. 
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Register statement 

To create a new register statement instruction, when in a program instruction navigation screen, 

press F2 and navigate to the registers line and press ENTER. Here you will be promoted for the 

register type and index, where the result of the register statement will be stored. 

 R[x] = (…) 

The result will be stored in a data register. The index value can only be an integer from 1 

through 100. 

 

 IO[x] = (…) 

The result will be stored in an I/O register. The index value can only be an integer from 1 

through 5. 

 

 PR[x] = (…) 

The result will be stored in a position register. The index value can only be an integer from 1 

through 100. 

 

 PR[x, y] = (…) 

The result will be stored into a specific value of a position register (i.e. X or W). The index 

mapping is as follows: 1 -> X or J1, 2 -> Y or J2, 3 -> Z or J3, 4 -> W or J4, 5 -> P or J5, 6 -> R or 

J6. Just like PR, the position index can only be an integer from 1 through 100. 

 

Once you initialize the instruction, the statement will contain a single uninitialized element. 

Elements can be added to the expression, edited, and removed. To insert an element into the 

expression, navigate to an element in the expression and press F3. Then, navigate to the desired 

operand/operator with UP and DOWN and press ENTER. The new element will be inserted to the 

right of the selected element and will be uninitialized: A ‘…’ element is an uninitialized operand and 

a ‘_’ is an uninitialized operator. To edit an element in the expression, navigate to an element in the 

expression with LEFT and RIGHT and press F4. Then, select the desired element; operands cannot 

be edited to become operators and vice versa. However, an element can be deleted by navigating to 

the element with LEFT and RIGHT and pressing F5, although, an expression cannot be empty 

 

The operands that can be used are: 

 R[x]  Register value of index x 

 IO[x]  IO Register of index x 

 PR[x]  Position Register position of index x 

 PR[x, y] one value of a Position Register position of index x 

 (…)  subexpression 

 Const  constant value 

 

R[x], PR[x, y], and Const operands are floating point values and therefore can be used in an 

expressions together. However, operands PR[x] and IO[x] are positions and boolean values, 

respectively. So, expressions containing PR[x] operands should not contain other types of operands. 

Likewise for expressions containing IO[x] operands. 
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Below is a list of operators and what operands, with which each operator should be used: 

Operators Operands* 
Symbol Operation R[x]/PR[x, y]/Const IO[x] PR[x] 

+ Addition x  x 
- Subtraction x  x 
* Multiplication x   
/ Division x   
| Integer Division x   

% Modulus 
(Remainder) 

x   

*Rows marked with ‘x’ indicate the operator of the given row works with the operand(s) of the given column 

 

The subexpression operator has a special relationship with operators. The validity of an operator 

for a subexpression depends on what type of operands are in the subexpression. 

If statement 

To create an if statement, when in a program’s instruction navigation screen, press F2 and select 

the If/Select option. There are two types of if statements: the atomic and complex statements. The 

first option “If Stmt” is the atomic statement and the later, “If (…)”, is the complex statement. The 

atomic statement has only one operator and two operands in the if statement expression, whereas 

the complex statement can have up to 8 elements in the expression. So, the atomic statement is a 

quick way to initialize a simple if statement, while the complex statement allows for more flexibility 

in building an expression. 

 

When you define a simple if statement, you must provide a default operator, which can be changed 

later. You edit if statements in the same manner as register statements, except that there are 

addition operators included in if statement expressions: =, <>, <, >, <=, >=, AND, OR, and NOT. The 

arithmetic operators can be used to compute a value, which can be used by these logic operators. 

An if statement’s expression must evaluate to a boolean value, in order to be considered valid. 

 

The other part of an if statement is a sub instruction, which may be a jump, call or robot call 

instruction. The last columns of an if statement after the ‘:’ are reserved for editing the sub 

instruction of an if statement. If the statement evaluates to true, then the sub instruction will be 

executed, otherwise, the next instruction in the program will be executed. 

Select statement 

To create a new selection statement, when in a program instruction navigation screen, press F2 and 

navigate to the IF/SELECT line and press ENTER. Then, navigate to the SELECT Stmt line and press 

ENTER again. 

The format of a select statement is as follows: 

 

SELECT [arg] = [case1] [result1] 

  [case2] [result2] 
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  … 

 

The argument and case parameters can be either Const or R[x]. The result parameter can be either 

a jump label of call instruction. To edit any of the paremeters, simply navigate to a parameter with 

UP, DOWN, LEFT, and RIGHT, and press F4. To add a new case to a select statement, navigate to 

either a case or a result parameter and press F3. To remove a case, navigate to the case or result 

parameter of a case and press F5. 

Label 

To create a label frame instruction, when in a program instruction navigation screen, press F2 and 

navigate to the JMP/LBL line and press ENTER twice. Label instructions can be used in conjunction 

with Jump instructions in order to control program flow. Each label should be defined with a unique 

integer value. 

Jump 

To create a new jump instruction, when in a program instruction navigation screen, press F2 and 

navigate to the JMP/LBL line and press ENTER. Then, navigate to the JMP line and press ENTER 

again. A jump instruction will transition to the label instruction, whose id is associated with it 

instead of moving to the instruction immediately succeeding it. Jump instructions take a positive 

integer for the label id reference. 

Call 

To create a call instruction, when in a program’s instruction navigation screen, press F2 and 

navigate to the Call line and press ENTER. Then, select the program to call and press ENTER again. 

Robot Call 

Similar to a call instruction, except the user specifies a program from the inactive robot instead of 

the active robot. This instruction is only valid when the second robot is added to the application 

(see miscellaneous window section). 

Options 

When editing a program, you have access to some addition options aside from editing the 

instructions of the program directly. To access the options menu, you must be on the first column of 

a line in the program instruction navigation pendant screen. To select an option press F5 and 

navigate to the line corresponding to the option you want and press ENTER. 

 

Undo 

Reverts the last edit or deletion made to the active program. 

 

Insert 
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Inserts blank instructions into the active program preceding the instruction corresponding to the 

active line in the program instruction navigation screen. To insert blank instructions, enter the 

number of lines you wish to insert using the NUMPAD buttons or keyboard and press F4. 

 

Delete 

Allows the selection of instructions to remove from the active program. In the delete screen you can 

select instructions by navigating a line and pressing enter. Selected lines will be highlighted in a 

different color than the active line highlighting. When you have selected the lines you wish to delete 

press F4. 

 

Cut/Copy 

Allows for the selection of instructions to copy or cut, and paste elsewhere in a program’s list of 

instructions. You can select instructions in a similar fashion to selecting instructions for the delete 

option. When you have the instructions you wish to copy/cut, then press F4 to copy or F3 to cut. 

Pressing F3 or F4 should add the paste function to the F2 button, if it is not already active. 

 

So, you can navigate to the line at which you want to paste the set of instructions. Press F2 to paste 

the instructions. 

 

Paste 

If you have already copied or cut instructions, then you will be prompted for the way in which to 

copy the instructions. Each paste type pastes the set of instructions in a slightly different manner: 

 

Type Effect 
Logic Pastes instructions in normal order, but the pasted motion instruction positions 

are uninitialized. 
Position Pastes all instructions normally. 
Pos Id Pastes all copied instructions normally, however, the positions are copied to new 

positions for copied motion instructions. 
R Logic Similar to Logic, but the instructions are pasted in reverse order. 

R Position Similar to Position, but instructions are pasted in reverse order. 
R Pos Id Similar to Pos Id, except the instructions are pasted in reverse order. 

Rm Pos Id Pastes non-motion instructions normally, but reverses the order of motion 
instruction position IDs amongst all pasted motion instructions. 

 

Find/Replace 

 

Renumber 

Reorders the position IDs of the active program, in such a way that the position IDs of each motion 

instruction run in ascending order from the first motion instruction to the last. However, the 

positions associated with each motion instruction remain the same. For example: 

 

Before renumbering: 
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After renumbering: 

 
 

To renumber the position IDs, press F4. 

 

Comment 

Allows for commenting/uncommenting of instructions in the active program. You select 

instructions to comment/uncomment in a similar fashion to selecting instructions for deletion or 

copy/cut. Press F4 to change the commented state of all selected instructions. Commented appear 

with a ‘//’ prefix and in a different color then normal instructions. In addition, theses instructions 

are ignored during the execution of a program. 

Macros 

You can define macros to execute programs without accessing the program instruction navigation 

screen of a program. There are two types of macros: user key and manual function macros. Key 

bound macros associated a program with a specific button on the pendant, while manual function 

macros are stored in a list, which can be accessed in the manual function screen. 
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SETUP, STATUS, POSN, I/O, TOOL 1, TOOL 2: 

These buttons function as key bound macros. Each button may only have at most one program 

associated with it at one time. 

 

To create a macro, navigate to the macro screen, from the main menu screen and press F1. You will 

then be prompted for the program for which to define the macro. You can navigate the menu with 

the UP and DOWN buttons ad press ENTER to select a program. Once you select the program, you 

will need to decide what type of macro, you want for the program. For user key macros, you will 

also need to associate one user key with the program. If a macro is already defined for a user key, 

then you will not be able to define another macro with that user key. You must edit either the 

program or user key associated with the defined macro. 

 

When a user key macro is defined, then you can execute the program associated with user key 

button by pressing the button, when SHIFT is on. To access a manual function macro, navigate to 

the manual function screen, through the main menu screen and navigate to the line associated with 

the manual function. Press ENTER to execute the program. 

 

Marcos can be edited in the macro screen with the F4 button. You can change the program, type (, 

and button for user key macros) of a macro. 

Scenarios 

Scenarios define a collections of objects that the Robot can interact with in the environment. The 

creation and management of world objects will be described in the next section. 
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Scenarios can be managed in the scenario window shown in the top left of the screen. There are 

three variations of the scenario window: new, load, and rename. The radio button row at the top of 

the window controls, which variant of the screen is active. 

 

New scenario variant 

 
 

Load scenario variant 
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Rename scenario 

 
 

Simply follow the directions on each variant. 

 

World Objects 

The Robot can interact with world objects in the active scenario. The user has the ability to create a 

variety of world objects, set their position in the application and even command the robot to pick 

up, move, and release specific world objects. 

 

Bounding boxes 

The two types of world objects are parts and fixtures. Every object have a local coordinate system, 

which describes the object’s position and orientation in terms of its parent coordinate system. By 

default the world frame is the object’s parent coordinate system, however, parts can reference a 

fixture as its parent coordinate system instead. 

 

Moreover, parts have a bounding box, which detects collisions with other bounding boxes. A part’s 

bounding box also allows a robot to pick up and move a part in the scenario. Bounding boxes 

normally appear green. However, when two bounding boxes are colliding, then they appear red 

(See edit and moving sub-sections for exceptions to this rule). Below shows two examples: one with 

no world object collision and one with world object collision. 
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Create a world object 

Select the create tab from the button bar on the top left of the application. The window should look 

similar to this: 

 
 

Simply fill out the fields for the object you wish to add to the active scenario (a scenario must be set 

in order to create a world object). Each world object has a type (part or fixture), shape (box, 

cylinder, or complex), dimension fields, and color fields. The dimension fields vary based on the 

shape of the world object. Specifically, the source field of a complex object is defined by a .stl source 

file within the data/ sub folder of the application’s directory. A part also has an optional reference 

field, where the user can specify a fixture as the part’s parent coordinate system. When the world 

object’s required fields have all been specified, then press the Create button to add the world object 

to the active scenario. The Clear button will reset all fields to their default values. 

 

Position or orient a world object 

Initially, all world objects are placed at a default position in the application. With the edit window, 

the user can position individual world objects in the application. The edit window can be accessed 

from the button on the top left of the application. The window will resemble either the left of right 
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screenshot below for parts and fixtures, respectively. 

 
 

 

The first dropdown field contains a list of all the names of world objects. When a world object is 

select, then the dimension fields are updated to reflect the select world object. The X, Y, Z fields 

pertain to the position of the world object in terms of its parent coordinate system. Likewise, the W, 

P, R fields refer to the object’s orientation in terms of its parent coordinate system. 

 

A fixture has only one coordinate system for the user to define. However, a part has two separate 

coordinate frames that you may define: the current and default coordinate systems. A part will 

always be rendered at its current coordinate frame. The default coordinate frame acts as a place 

holder coordinate frame, since there is no way to immediately undo moving an object with the 

robot. You need only fill out the fields you wish to update for the selected object and press the Move 

to Current button to update an object’s current position. Likewise, the Move to Default button will 

update the object’s current orientation to that of its default orientation. However, the Update 

Default button will take the input field values and apply them to the part’s default orientation. 

 

Furthermore, the Restore Defaults button will move all parts, in the active scenario, to their default 

orientation. 
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The coordinate system of the selected world object will appear at the selected world object in the 

application. In addition, the bounding box of a part will appear yellow when it is selected to be 

edited. 

 

The red, green, and blue lines represent the x, y, and z axes of the world object’s local coordinate 

system, respectively. Furthermore, the current values of the selected world object’s dimensions and 

local coordinate system will appear on the right hand side of the application. 

 

 
 

 

World object mouse interactions 

In addition to the menu interface, you can position and orient a world object with the mouse as 

well. 

 

Mouse button  Effect 

Left:   select a world object 
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Right: drag to rotate the selected, world object with respect to the camera’s 

orientation 

Middle: drag to translate the selected world object with respect to the camera’s 

orientation 

 

When the edit window is active, you can select a world object to edit by clicking the object with the 

left mouse button. If you successfully selected the object, then the fields in the edit window should 

update according to the world object you selected. Since, the mouse actions for editing world 

mirror those for moving the camera, you must click on the selected object to edit the object. Clicking 

anywhere else in the application window will modify the camera. 

Move a world object 

The claw gripper and suction end effectors grant the robot the ability to pick up, move, and release 

parts in the active scenario. Below are images of the mentioned end effectors.

 
These end effectors have unique blue bounding boxes, which link the motion of the robot arm with 

that of a part. A part can only be linked with the robot’s end effector when its bounding box is 

colliding with a blue bounding box and no other bounding box of the end effector. When the part 

can be picked up, its bounding box will appear blue. At this point, the user can press p, on his or her 

computer’s keyboard, to pick up the part. While the robot holds a part, the part’s bounding box will 

not appear blue. When a part is held by the robot, the user can again press p to release the object. In 

addition, if the user switches end effectors, then any part held by the robot is released. 

Miscellaneous Window 

This window holds a number of functions, most of which change display options in the application. 
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EE drop down 

Changes the active robot’s active end effector 

Currently there are 6 end effectors: faceplate (no end effector), suction, claw gripper, 

pointer,  glue gun, wielder. The suction and claw gripper end effectors can be used to 

interact with parts in the active scenario (see world object section). 

 

Axes Display drop down 

Changes how the axes are rendered in the WORLD, TOOL, or USER frame. 

 Axes Display the x, y, z axes of the active frame 

 Grid Displays a grid along the plane spanned by the bottom of the robot’s base segment   

for two of the axes of the active frame 

 None Display no axes 

 

Hide/Show OBBS button 

Toggles the display of the robot’s and world object’s bounding boxes. The button label describes the 

action will be performed when the button is pressed. 

 

Enable/Disable RCam button 

Toggles the robot camera display on/off and shows/hides the respective Camera window. 

 

Add/Remove Robot button 

Adds or removes a second robot. In addition, the Robot 2 label will be added to/removed from the 

top button bar. Moreover, when the second robot is added, then the Pendant label becomes Robot 1. 

Both robot’s share the same pendant window, but have separate memory spaces and are 

independent of one another. Furthermore, only the active robot’s bounding boxes will be rendering 

when bounding box rendering is active. Removing the second robot will not erase its memory 

space. As with the previous button, this button’s label describes the action will be performed when 

the button is pressed. 

 

Enable/Disable Trace button 
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Toggles the robot trace function on or off. When the trace function is active, then the position of the 

robot’s tool tip will be tracked as the robot moves and rendered in the scene. 

 

The trace is not finite, so after a certain length of tracking, the oldest trace segments will disappear 

as the active robot continues to move. Also, when the trace is turned off, then the trace buffer will 

be cleared. 

Keyboard Functions 

Pendant shortcuts 

Key Button Shortcut 
Enter ENTER 

Backspace BKSPC 
Shift* SHIFT 
F1* 1 
F2* 2 
F3* 3 
F4* 4 
F5* 5 

 UP 

 DOWN 

 LEFT 

 RIGHT 

u -X/J1 
i +X/J1 
j -Y/J2 
k +Y/J2 
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m -Z/J3 
, +Z/J3 
o -XR/J4 
p +XR/J4 
l -YR/J5 
; +YR/J5 
. -ZR/J6 
/ +ZR/J6 
- -% 
= +% 

*only valid when a text entry menu is not active on the pendant 

 

Text, number, point entry 

Some screens on the pendant require the user to input text (i.e. naming a program, commenting a 

register), which can be done with the pendant function keys in addition to the keyboard. The same 

is true for number entries (i.e. editing a data register) or point entries (i.e. editing a position 

registers), which can be completed with either the pedant’s numpad or the keyboard. 

 

General keyboard functions 

Key Combination Function 
Ctrl + c Change the active robot’s coordinate frame: a kin to pressing the COORD 

button on the pendant. 
Ctrl + e Changes the active robot’s end effector following this pattern: 

faceplate → suction → claw gripper → pointer → glue gun → wielder 
Ctrl + p If the robot is holding a part, then that part is released. Otherwise, if the 

robot’s active end effector is either the claw gripper or suction and a part is 
colliding with the robot’s end effector’s blue bounding box, then that part 
becomes held by the robot.  

Ctrl + s Saves all data for the active robot (programs, frames, registers, and 
scenarios). 

Ctrl + r Resets all of the active robot’s joint angles to 0. 
Ctrl + Alt + r Toggle recording feature on or off (a message is displayed when recording 

is on). 
Ctrl + s Saves all data for the active robot (programs, frames, registers, and 

scenarios). 
Ctrl + z Reverts a previous edit or deletion of a world object in the current active 

scenario. 
 


