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The world’s population is aging at a phenomenal rate. Certain types of cognitive decline, in particular some
forms of memory impairment, occur much more frequently in the elderly. This paper describes Autominder, a
cognitive orthotic system intended to help older adults adapt to cognitive decline and continue the satisfactory
performance of routine activities, thereby potentially enabling them to remain in their own homes longer. Auto-
minder achieves this goal by providing adaptive, personalized reminders of (basic, instrumental, and extended)
activities of daily living. Cognitive orthotic systems on the market today mainly provide alarms for prescribed
activities at fixed times that are specified in advance. In contrast, Autominder uses a range of AI techniques
to model an individual’s daily plans, observe and reason about the execution of those plans, and make decisions
about whether and when it is most appropriate to issue reminders. Autominder is currently deployed on a mobile
robot, and is being developed as part of the Initiative on Personal Robotic Assistants for the Elderly (the Nursebot
project).

1. INTRODUCTION

The world’s population is aging at a phenome-
nal rate. According to the United Nations Popu-
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lation Division, in 2000 about 606 million people,
constituting approximately 10% of the world’s
population, were over 60; by 2050, this percent-
age is expected to double to 2 billion people, or
21.4% of the population. Even more dramatic will
be the increase in the percentage of people over
80, often called the “oldest old”. Today there
are 69 million people in this category, constitut-
ing 1.1% of the world’s population; by 2050 the
percentage will nearly quadruple to 4%, with 379
million people over the age of 80 alive [29].

It has been shown that the quality of life for
people remaining in their own homes is gener-
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ally better than for those who are institution-
alized [23]; moreover, the cost for institutional
care can be much higher than the cost of care for
a patient at home. This paper describes Auto-
minder, a system aimed at helping older adults
with mild to moderate memory impairment re-
main in their homes longer. Many forms of mem-
ory impairment are strongly correlated with age
and can make it difficult for someone to orga-
nize and regularly perform their necessary daily
activities, such as taking medicine correctly, eat-
ing, drinking water, toileting, performing routine
hygiene, engaging in social and family activities,
keeping medical appointments, and so on.2 Au-
tominder serves as a cognitive orthotic, providing
its users (or “clients”) with reminders about their
daily activities. Most existing cognitive orthotics
mainly issue alarms for prescribed activities at
fixed times that are specified in advance. In con-
trast, Autominder is capable of much more flexi-
ble, adaptive behavior. It models its client’s daily
plans, tracks their execution by reasoning about
the client’s observable behavior, and makes deci-
sions about whether and when it is most appropri-
ate to issue reminders. The current version of Au-
tominder is deployed on a mobile robot, and is be-
ing developed as part of the Initiative on Personal
Robotic Assistants for the Elderly (the Nursebot
project). We are also exploring alternative plat-
forms for Autominder, such as distributed sensors
and/or wearable devices.

In the next section, we provide a description of
Autominder’s architecture and its current plat-
form. This is followed by three sections in which
we discuss Autominder’s main components: the
Plan Manager, the Client Modeler, and the Per-
sonal Cognitive Orthotic (its reminder generation
module). We then present a brief overview of
other cognitive orthotic systems, and conclude
with a description of our ongoing work on the
system.

2The medical community classifies such activities into
three groups: Activities of Daily Living, Intermediate Ac-
tivities of Daily Living, and Extended Activities of Daily
Living. These distinctions do not matter for this paper.

2. AUTOMINDER’S ARCHITECTURE

To motivate Autominder’s architecture, it is
useful to provide a simple example of its inter-
action with a client. Consider a forgetful, elderly
person with urinary incontinence who is supposed
to be reminded to use the toilet every three hours,
and whose next reminder is scheduled for 11:00.
Suppose that, using on-board sensors, the robot
on which Autominder is deployed observes the
person enter the bathroom at 10:40 and stay there
for a period of a few minutes. Autominder may
conclude that toileting has occurred, and that,
consequently, it should not issue a reminder at
11:00 as previously planned. Instead, the client’s
plan must be adjusted, so that the next scheduled
toileting is to occur approximately three hours
later, i.e., around 13:40. Flexibility is essential
because a strict three-hour interval may not be
optimal. For instance if the client’s favorite tele-
vision program is aired from 13:30 to 14:00, it
might be better to issue a reminder at 13:25, and
provide a justification that mentions the televi-
sion program: “Mrs. Smith, Why don’t you use
the toilet now? That way I won’t have to inter-
rupt you during your show.”

To achieve this type of behavior, Autominder
must maintain an accurate model of the client’s
daily plan, monitor its execution, and plan re-
minders accordingly. Autominder’s architecture,
depicted in Figure 1, has three main components,
one dedicated to each of these tasks. The Plan
Manager stores the client’s plan of daily activities
in the Client Plan, and is responsible for updat-
ing it and identifying and resolving any potential
conflicts in it. The Client Modeler uses infor-
mation about the client’s observable activities to
track the execution of the plan, storing beliefs
about the execution status in the Client Model.
A reminder generation component called the Per-
sonal Cognitive Orthotic reasons about any dis-
parities between what the client is supposed to do
and what she is doing, and makes decisions about
whether and when to issue reminders.

Autominder is currently embedded on a mobile
robot named “Pearl”, designed and built by re-
searchers at Carnegie Mellon University. Pearl is
constructed on a Nomadic Technologies Scout II
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Figure 1. Autominder Architecture

robot, with a custom-designed and manufactured
“head”, and includes a differential drive system,
two on-board Pentium PCs, wireless Ethernet,
SICK laser range finders, sonar sensors, micro-
phones for speech recognition, speakers for speech
synthesis, touch-sensitive graphical displays, and
stereo camera systems. See [18] for details of
Pearl’s hardware and navigation algorithms.

3. THE PLAN MANAGER

The first of Autominder’s three main compo-
nents is the Plan Manager (PM). The technol-
ogy in the PM grew out of our earlier work on
plan management, in particular, the Plan Man-
agement Agent (PMA), a prototype intelligent
calendar tool [20]. In Autominder, as in PMA,
we found that it was essential that we be able
to represent a rich set of temporal constraints in
the plans: for example, we may need to express
that the client should take a medication within
15 minutes of waking, and then eat breakfast be-
tween 1 and 2 hours later. We thus model plans
as disjunctive temporal problems (DTPs) [19,24]
and use a highly efficient algorithm that we de-
veloped for reasoning about them [28,25]. DTPs
allow for both quantitative (metric) and qualita-
tive (ordering) constraints, as well as conjunctive
and disjunctive combinations of them. We have
also recently developed an approach to handling
conditional constraints [27], but we have not yet
implemented these in the PM.

Formally, a DTP is defined to be a pair <

“Toileting should begin between 11:00 and 11:15.”
660 ≤ ToiletingS − TR ≤ 675
“Toileting takes between 1 and 3 minutes.”
1 ≤ ToiletingE − ToiletingS ≤ 3
“Watching the TV news can begin at 18:00 or 23:00.”
1080 ≤WatchNewsS − TR ≤ 1082∨
1380 ≤WatchNewsS − TR ≤ 1382
“The news takes exactly 30 minutes.”
30 ≤WatchNewsE −WatchNewsS ≤ 30
“Medicine should be taken within 1 hour of
finishing breakfast.”
0 ≤ TakeMedsS − EatBreakfastE ≤ 60
“Toileting and watching the news cannot overlap.”
0 ≤WatchNewsS − ToiletingE ≤ ∞∨
0 ≤ ToiletingS −WatchNewsE ≤ ∞

Figure 2. Examples of the use of DTP Con-
straints

V,C >, where V is a set of variables (or nodes)
whose domains are the real numbers, and C is
a set of disjunctive constraints of the form: Ci :
x1−y1≤ b1 ∨ . . . ∨ xn−yn≤ bn such that xi are
yi are both members of V , and bi is a real num-
ber. A solution to a DTP is an assignment to
each variable in V such that all the constraints
in C are satisfied. If a DTP has at least one
solution, it is consistent. Within the PM, we as-
sign a pair of DTP variables to each activity in
the client’s plan: one variable represents the start
time of the activity, while the other represents its
end time. We can easily encode a variety of con-
straints, including absolute times of events, rel-
ative times of events, and event durations, and
can also express ranges for each of these. Figure
2 gives some typical plan constraints encoded in
the language of DTPs. The start (end) of a step A
is denoted AS (AE). Note that to express a clock-
time constraint, e.g., TV watching beginning at
18:00, we use a temporal reference point (TR), a
distinguished value representing some fixed clock
time. In the figure, as well as in the Autominder
system itself, the TR corresponds to midnight;
the schedule is updated each day.
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3.1. Plan Initialization
The PM in Autominder is initialized in ad-

vance of its use with a specification of the client’s
daily plan, constructed by the client’s caregiver,
in consultation with the client. Different daily
plans might be constructed, e.g., one for week-
days and one for weekends, with the appropriate
plan loaded each morning, but here we will as-
sume that there is just one daily plan.

We currently have a rather minimal GUI for
specifying a daily plan.3 It allows one to select
pre-constructed plan fragments for routine activ-
ities from a library, and to then input specific
temporal constraints on the steps in the selected
fragments. Thus, a caregiver might begin con-
struction of a typical daily plan by performing
the following steps:

1. Select a pre-constructed plan fragment for
breakfast. The fragment includes three
steps–going to the kitchen, making break-
fast, and eating breakfast–as well as tempo-
ral constraints that order these, causal links
that capture their dependencies, and some
default durations, e.g., that the eating step
will take between 20 and 30 minutes.

2. Specify that the first step in the breakfast
plan must begin by 7:00, and that the last
step must be done by 8:30.

3. Select a pre-constructed plan fragment for
taking medicine, which has only one step–
take the medicine–with a default duration
of 1 minute.

4. Specify an interstep constraint to ensure
that the medicine taking occurs within one
hour of finishing breakfast.

As each pre-constructed plan fragment or con-
straint is added, the PM performs step merging
[26,30], that is, it checks to ensure the consistency
of the daily plan being constructed and resolves
any conflicts. To do this, it uses the same tech-
niques for consistency checking that are used dur-
ing plan execution; these techniques are described
in the next subsection.
3The same GUI can be used for modifying the plan once
execution has begun.

Although our current interface is sufficient for
development and testing purposes, further work is
required to develop more user-friendly interfaces
to allow caregivers to specify plans.

3.2. Plan Update
The primary role of the PM is to update the

client’s plan as the day progresses, ensuring its
continued consistency. Update occurs in response
to four types of events:

1. The addition of a new activity to the plan.
The daily plan created at initialization provides
a starting point for daily activities, but during
the course of the day the client and/or her care-
givers may want to make additions to the plan:
for instance, to attend a bridge game or a newly
scheduled doctor’s appointment. At this point
plan merging must be performed to ensure that
the overall plan remains consistent. Suppose that
the client plan initially specifies taking medicine
sometime between 14:00 and 15:00, and that the
client then adds a bridge game outside the apart-
ment to begin at 14:30. The PM must update the
plan so that the medicine-taking step precedes the
client leaving for the bridge game. (We assume
that the medicine must be taken at home.) If, in
addition, the medicine-taking must occur at least
two hours after each meal, the added restriction
on when the medicine will be taken may also fur-
ther restrict the time of lunch.

2. The modification or deletion of an activity
in the plan. This is similar to the previous case:
the bridge game might be cancelled, or the doc-
tor’s office may change the time of the appoint-
ment.4 The types of required changes are like
those needed when an activity is added. Note
that the PM will add or tighten constraints if
needed, but will not “roll back” (i.e., weaken) any
constraints. Continuing the example above, if the
bridge game were cancelled, the constraint that
the medicine be taken between 14:00 and 14:30
would remain in the plan. More sophisticated
plan retraction is an area of future research.

4Currently, we allow arbitrary changes to be made to the
plan. In subsequent versions of the system, we will need to
implement security mechanisms that, for instance, allow
the user to make changes to social engagements but not
the medicine-taking actions.
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3. The execution of an activity in the plan.
When the Client Modeler, discussed below, infers
that an activity has been performed, it notifies
the PM, which then updates the plan accordingly.
Suppose again that medicine-taking is supposed
to occur at least two hours after the completion
of each meal. Upon learning that breakfast has
been completed at 7:45, the PM can establish an
earliest start time of 9:45 for taking the medicine.

4. The passage of a time boundary in the plan.
Just as the execution of a plan step may neces-
sitate plan update, so may the non-execution of
a plan step. As a very simple example, suppose
that the client wants to watch the news on tele-
vision each day, either from 18:00-18:30 or from
23:00-23:30 p.m. At 18:00 (or a few minutes af-
ter), if the client has not begun watching the
news, then the PM should update the plan to en-
sure that the 23:00-23:30 slot is reserved for that
purpose. (To keep the example simple, assume
that the client always wants to watch from the
very beginning of the show.)

To perform plan update in each of these cases,
the PM formulates and solves a disjunctive tem-
poral problem that includes the constraints al-
ready in the client plan augmented with the con-
straints imposed by the condition triggering the
current update. The details of the problem for-
mulation and the processes used to solve it are
outside the scope of the current paper, but see
[22]. Here we note only that for the problems we
have worked with so far in the Autominder do-
main, the process of update almost always takes
less than one second, except when it detects a
plan failure.

4. THE CLIENT MODELER

The second major component of Autominder is
the Client Modeler (CM). The job of the CM is
to monitor the execution of the client plan, us-
ing information about observable actions of the
client, as well as knowledge of what time it is and
whether and when any reminders were issued. In
our current implementation, the observable infor-
mation is relatively impoverished–basically, the
robot’s on-board sensors provide the CM only
with reports of the current location of the client

(what room she is presently in). However, one
can imagine enhancing the system in a variety
of ways: e.g., with sensors on pill-bottle caps, on
kitchen drawers and the refrigerator, on the toilet
flusher, etc.

The task performed by the CM is a particularly
challenging one because it involves monitoring a
non-Markovian system. The client plans, recall,
may simultaneously contain qualitative and quan-
titative relationships such as “taking medicine
must occur before breakfast”, “the television is
usually turned on 10-15 minutes after finishing
lunch”, and “lunch is eaten 3-4 hours after break-
fast”. Thus, inferring the current state of the
client’s plan requires using information from sev-
eral different time-points.

To infer the state of the client plan, we need
to be able to perform temporal reasoning under
uncertainty. Previous approaches tend to fall into
two categories. Those in first category, which de-
rive from Time Nets [10], augment the nodes and
arcs in a standard Bayesian network to implicitly
model time. Time is encoded in the values of the
nodes while temporal relationships are encoded
in the conditional probability tables (CPTs) of
the nodes. In this way, the Bayes net can main-
tain and infer probability distributions over when
events occur or when properties of the environ-
ment change values. The chief limitation of for-
malisms in this category, with respect to moni-
toring, is their inability to model the fluctuating
values of fluents, an ability required by the CM.

The second category, exemplified by Dynamic
Bayes Nets (DBNs) [4] uses a more explicit model
of time. Instead of simply ascribing temporal se-
mantics to otherwise non-temporal elements in a
formalism, these approaches annotate elements of
a model with time points or intervals. In gen-
eral, these approaches take a non-temporal causal
structure and instantiate it once for each time
point or interval modeled. Most authors call each
instance of this causal structure a time-slice. Arcs
connecting nodes in different time-slices encode
the temporal dependencies between elements.

In some ways, DBNs are ideal for monitoring.
They allow beliefs to continually evolve over a
possibly infinite timeline. Also, fluents fit nicely
into DBNs, which allow variables to change their
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values at each time slice transition. In domains
where the Markov assumption is easily applied,
DBNs prove to be an intuitive, compact, and rel-
atively tractable model. However, because they
rely on the Markov assumption, their ability to
express temporal relationships is limited.

Because the Markov property is violated in
Autominder, we use a new reasoning formalism
called a Quantitative Temporal Bayesian Net-
works (QTBNs) [3]. A QTBN maintains two
Bayes nets: a DBN containing all causal rela-
tionships and a standard Bayes net (similar to
a Time Net) that represents all temporal rela-
tionships. Interface functions carry information
between the two networks.

The structure of the QTBN is generated auto-
matically from the client plan, making two initial
assumptions: first, that all activities in the plan
will, with reasonable probability, be executed by
the client within the time range specified in the
plan, and second, that the actual time of an ac-
tivity can be described by a uniform probability
density function over the range associated with
that activity. This naive initial model can be re-
fined using information provided by the caregiver.

The CM updates the client model whenever
new sensor data arrives or a time boundary in
the Time Net component is passed. In the former
case, the new evidence is recorded in the DBN
component, and then standard DBN rollup oc-
curs. In the latter case, interface functions first
transfer information between the DBN and the
time net, working in both directions, and then
rollup occurs. (For details, see [3].) Whenever
the result of CM update changes the value of a
node representing an action so that it rises over
a threshold belief value, the CM notifies the rest
of the system. When the value enters an interme-
diate range, the system may ask for verification
from the client, e.g., “Mrs. Smith, Did you just
drink your water?”

We have not yet implemented learning capabil-
ities in the CM, but hope to do so in the near
future so that the CM can continually update
its model of the client’s expected behavior. Ad-
ditionally, we are currently developing a more
theoretically sound inference mechanism for non-
Markovian execution monitoring in general. Al-

though the QTBN framework has so far worked
in practice, the correctness of its inferences has
not been formally demonstrated. We are thus de-
veloping an approach that has the same behavior
as the QTBN, while being provably sound.

5. REMINDER GENERATION

The final component in Autominder is called
the Personalized Cognitive Orthotic (PCO), and
is responsible for deciding what reminders to is-
sue and when [15]. In making its decisions, the
PCO aims to balance four criteria: (i) ensur-
ing that the client is aware of planned activities;
(ii) achieving a high level of client and caregiver
satisfaction; (iii) avoiding introducing inefficiency
into the client activities; and (iv) avoiding mak-
ing the client overly reliant on the reminder sys-
tem, which would have the detrimental effect of
decreasing, rather than increasing client indepen-
dence.

It would be straightforward to generate re-
minders if only the first criterion were of con-
cern: one could simply issue a reminder for every
activity at its earliest possible start time, per-
haps repeating the reminder at regular intervals
if the activity is not performed. However, such a
policy might do a potentially poor job of satisfy-
ing the other criteria. It might do poorly on the
second criterion because it ignore the preferences
of the caregiver and the client, and so, for in-
stance, might issue a reminder to use the toilet in
the middle of the client’s favorite television pro-
gram. It might do poorly on the third criterion
because it fails to reason about the interactions
between activities, and so might issue a reminder
to the client to (get up from her chair and) go
take her medicine, and then just when she has
returned and sat down again, issue a reiminder
to (get up from her chair and) go use the toilet.
And it might do poorly on the fourth criterion by
never allowing the client to initiate activities on
her own, instead always pre-emptively issuing re-
minders. (Arguably, the third and fourth criteria
are special instances of the second.)

To achieve plans that have high quality with
respect to all four of these criteria, the PCO
adopts a local-search approach called Planning-
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by-Rewriting (PbR) [1]. It begins by creating an
initial reminder plan that includes a reminder for
each activity in the client plan at its earliest pos-
sible start time, and then performs local search,
using a set of plan-rewrite rules to generate alter-
native candidate reminding plans. For example,
one rewrite rule deletes reminders for activities
that have low importance and that are seldom
forgotten by the client. Another rule shifts the
time of a reminder for an activity to its expected
time, i.e. the time by which the client usually
performs the activity. Yet another rule spaces
out reminders for activities for the same type of
action: for instance, instead of issuing eight re-
minders in a row to drink water, application of
this rule would result in them being spaced out
through the day.

The rewrite rules do not always result in valid
reminder plans, i.e., plans that are consistent with
respect to the constraints in the underlying client
plan. Invalid reminder plans are detected and
deleted, as are plans that omit reminders for crit-
ical activities such as taking medicine. The re-
maining newly generated reminder plans are eval-
uated using a heuristic function that takes into
account factors such as the number of reminders,
their timing, and their relative spacing. The re-
minder plan with the highest ranking is selected,
and the process iterates, with rewrite rules now
being applied to the selected plan. Iteration con-
tinues until either some reminder plan is judged
to have quality exceeding some threshold, or there
is an interrupt indicating that there has been a
change to the client plan or to the client model.
In the latter case, the entire reminder-plan gen-
eration process is restarted.

The PCO has also been designed to enable
the generation of justifications for reminders, al-
though this feature has not yet been fully imple-
mented. Justifications are motivated by the hy-
pothesis that client adherence to plans may be im-
proved when the reasoning behind the existence
and timing of a reminder is provided. For ex-
ample, a reminder of the form “If you take your
medicine now, you will not have to do it in the
middle of your show,” may be more compelling
than the simple message “Time for medicine.” In
generating a justification for a reminder, the PCO

can make use of the underlying client plan, the
preferences of the caregiver and the client, and
the particular rewrite rules used in creating the
current reminder plan.

To perform a preliminary evaluation of the
PCO, and in particular, to assess the suitability
of the ranking heuristic used during local search,
we constructed a client simulator that could be
tuned for a set of stereotypical client execution
patterns. The simulator could be tuned both for
the client’s reliability (how likely she was to per-
form activities without prompting) and her re-
sponsiveness (how likely she was to perform ac-
tivities after a prompting). In all, we modeled
eight different client behavior patterns. We con-
sidered four different reminder strategies: issuing
reminders for all activities at the earliest possi-
ble start times; at the latest possible start times;
making random selections of activities and times
of reminders; and using the PCO’s strategy. We
conducted an experiment with cross-factorial de-
sign, simulating daily behavior in 32 (8x4) condi-
tions, running two cases of each condition. We
produced a graphical display of each outcome,
which we provided to faculty from the School of
Nursing at the University of Pittsburgh who are
involved in the Nursebot project, and we asked
them to complete questionnaires ranking the re-
sulting behavior along various dimensions that
correspond to the four evaluation criteria listed
at the beginning of this subsection. Although the
results are mixed for the simpler of the two cases
(an extremely simple case where there are no in-
teractions between activities), the PCO strategy
was clearly superior in the more interesting and
more realistic second case [16].

6. RELATED SYSTEMS

The idea of using computer technology to en-
hance the performance of cognitively disabled
people dates back nearly forty years [6], and a
number of systems exist to help people with cog-
nitive impairment perform routine activities sat-
isfactorily. Most of these systems can be classi-
fied as either scheduling aids, which help a person
manage a number of distinct activities over an ex-
tended period of time, or as instructional cueing
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aids, which help a person navigate the generally
consecutive steps of a single activity. Autominder
is an example of a scheduling aid, while COACH
[14] provides an example of an instructional cue-
ing device. COACH assists a severely demented
person with hand washing, by using a set of sen-
sors to “watch” each step of the process, issuing
a reminder if steps such as using soap are skipped
or performed out of turn.

Early technology for scheduling aids included
talking clocks, calendar systems, and similar de-
vices, while more recent systems have provided
reminders using the telephone [7], personal digi-
tal assistants [5,9] and pagers [8]. However, with
the exception of PEAT [13], these systems gener-
ally function in a manner similar to alarm clocks:
they provide alarms for prescribed activities at
fixed times that are specified in advance by a
client and/or her caregiver. PEAT was the first,
and to the best of our knowledge, the only mar-
keted cognitive orthotic system that relies on au-
tomated planning technology. PEAT, which is
marketed primarily to patients with traumatic
brain injury, is deployed on a handheld device,
and provides visible and audible clues about plan
execution. Like Autominder, PEAT maintains
a detailed model of the client’s plan and tracks
its execution, propagating temporal constraints
when the client inputs information specifying that
an action has been performed. Also, upon the ad-
dition of a new activity, PEAT simulates the plan
to uncover any conflicts, using the PROPEL plan-
ning and execution system [12] for this purpose.
However, PEAT uses a less expressive planning
language than Autominder; it does not attempt
to infer the plan execution status; and it does
not perform principled reasoning about what re-
minders to issue when, instead automatically pro-
viding a reminder for each planned activity.

Within the past year or two, several new
projects aimed at designing intelligent cognitive
orthotics have begun to emerge [2,11,17], and we
look forward to increased activity in this area in
the near future.

7. CONCLUSION

The Autominder system as described has been
fully implemented, except where noted in the
text. The system is written in Java and Lisp for a
Wintel platform; we also have a Web-based inter-
face for plan initialization and update. The cur-
rent version of the system has been tested in the
laboratory; an earlier version was integrated on
the mobile robot Pearl and included in a prelim-
inary field test conducted at the Longwood Re-
tirement Community in Oakmont, PA in June,
2001. The goals of that test were, first, to ensure
that the robot control software and the cognitive
orthotic would work together, and second, to get
an initial sense of the acceptability of such a sys-
tem to older individuals. On both accounts, the
test was successful. Admittedly, the older adults
who enrolled in the studies were volunteers, and
people likely to be intimidated or put off by this
type of technology would not have volunteered.
However, the people who did participate were uni-
formly excited about the system, as were the staff
at Longwood, who made a number of suggestions
to us about how this type of technology could also
be used to assist them in their caregiving tasks.
In the near future, we hope to conduct much more
extensive field tests to exercise Autominder’s re-
minding capabilities.

We have a number of plans for the contin-
ued development of Autominder, some of which
were already mentioned in this paper. We have
planned extensions to the individual reasoning
modules, for example, adding the ability to han-
dle conditional constraints to the PM, supple-
menting the PM with full-fledged planning capa-
bilities to support replanning, and enabling the
CM to learn the patterns of client activity over
time, in order to better interpret observed behav-
ior. As mentioned, we are also conducting work
to develop more principled foundations for the
reasoning done by the CM. An additional major
area of current work involves the client-system in-
teraction: we are presently investigating the use
of reinforcement learning techniques to develop
adaptive reminder policies. Additionally, we are
actively exploring the implications of deploying
Autominder on alternative hardware platforms.
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Although there are many advantages to using a
robot, including the ability to piggyback on other
capabilities, there are clearly also reasons to ex-
plore handheld and/or wearable devices as well as
ubiquitous sensors to support cognitive orthotics.
Finally, after our experiences with the staff at
Longwood, we are interested in exploring the use
of systems like ours within the facility-based set-
ting. In that context, the system would coordi-
nate the daily plans not only of a single person,
but of multiple people, including both the resi-
dents and the staff that takes care of them.
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