Foreword vii List of Tables ix Notation xi 1. INTRODUCTION 1 1.1. Aims and Topics of the Treatise 1 1.2. Historical Background 3 2. THE FUNDAMENTALS OF DISLOCATION DYNAMICS 11 2.1. The Glide Resistance and Dislocation Shape 11 2.1.1. Forces on a dislocation 12 2.1.2. Drag resistance 19 2.1.3. Lattice resistance and the kink-mode of dislocation motion 21 2.1.4. Obstacle resistance and the bowing-mode of dislocation motion 24 2.2. Thermodynamics and Dislocation Dynamics 36 2.1.1. General consideration 38 2.2.2. The rate of activation over local obstacles 41 2.2.3. The activation free enthalpy for surmounting obstacles 50 2.2.4. The rate of activation over linear barriers 54 3. THERMALLY ACTIVATED DISLOCATION VELOCITY IN BOWING-MODE CRYSTALS 64 3.1. Two -Dimensional Thermally Activated Dislocation Glide through Randomly Distributed Obstacles 66 3.1.1. Assumptions and approximations 67 3.1.2. Thermally activated velocity 72 3.2. Statistics of the Thermally Activated Motion 75 3.2.1. Statistical characteristics of moving dislocations 75 3.2.2. Stationary distributions and dislocation velocity 84 3.3. Computer Simulation of Dislocation Motion 90 3.3.1. Simulation procedures and algorithms 91 3.3.2. Dislocation motion features revealed by computer simulation 96 3.3.3. The dislocation velocity: computer simulation and experimental data 114 3.4. Special Effects in the Dislocation Velocity 131 3.4.1. Dislocation viscosity and inertial contributions 132 3.4.1. Obstacle diffusion and dislocation drag 143 4. THERMALLY ACTIVATED DISLOCATION VELOCITY IN KINK-MODE CRYSTALS 148 4.1. Dislocation Motion in Ideal Kink-Mode Crystals 150 4.1.1. Thermally activated velocity 150 4.1.2. Experimental data and the comparison with bowing-mode crystals 158 4.2. The mixed Kink-Obstacle Mode of Dislocation Motion 184 4.2.1. A collision kink regime 185 4.2.2. A collision-less kink regime with variations in dislocation shape 196 4.3. Influence of Fine and Electronic Structure of Dislocations 206 4.3.1. Dissociation and fine structure of moving dislocations 206 4.3.2. The dislocation charge and electronic excitation 211 5. VISCOUS MOTION OF DISLOCATIONS 221 5.1. Dislocation Motion Features in the High-Velocity Region 223 5.2. Phonon Drag 232 5.2.1. Abharmonic phonon drag 233 5.2.2. Other phonon contributions 244 5.3. Electron Drag 251 5.3.1 Electronic drag in normal metals 252 5.3.2. Drag in Superconductors 260 5.4. Magnon Drag 264 5.5. Extrinsic Dissipative Mechanisms 272 5.6. Kink Drag 274 6. EXPERIMENTAL RESULTS 277 6.1. Techniques 278 6.1.1. Samples 279 6.1.2. Methods for revealing the dislocation motion 280 6.1.2.1. Etch pits 281 6.1.2.2. X - Ray topography 291 6.1.2.3. Transmission electron microscopy 293 6.1.2.4. Observation of slip lines in motion 298 6.1.3. Introduction of movable dislocations into the crystal 303 6.1.4. Methods of loading 305 6.1.5. Alternative methods of velocity measurement 306 6.1.6. Features and precautions in velocity measurement 314 6.2. Bowing-Mode Crystals 317 6.2.1. Metals 317 6.2.1.3. FCC metals 318 6.2.1.2. BCC metals 321 6.2.1.3. HCP metals and ordered alloys 332 6.2.2. Ionic Crystals 336 6.3. Kink-Mode Crystals 370 6.3.1. Elemental semiconductors 371 6.3.2. Compound semiconductors 386 6.4. High Velocity Region 400 6.5. Externally-Induced Effects 407 6.5.1. Influence of irradiation 408 6.5.2. Excitation effects 422 6.5.3. Hydrostatic pressure influence 428 7. MOTION OF SLIP LINES 434 7.1. Features of Array Motion and Smeared-out Obstacle Models of Arrays 435 7.2. Discrete Obstacle Model 448 7.3. Continuum Approximation 468 8. Plastic Deformation and Dislocation Dynamics 470 8.1. Plastic Deformation as a Dynamic Dislocation Process 471 8.1.1. Strain rate equations 472 8.1.2. The concept of internal stresses 477 8.1.3. Stress-strain curves 480 8.2. Initial Stages of Plastic Deformation 487 8.2.1. Nucleation and motion of dislocations 487 8.2.2. Yield point and easy glide 497 8.3. Work Hardening 502 8.3.1 Stage I and dipole hardening 503 8.3.2. Stage II and forest dislocations 507 8.4. Conclusions 512 APPENDICES 513 REFERENCES 517 SUBJECT INDEX 531