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Noise Sensitivity
The paper presents a new two-dimensional computational approach and result
laminar/laminar internal condensing flows. Accurate numerical solutions of the full g
erning equations are presented for steady and unsteady film condensation flows
sidewall inside a vertical channel. It is found that exit conditions and noise sensitivity
important. Even for stable steady solutions obtained for nearly incompressible v
phase flows associated with unconstrained exit conditions, the noise sensitivity t
condensing surface’s minuscule transverse vibrations is high. The structure of wave
underlying characteristics, and the ‘‘growth/damping rates’’ for the disturbances are
cussed. A resonance condition for high ‘‘growth rates’’ is proposed and its efficac
significantly enhancing wave motion and heat transfer rates is computationally de
strated. For the unconstrained exit cases, the results make possible a separately re
study of the effects of shear, gravity, and surface tension on noise sensitive
solutions.@DOI: 10.1115/1.1641063#
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1 Introduction
Accurate numerical solutions of the full governing equatio

are presented for steady and unsteady laminar/laminar film
densation flows on a sidewall inside a vertical channel. This
also a good geometry for addressing~see Liang et al.@1# and
Liang @2#! the influence of shear over gravity—either by changi
the channel inclination from vertical to horizontal~see Fig. 1! or
by studying the flow in the absence of gravity~space applica-
tions!. Such results are important in understanding qualitat
phenomena and obtaining quantitative results~after suitable ex-
perimental validations of the computational tool for quasi-stea
annular/stratified internal condensing flows! that are relevant to
good design and performance of condensers in applications~see
Krotiuk @3# and Faghri@4#! such as looped heat pipes, capilla
pumped loops, thermal management systems, and electr
cooling devices. These applications often involve pure vap
with none to negligible presence of noncondensable gases.
damental results reported in this paper address issues of ann
stratified condensing flows’ heat transfer rates, flow realizabi
stability, resonant and nonresonant noise sensitivity, and exit
dition sensitivity.

This channel flow geometry is also a simple modification of
classical flat plate geometry associated with classicalexternalfilm
condensation flow studies over vertical, horizontal, and til
walls ~Nusselt@5#, Rohsenow@6#, Sparrow and Gregg@7#, Koh
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et al. @8#, Dhir and Lienhard@9#, Rose@10#, Tanasawa@11#, Cess
@12#, Koh @13#, etc.!. Heat transfer correlations for laminar an
wavy condensate situations for the vertical/inclined plate geo
etry are given by Kutateladze@14# and correlations for turbulen
condensate, as proposed by Labuntsov@15#, are given in Incropera
and DeWitt@16#. For smooth-interface laminar/laminar conden
ing flows over a flat plate in vertical, horizontal, and tilted co
figurations; the computational approach developed in this pa
yields results~see Yu@17#! in agreement with the relevant solu
tions of Nusselt@5# and Koh@14#.

With regard tointernal condensing flows, some qualitative un
derstanding exists in papers by Chow and Parish@18#, Narain
et al. @19#, etc. These analyses/predictions rely on integral con
volume formulations that employmodels for interfacial shear
~e.g., Henstock and Hanratty@20#! and are typically available only
for fast vapor motions requiring no exit condition specificati
~i.e., the vapor flow in Fig. 1 is ‘‘parabolic’’!. To address laminar/
laminar flow issues that cannot be addressed by the above
proach, direct numerical simulations are undertaken here to b
understand the wave phenomena and associated effects. St
speaking the results presented here are valid only for laminar
por flows ~i.e., inlet vapor Reynolds number based on chan
height as characteristic length should be approximately less
1400–2000! and laminar condensate flows~i.e., film Reynolds
number as defined in Incropera and DeWitt@16# should be ap-
proximately less than 1400–1800!. In practice, inlet vapor Rey-
nolds number up to 7000 is allowed because of sufficiently th
laminar sub-layer in the vicinity of the interface. This is becau
vapor streamlines, as they approach the interface, are almost
pendicular to it~see Liang et al.@1#! and the velocity along the
streamlines are very small. This allows the vapor streamline
pierce the interface and drift downstream as liquid streamline
an even slower motion of thelaminar condensate. As a result, it i
found that computational predictions of film thickness, heat tra
fer rates, etc. under laminar/laminar assumptions~though perhaps
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not the predictions of vapor velocity profile outside the lamin
sublayer of the vapor surrounding the interface!! are in good
agreement~see Liang et al.@1#! up to inlet Reynolds number a
high as 8000, with relevant experimental results of Lu@21#.

This paper proposes a novel and direct computational techn
for steady and unsteady internal condensing flows in the annu
stratified regime. The unsteady laminar/laminar simulations e
ploy a suitable adaptive grid and numerical solution of the app
priate hyperbolicinterface tracking equationwhich is the same as
the one used in level-set method~see Sussman et al.@22# and Son
and Dhir @23#!, VOF method~see Hirt and Nichols@24#!, and

Fig. 1 Flow geometry for simulations
70 Õ Vol. 71, JANUARY 2004
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other methods~Tezduyar@25#, etc.!. The numerical scheme use
in this paper for theinterface tracking equationexploits existing
mathematical knowledge and experience for this equation~see
Abbott and Basco@26#! to sidetrack the inaccuracy problems a
sociated with reconstructing interface location within and arou
the interface cellspredicted by VOF or related interfacecapturing
techniques~see Tezduyar@25#, Li and Renardy@27#, etc.!. The
scheme used here ensures convergence and accuracy of bo
amplitude and the phase of the interfacial waves. At each t
step, the scheme locates the interface, solves the Navier-St
equation in each phase, satisfies the full nonlinear condition
the phase-change interface, and satisfies the relevant inlet, o
and wall conditions. Since vapor in internal condensing flo
slow down by the exit, the steady vapor flow equations are ‘‘
liptic’’ in the exit region ~i.e., downstream points affect a flow
variable’s value at a representative point P in Fig. 1! and exit
condition needs to be specified for a solution. Note that any c
denser section of the type shown in Fig. 1 is, typically, just apart
of a flow loop. A flow loop which maintains a constant pressu
p0 and constant flow rate of saturated vapor at the inlet may a
be designed~see, e.g., Fig. 2! to provide:~a! an unconstrained exi
condition ~which is very often the case when exit pressure,
equivalently, exit vapor flow rate is free to adjust to any value
seeks! that allows the vapor to flow at nearly constant density~its
density at the inlet!, or ~b! a constrained exit condition~this situ-
ation arises, when further downstream of the exit, there are na
constraints in the flow loop or, as in Fig. 2, there are active fl
control devices! that forces non-negligible vapor density vari
tions between the inlet and the outlet of the condenser section
the constrained exit case not considered in this paper, the ‘
steady’’ equations are also spatially ‘‘elliptic’’ near the exit and
exit condition can be prescribed if a nonconstant vapor den
and an equation of state—of the typer25r2(p2 ,T2)— is incor-
Fig. 2 The solenoid valve V1 „actively controlled by flow meter F1… and constant heat input Q̇inÉṀin "h fg „p B… to the
boiler fixes inlet pressure p 0 and inlet flow rate to the test section. The mass flow rate through pump P is adjusted to
a value that matches the corresponding value at F1. A high flow rate of the coolant „water … flow around the test section
fixes condensing surface temperature at a nearly uniform value of Tw while it still allows for different heat removed
rates for different exit qualities Ze.
Transactions of the ASME
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porated in the governing equations for the vapor phase. The
constrained exit case, for which vapor compressibility is unimp
tant, is the focus of steady and unsteady simulations in this pa
For these simulations the ‘‘unsteady’’ equations for the unc
strained exit case arenot spatially ‘‘elliptic’’ and an exit condition
cannot be prescribed if a constant inlet vapor densityr25r20 is
assumed in the governing equations. Constant vapor density
sumption is valid for conditions involvingDr2/r20!1 or, say,
Dr2/r20 is less than 5% —this being the typical criteria for a
suming incompressibility for gases that flow inside a duct a
have Mach number values less than 0.3. For the unconstra
exit cases involving an assumed constant density for the va
phase, it is shown in this paper that, if att50, one starts atany
steady solution of the steady ‘‘elliptic’’ problem in Fig. 1~under
any reasonable and well-defined exit condition!, then, over time
~utilizing unconstrained unsteady simulation fort>0), a natural
steady solution and an associated natural exit condition is
tained at large times. This naturally determined value of the
condition for prescribed inlet condition is very similar to the we
known behavior of other incompressible duct flows~single phase
or air/water flows! which also exhibit well-defined pressure di
ference for given inlet pressure and flow rate. In fact, in Lia
et al.@1#, it is shown that the naturally selected quasi-steady co
putational solutions that are obtained for flow cases considere
the experimental runs of Lu@21# and Lu and Suryanarayana@28#
yield values of film thickness, heat transfer rates, etc., that ar
good agreement with experimentally obtained values. While
generates confidence in the proposed method of identifying st
steady solutions, these stable solutions are shown here to be
sitive to minuscule bottom plate noise that are typically alm
always present. This makes the interface wavy for most situati
The reported determination of phase speeds andcharacteristics
curves ~along which disturbances propagate! for the waves im-
prove our understanding of these flows and leads to a propos
a new hitherto unknown resonance condition whose efficac
also demonstrated in this paper. It is shown that specifically
signed noise sources placed at suitably specified locations
specified variations in frequency satisfy the resonance criteria
enhance the wave energy and heat transfer rates significantly

Unsteady simulations starting from steady solutions for the c
strained exit cases are not considered here. In this case, comp
ibility effects on the stability and noise-sensitivity are expected
be important and these effects are one of the underlying ca
behind various interesting experimental results~see Bhatt et al.
@29#, etc.! dealing with experiments whose exit conditions a
constrained. The stability and flow oscillations issues associ
with this case are also believed to arise in applications such
Looped Heat Pipes~Faghri @4#! where limits on the power of
passive pumping~wicks, etc.! cause pressure variation constrain
at the condenser exit while approximately constant values of p
sure and flow rate is retained at the condenser inlet.

This paper restricts itself to consideration of single but arbitr
Fourier components of bottom plate noise~standing waves! and
avoids discussions of wave interactions resulting from more c
plex random noises made up of several Fourier compone
Within this limited context, we find that the front-steepening so
tary wave patterns that are experimentally observed on air/w
type vertical liquid films ~see Liu and Gollub@30# and Alek-
seenko, et al.@31#! or the ones that are obtained by Miyara@32# in
the reported computational simulations for the Nusslet@5# prob-
lem that deals with condensation on a vertical plate, occur m
more gradually for the gravity dominated internal condensing fl
cases considered here. Categorization oftypical noise levels~with
a random mix of amplitude, frequency, and wavelengths! andtypi-
cal responses~or strange attractorsas termed by Liu and Gollub
@30#! requires separate study and is outside the scope of this p
Furthermore, unlike gravity driven shallow or deep water wav
Journal of Applied Mechanics
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~see Lighthill@33#!, the reported waves, in their linearized limit
are nondispersive~i.e., phase speeds do not depend on the
quency or wavelengths of the disturbance!. For the above reasons
neither a survey of results nor comparisons with results from
vast literature on noncondensing air/water type film flows~Alek-
seenko et al.@31#! is considered to be within the scope of th
paper.

The results presented here underscore the importance of inc
ing the role of exit conditions and noise sensitivity in categorizi
heat transfer correlations and flow regime maps. Therefore
rently available heat transfer correlations~Traviss et al.@34#; Shah
@35#; etc.! and flow regime maps~see Hewitt et al.@36#, Carey
@37#, etc.! can be improved to address their reported deficienc
~see Palen et al.@38#!. Therefore the reported results on exit co
ditions, noise sensitivity, and flow regime boundaries—in co
junction with proper experiments and use of computational t
such as the one proposed here—will eventually be of value
better categorization and development of relevant heat-tran
correlations and flow regime maps.

2 Governing Equations
The liquid and vapor phases in the flow~e.g., see Fig. 1! are

denoted by a subscriptI: I 51 for liquid andI 52 for vapor. The
fluid properties~densityr, viscositym, specific heatCp , and ther-
mal conductivityk! with subscriptI are assumed to take the
representative constant values for each phase (I 51 or 2!. Let TI
be the temperature fields,pI be the pressure fields,Ts(p) be the
saturation temperature of the vapor as a function of local pres
p, D be the film thickness,ṁ be the local interfacial mass flux
Tw ~x! (,Ts(p)) be aknowntemperature variation of the coole
bottom plate, andvI5uI î1v I ĵ be the velocity fields. Further-
more, let h be the channel height,gx andgy be the components o
gravity alongx andy-axes,p0 be the inlet pressure,DT[Ts(p0)
2Tw(0) be a representative controlling temperature difference
tween the vapor and the bottom plate,hf g be the heat of vapor-
ization at temperatureTs(p), and U be theaverageinlet vapor
speed determined by the inlet mass flux. Witht representing the
actual time and~x, y! representing physical distances of a po
with respect to the axes in Fig. 1 (x50 is at the inlet andy50 is
at the condensing surface!, we introduce a new list of fundamenta
nondimensional variables—viz. (x,y,t,d,uI ,v I ,p I ,u I ,ṁ)
—through the following definitions:

$x ,y,D,uI ,ṁ%[$hIx,h•y,h•d,U•uI ,r I•U•ṁ%

$v I ,TI ,pI ,t%[$U•v I ,~DT !•u I ,p01r IU
2
•p I ,~h/U !•t%.

(1)

Interior Equations. The nondimensional differential form
of mass, momentum~x andy components!, and energy equations
for incompressible flow in the interior of either of the phases
the well-known equations:

]uI

]x
1

]v I

]y
50

]uI

]t
1uI

]uI

]x
1v I

]uI

]y
52S ]p I

]x D1Frx
211

1

ReI
S ]2uI

]x2 1
]2uI

]y2 D
]v I

]t
1uI

]v I

]x
1v I

]v I

]y
52S ]p I

]y D1Fry
211

1

ReI
S ]2v I

]x2 1
]2v I

]y2 D
]u I

]t
1uI

]u I

]x
1v I

]u I

]y
'

1

ReI PrI
S ]2u I

]x2 1
]2u I

]y2 D , (2)

where ReI[rIUh/mI , PrI[m ICpI /kI , Frx
21[gxh/U2 and Fry

21

[gyh/U2.
JANUARY 2004, Vol. 71 Õ 71
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Interface Conditions. The nearly exact interface condition
~see Delhaye@39#, etc.! for condensing flows are given in th
Appendix ~see Eqs.~A1!–~A8!!. Utilizing a superscript ‘‘i’’ for
values of flow variables at the interfaceH5y2D(x,t)50, non-
dimensional forms of the interface conditions in the Appendix
as given below.

• The nondimensional form of the requirement of continuity
tangential component of velocities, as given by Eq.~A2!,
becomes

u2
i 5u1

i 2dx~v2
i 2v1

i !, (3)

wheredx[]d/]x.
• The nondimensional form of the normal component of m

mentum balance at the interface, as given by Eq.~A3!,
becomes

p1
i 5

r2

r1

p2
i 2

1

WeS dxx

@11dx
2#3/2D 1ṁ2S r1

r2

21D , (4)

where We[r1U2h/s, and surface tensions is assumed to
be nearly constant because of the nearly constant inter
temperature. As reported elsewhere, results fors
5s(Ts(p2

i )) in Eqs. ~A3!–~A4!, are nearly the same as th
ones reported here for constants.

• The tangential component of momentum balance at the in
face, as given by Eq.~A4!, becomes

]u1

]y U i

5
m2

m1

]u2

]y U i

1@ t#, (5)

where the term@t# in Eq. ~5! is defined in Eq.~A9! of the
Appendix.

• The nondimensional form of mass fluxesṁLK andṁVK in Eq.
~A5! become

ṁLK[@u1
i ~]d/]x!2~v1

i 2]d/]t!#/A11~]d/]x!2, and

ṁVK[~r2 /r1!@u2
i ~]d/]x!2~v2

i 2]d/]t !#/A11~]d/]x!2

(6)

• The nondimensional form ofṁEnergy in Eq. ~A6! becomes

ṁEnergy[Ja/~Re1 Pr1!$]u1 /]nu i2~k2 /k1!]u2 /]nu i%, (7)

where Ja[Cp1DT/hf g
0 , andhf g

0 [hf g(Ts(po)).
• Nondimensional form of interfacial mass balance in Eq.~A7!

becomes
ṁLK5ṁVK5ṁEnergy[ṁ. (8)

• The nondimensional thermodynamic restriction on interfac
temperatures, as given by Eq.~A8!, becomes

u1
i >u2

i 5Ts~p2
i !/DT[us~p2

i !. (9)

Within the vapor phase, for the refrigerants considered h
changes in absolute pressure relative to the inlet pressure are
cally small to affect temperatures. Thereforeus(p2

i )>us(0).

Boundary Conditions. The problem posed by Eqs.~2!–~9!
are computationally solved subject to boundary conditions that

• at the inlet (x50,0<y<1) at any timet:

u2~0,y,t !51 v2~0,y,t !50

p2~0,y,t !50 u2~0,y,t !5us~0!. (10)

• at the bottom wall (y50,0<x<xe) at any timet:

u1~x,0,t !50, v1~x,0,t !50, u1~x,0,t !5uw , (11)

whereuw[Tw(x)/DT is a constant unless it is otherwise spe
fied. In case of flow in Fig. 2, this situation arises whenever, fo
given heat load, the coolant flow rate is high enough to make
coolant its temperature rise negligible as it flows past the
section.
72 Õ Vol. 71, JANUARY 2004
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• at the top wall (y51,0<x<xe) at any timet:

u2~x,1,t !50, v~x,l ,t !50, u2~x,1,t !5us~0!. (12)

Furthermore, because of the nature of boundary conditions in
~10!–~12!, u2(x,y,t)>us(0) is assumed/prescribed to limit th
discussions in this paper to the flow of saturated vapor. Thi
done because, for thepure vapor flows considered here, it is eas
to verify the well-known fact that the effects of superheat~com-
monly in the 5–10°C range! are negligible.

Exit Conditions. Any condenser section of the type shown
Fig. 1 is typically apart of a closed flow loop. A flow loop~see,
e.g., Fig. 2!, which maintains a constant flow rate and consta
pressurepo ~i.e. p250) at the inlet, may also be designed
provide: ~a! an unconstrained exit condition~which is very often
the case!, or ~b! a constrained exit condition~this may arise from
downstream constraints in the flow loop or active flow control
the downstream flow!. An exit condition, at any timet, is specified
by either specifying the value of the average cross-sectional p
sure of the vapor at the exit or, equivalently~as seen later from
results such as the one in Fig. 6!, by specifying the exit vapor
quality Ze(t). Exit vapor qualityZe(t) is the ratio of vapor mass
flow rate at exit (x5xe) to vapor mass flow rate at inlet.

For the case ofconstrainedexit conditions, vapor compressibil
ity effects cannot be ignored for unsteady simulations, and he
one cannot treat vapor densityr2(x,y,t) to be a constant equal to
its inlet valuer20. For these compressible cases, the ‘‘elliptic
equations for the vapor would require specification of the e
vapor qualityZe(t) defined as

Ze~ t !5E
d~xe ,t !

1

$r2~xe ,y,t !/r20%u2~xe ,y,t !•dy, (13)

while allowing for nonconstant unsteady/steady vapor density
ues. This constrained exit case, though important in some c
because of the interesting compressibility effects on flow stab
and noise sensitivity~see Bhatt et al.@27#, etc.!, is not considered
here.

For the ‘‘elliptic’’ steady cases considered here fort<0, the
vapor density is assumed to be a constant withr25r20 and exit
condition is specified here by assigning a fixed value for the e
vapor qualityZe given by

Ze5E
dsteady~xe!

1

u2 steady~xe ,y!•dy. (14)

For unsteady cases under the assumption of constant vapor
sitiesr2(x,y,t)5r20, the ‘‘unsteady’’ equations are not ‘‘elliptic’’
near the exit and unsteady exit vapor qualityZe(t) in Eq. ~13!
cannot be specified.

Initial Conditions. If t50 is chosen to be the time whe
saturated vapor first comes in contact and condenses on a
subcooled (Tw(x),Ts(p0)) bottom plate, the above describe
continuumequations do not apply at early times (t;0) because
they do not model and incorporate relevant intermolecular for
into the governing equations. These intermolecular forces are
portant in determining the evolution of very thin~approximately
over 10–100 nm of film thickness! condensate filmd(x,t). Be-
cause of the above modeling limitations, the strategy here i
start at t50, with any sufficiently thick steadysolution of the
continuumequations where all the governing equations clea
apply. That is, iff(x,y,t) is any variable~such asuI , v I , p I , u I ,
etc.!, the initial values off and film thicknessd(x,t) are such that

f~x,y,0!5fsteady~x,y! and d~x,0!5dsteady~x!, (15)

wherefsteadyanddsteadyare solutions of the governing equation
obtained by dropping all time dependencies in Eqs.~2!–~12! and
solving the resulting steady equations~which areelliptic near exit!
for any arbitrarily prescribed value ofZe(0)5Ze , whereZe is
given by Eq. ~14!. The prescription ofZe within 0,Ze,1 is
Transactions of the ASME
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Fig. 3 Computational grids for flow simulation. For chosen xu i lines, yv j lines in grid
A are first generated by points Pi on d„x ,t …. Above the ‘‘highest’’ yv j line thus obtained,
the remaining yv j lines are independently generated with suitable unequal spacings.
Grid B lines at xÄxud i are different from xu i lines and are used for tracking the inter-
face d„x ,t ….
a
t

o
s
n
t

l

i

s

-

e

te
xi-
-

en-
ysi-
s
pe

.

t-
o

n
ap-
-
fied

a-
ons
ns.
arbitrary except that it should be such that it should allow a ste
computational solution in the stratified/annular regime indica
in Fig. 1. It is shown later that there exists a naturally selec
value ofZe ~denoted asZeuNa) which allows the steady solution t
be stable and consistent with the chosen constant vapor den

An inspection of all the non-dimensional governing equatio
interface conditions, and boundary conditions reveal the fact
the flows considered here are affected by the following set
nondimensional parameters:

H Rein ,Ja,Frx
21,

r2

r1
,
m2

m1
,Pr1 ,xe ,Ze~0!,We,Fry

21J , (16)

where Rein[r2Uh/m2[Re2. Here Rein , Frx
21, and Ja are contro

parameters associated with inlet speedU, inclinationa, and tem-
perature differenceDT. For unconstrainedexit conditions consid-
ered here, it is seen later thatZe(0) is not important because
does not affect the naturally selected steady solution and its a
ciated exit vapor qualityZeuNa. For constrainedexit conditions
not studied here, e.g., a prescription of time-averagedZe(t)
5Ze(0) or Ze(t)5Ze(0) for all t>0, the value of the paramete
Ze(0) becomes important. The density ratior2 /r1 , viscosity ratio
m2 /m1 , and Prandtl number Pr1 are passive fluid parameter
Also, for unsteady or quasi-steady wavy-interface situations,
above equations imply additional dependences on a surface
sion parameter, Weber number We[r1U2h/s, and a transverse
gravity parameter Fry

21[gyh/U2. For superheated vapors, there
a very weak dependence, through Eq.~7!, on the thermal conduc
tivity ratio k2 /k1 .

3 Computational Approach for Steady and Unsteady
Solutions

For readers not interested in algorithm or code developm
only a cursory reading of this section is recommended.

Adaptive Grid and Computational Approach. At each in-
terface configuration, while solving the steady or unsteady pr
Mechanics
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lem, the fluid flow computational domains for each phase (I 51 or
2! are defined by grid A in Fig. 3. A finite number of discre
pointsPi on the interface define a stair-step geometrical appro
mation for the interfaced(x,t). Use of this stair-step approxima
tion still allows second-order (O(Dx2) and O(Dt2)) accurate
physical values ofd(xPi

,t) because these values are used to g
erate higher order approximations to estimate intermediate ph
cal values ofd(x,t) for discretization of the interface condition
~e.g., piecewise linear approximations for evaluation of the slo
terms and cubic splines for evaluation of]2d/]x2 term appearing
in the surface tension term of Eq.~4!!. Each interface pointPi , at
x5xu ( i ), are marked by a tagging function ‘‘xx ( i )’’ to identify
whether the point belongs to an increasing (xx ( i )51), flat
(xx ( i )50), or decreasing (xx ( i )521) section of the interface
These points are also used to generate and define thexu and yv
lines that are parallel to the coordinate axes~see Section 4.3 of
Liang @2# for details!. These lines also form the faces of the rec
angular finite volume cells in the interior of each of the tw
phases.

For the interiors of the two fluid phases defined by grid A i
Fig. 3, the chosen CFD approach is same as the SIMPLER
proach of Patankar@40#. This makes the computations in the in
terior quite conservative because all balance laws are satis
even for the coarser control volumes. However, at any timet and
location ~x, y! where the control volume~say of sizeDxc3Dyc)
are near the interface cells, the truncation errorsDdT andDfT in
the discretizations for film thicknessd and any other flow variable
f are given by the relations

DwT'ADwx
21Dwy

21Dw t
2 and DdT'ADdx

21Dd t
2,

(17)

where Dwx[]w/]x•Dxc , Dwy[]w/]y•Dyc , Dw t[]w/]t
•Dtc , Ddx[]2d/]x2

•(Dxc)
2, and Dd t[]2d/]t2

•(Dtc)
2. The

first order accuracy inf above is due to second order discretiz
tion of d and a mixed second-order and first-order discretizati
for the remaining terms appearing in the interface conditio
JANUARY 2004, Vol. 71 Õ 73
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Fig. 4 „a… The liquid domain calculations underneath dshift „x ,t … with prescribed values of
„u 1s

i ,v 1s
i ,u1s

i
… on dshift „x ,t … satisfy the shear and pressure condition on d„x ,t …. „b… The vapor

domain calculations above d„x ,t … with prescribed values of „u 2
i ,v 2

i ,u2
i
… on d„x ,t … satisfy ṁ VK

Äṁ Energy and the requirement of continuity of tangential velocities.
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While consistent higher order discretizations of all the interfa
conditions can enhance accuracy, it is important to recall that
overall discretization errors in the solutions is best estimated
the convergence trends observed during refinement of the g
~see Section 3.10 of Ferziger and Peric@41#!. Since the nonuni-
form grid A is very refined in they-direction near the interface
~i.e., small Dyc

i ) and acceptably coarse along thex-direction
(Dxc

i ), the overall convergence trends~discussed in Section 6! are
found to be good without excessive computational penalties
terms of memory and speed requirements~see Liang@2#!.

With the help of known inlet and boundary conditions and st
dard CFD approach for single fluid flows, separate solutions
each domain is easy to obtain provided one has a correct gue
the interfaced(x,t) and correct values of$u1

i ,v1
i ,u1

i % on the in-
terface in Fig. 4~a! ~or, as depicted in the inset of Fig. 3, on
representative liquid interface cell in grid A!, and, also, correct
values of$u2

i ,v2
i ,u2

i % on the interface in Fig. 4~b! ~or, as depicted
in the inset of Fig. 3, on a representative vapor interface cel
grid A!. In reality though, one has to make tentative guesse
these seven variables—viz:$u1

i ,v1
i ,u1

i ,u2
i ,v2

i ,u2
i ,d%—and then

iteratively arrive at their correct values by repeatedly updat
them with the help of the interface conditions, vapor domain
lutions, and liquid domain solutions. Disregarding the two kno
ANUARY 2004
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and nearly constant temperaturesu1
i andu2

i obtained through Eq.
~9!, the remainingfive guesses are updated to their correct valu
with the help offive interface conditions—three from Eqs.~3!–~5!
and two from Eq.~8!. However, on use of the above describ
approach for obtaining a steady solution of the ‘‘elliptic’’ stead
problem, it is found that such steady solutions are notuniqueand
many liquid/vapor interface configurations are possible unles
suitable exit condition is specified. That is steady solutions ca
the signature of the well-known degeneracy associated with s
rated vapor’s quality~i.e., any liquid/vapor interference configu
ration or all vapor or all liquid! under quiescent and equilibrium
thermodynamic conditions. To find a unique steady solution,
exit vapor qualityZe is specified~this is equivalent to specifying
exit pressure or the amount of heat removed! and only then a
unique solution is obtained~this is accomplished by ‘‘creating’ a
fictitious interface type condition described later in Eq.~19!!. For
unsteady simulations, if the exit conditions are unconstrained
the vapor flow is incompressible, one can start from one of th
steady solutions at timet50 and ascertain the real time evolutio
of this solution att.0 without specifying the exit qualityZe(t).
As t→`, these unsteady solutions naturally seek out the right
conditions that are consistent with the assumed constant valu
the vapor density. For these unsteady solutions, the five value
Transactions of the ASME
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$u1
i ,v1

i ,u2
i ,v2

i ,d% at any time ‘‘t1Dt ’’ are obtained from the
known values of these variables at time ‘‘t’’ and the five interface
conditions~three from Eqs.~3!–~5! and two from Eq.~8!! dis-
cussed earlier. For the constrained exit case not considered in
paper, prescription of the value ofZe(t) at all times ‘‘t’’ ~with the
help of an equation of the type given in Eq.~19!! requires non-
constant vapor densityr2 and this changes the list of interfacia
unknowns to eight: viz.$u1

i ,v1
i ,u1

i ,u2
i ,v2

i ,u2
i ,d,r2

i %. Again this
compressible case becomes solvable with eight conditions~the
earlier seven interface conditions plus the eighth condition aris
from the specified exit condition! for eight interfacial unknowns
that need to be guessed for the unsteady equations governing
densing flows with compressible vapor.

To obtain separate calculations for the vapor domain in F
4~b!, the temporarily guessed values of$u2

i ,v2
i ,u2

i % on the inter-
face are temporarily held fixed along the interface and the en
vapor flow field on grid A of Fig. 3 is obtained with the help of th
inlet and the top wall conditions. After obtaining the full solutio
the flow field values underneath the interface~the liquid domain!!
is discarded because these values are neither sought nor do
affect the vapor domain values obtained for the well-posed va
domain problem. The temporary fixing of$u2

i ,v2
i ,u2

i % on the in-
terfaced(x,t) in Fig. 4~b! is accomplished by, respectively, ad
ing terms calledt12, t22, and t32 to the right sides of the
x-momentum,y-momentum, and the energy equations in Eq.~2!
with I 52. These terms are defined as

t12[u2* A1~xSI !* d̆~ ux2xSI u!2u2
i
* A1~xSI !* d̆~ ux2xSI u!

t22[v2* A2~xSI !* d̆~ ux2xSI u!2v2
i
* A2~xSI !* d̆~ ux2xSI u!

t32[u2* A3~xSI !* d̆~ ux2xSI u!2u2
i
* A3~xSI !* d̆~ ux2xSI u!.

(18)

In Eq. ~18! above,d̆ is a ‘‘delta function’’ ~see Greenberg@42#!
with x being the vectorial distance of any point from the orig
Also, in Eq.~18!, xSI is the position vector from the origin to an
point on the interface. With the additional terms in Eq.~18! added
to the appropriate equations on the right side of Eq.~2!, the modi-
fied equations are discretized. The resulting equations and
treatment, with appropriate choices of the interfacial-cell co
stantsAI (I 51,2,3), lead~see Section 3.3 of Liang@2#! to the
‘‘source term method’’ and its results given in Eqs.~7.11!–~7.13!
of Patankar@40#. The result of the above modifications is that t
original equations in Eq.~2! continue to hold in the interior while
the chosen values of$u2

i ,v2
i ,u2

i % get fixed on the interfaced(x,t).
To obtain separate calculations for the liquid domain in Fig.a

and to keep the interface sensitive to the pressure and shear
ditions ~as given by Eqs.~4!–~5!! at the interface, instead o
guessing and temporarily fixing values of$u1

i ,v1
i ,u1

i % on the in-
terfaced(x,t) of Fig. 4~a!, a scheme~described and termed the
t-p’’ method in Yu @17# and Liang @2#! is employed where
$u1s

i ,v1s
i ,u1

i % are guessed and fixed on the shifted interfa
dshift(x,t) of Fig. 4~b!. This extension of the liquid domain into
the vapor domain by a single liquidinterface cell~as depicted in
the inset of Fig. 3 and shown as the gray region in Fig. 4~a!! is
only for temporary computational convenience of fixin
$u1s

i ,v1s
i ,u1

i % on dshift(x,t) by the ‘‘source term method.’’ This
method is identical to the one described earlier for fixi
$u2

i ,v2
i ,u2

i % on d(x,t) for the vapor domain calculations in Fig
4~b!. In this ‘‘t-p’’ method ~see Liang@2#!, the values ofu1s

i are
adjusted to ensure that the appropriate relationship between
tangential stresses, i.e., Eq.~5!, is satisfied. Similarlyv1s

i values
are adjusted to ensure that the appropriate relationship betw
the normal stressesp1

i and p2
i , i.e., Eq. ~4!, is satisfied. The

values ofu1
i are presented to satisfy Eq.~9!. After the satisfaction

of the pressure, shear, and temperature conditions on the a
interfaced(x,t), the entire solution underneath the actual liqu
Journal of Applied Mechanics
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domaind(x,t) is retained and the solution for the ‘‘ghost’’ liquid
of Fig. 4~a! and the solution abovedshift(x,t) are discarded. In
short this method of fixing and adjusting$u1s

i ,v1s
i ,u1

i % on
dshift(x,t) of Fig. 4~a! allows one to find and adjust$u1

i ,v1
i ,u1

i %
on the actual interfaced(x,t) of Fig. 4~a! while concurrently sat-
isfying the pressure~Eq. ~4!!, shear~Eq. ~5!!, and temperature
~Eq. ~9!! conditions on the actual interface.

It is important to note that the liquid and the vapor interfa
cells depicted in the inset of Fig. 3 are not used toexplicitlysatisfy
mass, momentum~normal and tangential!, energy, etc. restrictions
on this cell. In this sense this approach is unlike some of
interface capturingand interface trackingapproaches where bal
ance laws areexplicitly invoked for the interface cells. The inter
face cells~see insets in Fig. 3! are only indirectly used here to
come up with a computational procedure where the val
$u1

i ,v1
i ,u1

i ,u2
i ,v2

i ,u2
i ,d% are so adjusted that their converged va

ues satisfy thediscretized form of all the seven interface
conditions—viz. two for temperature~Eq. ~9!!, two for momen-
tum ~Eqs.~4!–~5!!, two for mass~Eq. ~8!!, and one for continuity
of tangential velocities~Eq. ~3!!. Recall that the aforementione
equations that are used were independently and analytically
tained to represent the restrictions imposed by various phys
requirements at a sharp interface.

Between times ‘‘t’’ and ‘‘ t1Dt, ’’ adaptive grids~termed grid A
and grid B! are employed. At timet, grid A ~as in Fig. 3! is based
on the geometrical features ofd(x,t) as a function ofx, and it
changes whenever the liquid and the vapor flow variables nee
be recomputed for a changed interfacial configurationd(x,t).
However, to make the best changes ind(x,t) which leads to ac-
curate prediction ofd at time ‘‘t1Dt, ’’ a different grid ~grid B! is
generally required for the variables (d(x,t), etc.! appearing in the
interface tracking equation~which results from one of the inter
face conditions and has one less spatial dimension as in Eq.~21!
below! for this problem. Thus relevant variable values on grid
are mapped onto grid B, and the best predictions for change
d(x,t) are obtained on grid B. These predicted values ofd(x,t)
are then interpolated back to obtain corresponding values on
A. At any time t, linear interpolations are employed for the e
change of relevant flow variable values between grid A and g
B.

Procedural Steps. The final solution is obtained by solving
the liquid and vapor domainsseparatelyand iteratively under re-
peated modifications of the interface configurationd(x,t). The
iterations modify, intimately connect, and converge the two so
tions with the help of all the interface and boundary conditio
This convergence is accomplished through the following subst

~a! As described earlier, obtain grid A with the help of suitab
selected pointsPi on an initial guess or a tentative intermedia
prediction of the interface location.

~b! First extend the liquid domain by a singleinterface cell
~depicted in Fig. 3 and shown as the gray region in Fig. 4~a!! to
definedshift(x,t) as ashifted extensionof d(x,t). Utilizing the ‘‘
t-p’’ method described above and using guessed values
$u1s

i ,v1s
i ,u1

i % on the estimate for shifted interfacedshift(x,t) of
Fig. 4~a!, obtain a finite volume solution~SIMPLER technique of
Patankar@40#! for the liquid domain underneathd(x,t).

If unsteady solutions fort.0 are being sought, one skips th
remaining operations described here in this paragraph and m
on to the next substep~c!. However, for obtaining the steady so
lution at t50, another liquid domain problem underneath the a
tual interfaced(x,t) is solved toincorporate the exit-condition
prescription necessary for obtaining auniquesteady solution. For
this, the just obtained values of liquid velocity componen
(u1

i ,v1
i ) and temperatureu1

i from the ‘‘t-p’’ method ~which in-
volves dshift(x,t)) are now temporarily fixed on the actual inte
face locationd(x,t). The values ofx-component of interfacial
velocity u1

i and temperatureu1
i are retained as they are while th
JANUARY 2004, Vol. 71 Õ 75
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y-component of interfacial velocityv1
i is modified to satisfy the

current status of the equationṁLK5ṁEnergy. This is in preparation
to achieve closure with the subsequent chain of mass flux eq
ties viz.:ṁVK5ṁEnergyin substep~c! below, and the exit condition
restriction imposed as (ṁVK)modified5ṁEnergy in substeps~d!–~e!
below.

~c! Making use of the vapor domain calculation method d
scribed earlier, obtain guesses for$u2

i ,v2
i ,u2

i % on the interface
d(x,t) in Fig. 4~b! and then solve the vapor domain flow proble
by a finite volume technique~SIMPLER technique of Patanka
@40#!. Utilizing the liquid domain solution in substep~a! above;
values ofu2

i are obtained from a first order discretization of t
continuity of tangential velocitiescondition in Eq.~3!, values of
v2

i are obtained from a discretization of the requirementṁVK

5ṁEnergy in Eq. ~8!, and values ofu2
i are obtained from the ther

modynamic restriction in Eq.~9!.

~d! While obtaining unsteady solutions fort.0, this substep is
skipped, and one moves on to the next substep~e!. However, to
obtain a steady solution att50, it is necessary to prescribe an ex
vapor qualityZe at x5xe . For this, a modified vapor mass flu
(ṁVK)modified[b•ṁVK is introduced. The parameterb is then ex-
plicitly determined so as to make the total vapor mass transfer
across the entire interface~computed as*0

xer1 /r2•(ṁVK)modified

•A11dx
2
•dx) consistent with the given value of exit qualityZe

~i.e., it is made equal to 12Ze). To account for changing vapo
control volume and moving interface, suitable modifications
this approach is needed to specify exit conditions for compress
unsteady cases not considered in this paper. Onceb is obtained,
the interfacial values of liquid velocityv1 ~denoted asv1

i ) are
updated so as to satisfy, for steady flows, the additional exit c
straint:

ṁLK5~ṁVK!modified. (19)

The steady solution procedure then moves to the next subste~e!
to updated(x) values from Eq.~22! given below at the end o
substep~e!.

(e). The only remaining interface conditionṁLK5ṁEnergy in
Eq. ~8! ~which, for steady flow computations, because of Eq.~19!
above, becomes (ṁVK)modified5ṁEnergy) is satisfied in this substep
It should be noted that the physical variable formṁLK5ṁEnergyof
this equation arises from Eq.~A7! in the Appendix, and can be
written in the following popular form fortracking the interface
H(x,y,t)50:

]H
]t

1v1
i
•¹H>

2k1

r1•hf g

]T1

]n U i

•u¹Hu. (20)

Focusing on locating the interface prior to any break up or pin
off, the interfaceH in Eq. ~20! is represented by a simple sing
valued form given byH5y2D(x,t)50. Nondimensionalizing
the resulting Eq.~20! under Eq.~1!, the following nonlinear and
hyperbolic interface tracking equation is obtained:

]d

]t
1ū~x,t !

]d

]x
5 v̄~x,t !, (21)

where ū[u1
i 1$Ja/(Re1•Pr1)%]u1 /]xu i and v̄[v1

i 1$Ja/(Re1
•Pr1)%]u1 /]yu i typically depend strongly, but indirectly, ond.
While obtaining the steady solution att50, however, all time
derivatives are set equal to zero, and the interface is updated
simple numerical integration~trapezoid rule! of thesteady formof
Eq. ~21!, which is

dd/dx5 v̄~x!/ū~x! for x.0. (22)

In this substep, Eq.~21! or Eq. ~22! is solved to obtain new
values ofd. For the steady case, Eq.~22! yields newdsteady(x) and
for the unsteady case, Eq.~21! is solved to obtain new values ofd
76 Õ Vol. 71, JANUARY 2004
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for the next time step ‘‘t1Dt ’’ or is used merely to improve the
existing estimates ofd and other flow variables for time ‘‘t
1Dt. ’’ Whatever be the case, at each relevantx, all liquid and
vapor flow variables are linearly mapped to the new liquid a
vapor domains defined by each new prediction of the interf
location.

Repetition of the steps~a!–~e! above with a starting gues
dguess(x) for the interface location leads first to a convergent s
lution dsteady(x) of the steady equations. This solution is consiste
with the prescribed exit qualityZe becauseb introduced and com-
puted in substep~d! above satisfies the requirement ofb→1.
Starting from this converged steady solution att50, steps~a!–~e!
above are repeated a suitable number of times for each new
step, viz.t5Dt, t52Dt, etc. This leads to a convergent unstea
solution consistent with the choice of initial and boundary da
The ability to improve the results at any time step by dwelling
that time step for repeated iterations between the time step u
consideration and the previous time step makes the proces
forward time marchingimplicit ~or, more appropriately,semi-
explicit!.

The solution obtained by the above procedure not only satis
the pressure, shear, temperature, and continuity of tangentia
locity conditions at the interface, but also satisfies the various fl
field restrictions that arise from having a nonzero interfacial m
flux ṁ. Thesteady solutionsat t50 satisfyṁLK5ṁEnergy in sub-
step ~a!, ṁVK5ṁEnergy in substep~b!, and the exit condition re-
striction imposed as (ṁVK)modified5ṁEnergy in substeps~d!–~e!.
Theunsteady solutionsat t.0 satisfyṁVK5ṁEnergyin substep~b!
andṁLK5ṁEnergy in substep~d!.

Discussions for the Interface Tracking Equation and Its So-
lution. When the right side of Eq.~20! is zero, spatial extension
of Eq. ~20! leads to a color functionH whose initial valuesH
50 andH51 within each of the phases are retained for all tim
t.0, and this forms the basis of the popular VOF~volume of
fluids! techniques~see Hirt and Nicholas@24#, etc.! for air/water
type flows. Similarly, a suitable spatial extension of Eq.~20!, in
conjunction with some other techniques, is used in the level
method ~Sussman et al.@22#, etc.! for capturing the interface
through iterative single domain~consisting of both the phases!
calculations. For boiling related phase change flows, the leve
technique has recently been used by Son and Dhir@23#. In order to
better understand and sidetrack some of the problems~see, e.g., Li
and Renardy@27#! associated with interfacecapturing techniques
~be it level-set, VOF, etc.! that utilize Eq.~20!, we look at the
existing knowledge base for the reduced form of Eq.~20! given in
Eq. ~21!. Equation~21! is the interface tracking equationwhich,
for t.0, defines the followinginterface tracking problem:

]d

]t
1ū~x,t !

]d

]x
5 v̄~x,t !

d~0,t !50

d~x,0!5dsteady~x! or other prescriptions. (23)

The computational issues for discretization and numerical s
tion of Eq. ~23! are well understood and extensively discussed
Abbott and Basco@26# with regard to various algorithms’ stability
and accuracy in determining both the amplitude and the phas
its often-wavy numerical solutions. It is known from there th
among various possible discretizations for Eq.~23!, the one that
gives best results in marching from (x,t) to (x1Dx,t1Dt) has a
Courant number Cr (Cr[ū(x,t)•Dt/Dx) equal to 1~i.e., Cr>1)
and the following discretizations:

d~x1Dx,t1Dt !5d~x,t !1 v̄~x,t!•Dt

]d/]t5@d~x1Dx,t1Dt !2d~x1Dx,t !#/Dt

]d/]x5@d~x1Dx,t !2d~x,t !#/Dx. (24)
Transactions of the ASME
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Fig. 5 The above predictions are for vertical channel flows of saturated R-113 vapor. The
flow cases are specified in Table 1 with aÄ90 deg, x eÄ50 and two different exit condi-
tions, viz. Ze1

Ä0.5 and Ze2
Ä0.38.
h

e

y

.
lp

t

The intermediate timet (t<t<t1Dt) in Eq. ~24! above~appear-
ing in the definition of Cr throughū and in the first equation
through v̄) is chosen such that, by the end of iterations for t
time interval, ū and v̄ satisfy ū(x,t)5$ū(x,t)1ū(x,t1Dt)%/2
andv̄(x,t)5$v̄(x,t)1 v̄(x,t1Dt)%/2. It should be noted that on
can tentatively use any convenient and stable discretization
]d/]x and]d/]t in substeps~a!–~d! above, as long as the optima
discretizations in Eq.~24! are employed and satisfiedby the endof
repeated iterations of substeps~a!–~e! for any given time step.

The above requirement of Cr[ūDt/Dx'1 in Eq. ~24! is
handled by mapping thexu( i ) locations in grid A toxud( i ) loca-
tions in grid B~see Fig. 3!. This is accomplished by setting, at an
time t, xud(3)5xu(3)5«.0 and sequentially finding all subse
quent xud( i ) for i>4 by the relation: xud( i 11)5xud( i )
1ū(xud( i ),t)•Dt whereū(xud( i ),t) values are also sequentiall
obtained from linear interpolations within the known set of valu
Table 1 Specification of reported flow situat
of the inlet. Properties of R-113 are taken fro

Mechanics
is

for
l

y
-

es

of ū at xu( i ) locations. Thed values thus obtained from Eqs
~23!–~24! on grid B are then mapped back to grid A with the he
of linear interpolations.

It is further noted that the discretizations in Eq.~24! are the
same as the discretizations for themethod of characteristics~see,
e.g., Greenberg@42#!. That is, evolution ofd(x,t) as a solution of
Eq. ~21! takes place alongcharacteristic curves x5xc(t) given by

dxc

dt
5ū~xc~ t !,t !

xc~0!5x* or xc~ t* !50, (25)

wherex* is any given value ofx between the inlet and the outle
ions involving saturated R-113 vapor
m ASHRAE Handbook, †45‡.
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in Fig. 1 andt* .0. Equations~23! and ~25! together imply that
the evolution ofd(x,t) along thecharacteristic curvesis gov-
erned by

dd̂~ t !

dt
5vC ~ t !

d̂~0!5dsteady~x* ! or other prescriptions, (26)

whered̂(t)[d(xc(t),t) andvC (t)[ v̄(xc(t),t).
It is found that the integrable singularity atx;0 is such that

replacement of the conditiond(0,t)50 in Eq.~23! by a condition
of the typed(«1 ,t)5«2 for any suitably chosen«1.0 and «2
.0 does not affect the solutions atx@«1 . Therefore, unless one
is interested in the singularity atx50, the proposed approac
works rather well for all cells except the first two to three cells
the leading edge corner~i.e., left corner of Fig. 2!. This is because
solution obtained away from the leading edge remains larg
unaffected by changes in specific reasonable choices made f«1
and«2 . Thus, as expected, integrability of this singularity in tw
or three-dimensional calculations poses no problem. Howe
resolution of the same singularity becomes more challenging
one-dimensional approaches~see Narain et al.@19#! that employ
semi-empirical interfacial shear models.

Fig. 6 For the flow situations specified in Table 1 with aÄ90
deg, x eÄ50, the figure shows the equivalence of specifying exit
vapor quality Ze or exit pressure p̄eÆ1Õ„1Àd…*d

1p2dy to
specify exit conditions. It is computationally more convenient
to specify exit condition Ze .

Fig. 7 With all remaining flow parameters specified as in Table
1 with aÄ90 deg, the above figure shows that exit condition
specified by the number Ze at a given x e must lie within two
well-defined values, viz. Zezmin „xe…ÏZeÏZezmax„xe…. This restric-
tion, presumably, arises from the fact „see Carey †37‡… that the
assumed annular Õstratified flows only occur within certain pa-
rameter ranges.
78 Õ Vol. 71, JANUARY 2004
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4 Stability of Steady Solutions and the Role of Exit
Conditions

For slow laminar/laminar internal condensing flows conside
here, it is computationally shown in Fig. 5 that, for different ex
conditions~i.e., exit vapor qualityZe5Ze(0)), oneobtains differ-
ent steady solutions for any given inlet pressure and inlet m
flow rate. In Fig. 6, we see that the prescription of a different e
vapor qualityZe is equivalent to a prescription of a different ex
pressurep̄2e[1/(12d)*d

1p2dy. Because of the nonuniquenes
of steadysolutions in the absence of prescribed exit conditio
the following questions arise with regard to different solutio
associated with differentZe values: ~i! all else remaining the
same, is there a range ofZe values that can be prescribed at
givenx5xe for which a range of steady solutions can be obtain
~ii ! is a particular steady solution for a givenZe stable or unstable
in the absenceof exit constraints fort.0 ~i.e., if Ze(0)5Ze but
Ze(t) can take any value fort.0); and~iii ! is a particular steady
solution for a givenZe stable or unstable in thepresenceof exit
constraints fort.0 ~e.g.,Ze(t)5Ze for t>0)?

Representative answer to question~i! above is given in Fig. 7
which computationally demarcates a range ofZe(0)5Ze values
for eachxe while all other nondimensional parameters determ
ing the flow are held fixed. The demarcation in Fig. 7 is of t
type Zeumin<Ze<Zeumax where the lower and upper bounds a
rather well defined. The parameter range shown in Fig. 7 chan
as the remaining significant parameters~viz. Rein , Ja,a, r2 /r1 ,
m2 /m1 , and Pr1) are changed.

Answer to question~ii ! regarding stability of solutions for the
unconstrained exit case follows from results given in Figs. 8
Based on two-dimensionalunsteadysimulations results shown in
Fig. 8~a! for the idealized noise-free case and its noise-sensi
quasi-steady counterpart in Fig. 8~b!, it is found that, for uncon-
strained exit conditions, ast→`, there is anattractive solution
~see Fig. 9! while the remaining steady solutions areunstable. All
else being given, the finalZe value obtained for the attractive
solution in Fig. 8~a!, is denoted asZeuNa to indicate that it isthe
naturally selected value ofZe in the absence of exit constraints
This naturally selected attractive steady solution for unconstrai
exit conditions is found to bestable~see definition ofstability in
Joseph@43#! becauseinitial two-dimensional disturbances dam
out over time. It should be noted that a solution might bestable
and yet be difficult to realize in practice because ofsensitivityto
certain minuscule noises that are commonly present. To un
stand the stability and noise sensitivity issues, the problem in
~23! and its solution along characteristics, as defined by E
~25!–~26!, is best rewritten in terms of the evolution of a distu
bance d8(x,t)[d(x,t)2dsteady(x). Under this change of vari-
ables, the characteristics continue to be defined by Eq.~25! while
Eq. ~23! changes to

]d8

]t
1ū~x,t !

]d8

]x
5v% ~x,t !

d8~0,t !50

d8~x,0! or other prescriptions, (27)

where v% (x,t)[@ v̄(x,t)2 v̄steady(x)2$ū2ūsteady%(ddsteady/dx)#
and Eq.~26! changes to

dd̂8~ t !

dt
5v%̂ ~ t !

d̂8~0!50 or other prescriptions, (28)

where d̂8(t)[d8(xc(t),t) and v%̂ (t)[v% (xc(t),t). It should be
noted thatuū2ūsteadyu and uv% (x,t)u are identically zero for steady
solutions withd850 and are small for disturbances with smalld8.
The attractive solution in Figs. 8–9 is such that disturban
d8(x,t) again propagate along characteristics curves given by
Transactions of the ASME
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Fig. 8 „a… For flow situation specified in Table 1 with aÄ90 deg and x eÄ30, the figure
depicts two sets of d„x ,t … predictions for tÌ0. One curve C1 starts at ZeÄ0.51 at t
Ä0, and tends, as t\`, to the solution for ZezNaÄ0.47. The other curve C2 starts at
ZeÄ0.44 at tÄ0 and tends, as t\`, to the same steady ZezNa solution. „b… For flow
situations considered in Fig. 7 „a…, the above predictions for tÌ0 starts at tÄ0 from the
same curves C1 and C2 in Fig. 7 „a…. However, at tÌ0, there is a condensing surface
noise given by v 1„x ,0,t …Ä«" sin „2pxÕl…" sin „2pt ÕT…, with «Ä0.3E-6, lÄ10, and TÄ24. As
t\`, the mean part of wavy quasi-steady solutions coincides with the smooth solu-
tion, shown in Fig. 8 „a… for ZeÄZezNaÄ0.47.
t

c
-

~25!. For the steady solution in Fig. 10, representative charac
istics curvesC1 , C2 , etc. are shown in Fig. 11~a!. These curves
are generated by numerical integration~fourth-order Runge Kutta!
of Eq. ~25! with the characteristic speedū(x,t)5ūsteady(x). Figure
11~b! shows that the characteristics speed for small initial dis
bances~which, because of the nature and form of Eq.~27!, is the
same as phase speed! satisfiesū(x,t)>ūsteady(x). For intrinsic
waves induced by small initial disturbances, unlike gravity wav
on water~see Lighthill @31#!, the waves are nondispersive~i.e.,
wave speeds are nearly independent of wavelengths! and become
somewhat dispersive only for large amplitude initial disturban
~seeū for this case in Fig. 11~b!!. For the steady and initial dis
Mechanics
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ur-
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esFig. 9 Qualitative nature of the stable, steady Õquasi-steady
solutions
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Fig. 10 For flow situations specified in Table 1 with aÄ90 deg and x eÄ20, the
above d„x ,t … predictions „DtÄ2.5… are for initial data d„x ,0…Ädsteady „x …¿d8„x ,0…,
where a nonzero disturbance d8„x ,0… has been superposed at tÄ0 on the steady
solution dsteady „shown as curve C1 above for tË0…. The steady solution corre-
sponds to ZeÄZezNaÄ0.5. Here d8„x ,0…Ä0 except in the interval x *ËxËx *¿10,
where x *Ä3.5 and d8„x ,0…Ä0.5"dsteady „x …" sin „2pxÕ5…. It is clear that even this large
a disturbance damps at later times.
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turbance cases shown in Fig. 10, Fig. 11~c! shows values of the
‘‘growth/damping’’ factorv%̂ (t) along a representative character
tic curve~such asC1 in Fig. 11~a!!. The initial disturbance in Fig.
10 typically damps because, in Fig. 11~c!, we have a typical re-
sponse ofv%̂ (t),0 for all sufficiently large t and d8(xc(t),t)
5d8(x* ,0)1*0

t v%̂ (t)•dt tends to zero ast→` along characteris-
tics originating on thet50 line. Furthermore, besides damping
initial disturbances along the characteristics curves, disturba
leave the computational domain (0<x<xe) with a forward phase
speed ofū.0. As a result, in Fig. 11~a!!, at a fixedx ast→`, one
would leave the solid line initial disturbance characteristics or
nating on thet50 line and get on the characteristics originati
on thex50 line ~these curves are overt>t* for any t* .0). The
values ofd8 on these characteristics~over t>t* and t* .0) are
not affected by the nonzero initial disturbances since these c
acteristics only carry the nearly zero-noise information
d8(0,t)'0 for all t>t* . This stability of a natural steady solutio
associated with the exit conditionZe5ZeuNa is typically true for
any initial disturbance~not just the large initial disturbance ex
ample used in Fig. 10! under unconstrained exit conditions. Whi
the small intrinsic initial disturbance waves damp out as th
propagate downstream with increasing wavelengths and incr
ing speedū'ūsteady(x). For the initial disturbance cases with in
tial wavelength l, at later times t the wavelengthsl̄(x,t)
5l̄(xc(t),t) with l̄(xc(0),0)5l. Here reciprocal ofl̄(x,t), as
in Lighthill @33#, is in terms ofx-derivative of phase angles tha
are constant as they propagate along the characteristics cu
Since these derivatives get smaller with increasingx because of
the increasingx-separation among incrementally apart charac
istics ~this is also the case with finitely spaced characteristicsC1 ,
C2 , etc. shown in Fig. 11~a! the wavelengthsl̄(x,t) increase as
the disturbances propagate forward under continued damping

Earlier, in Fig. 5, it was shown that different steady solutio
are possible for different exit constraints~i.e., different values of
Ze). With regard to stability of such steady solutions to initi
disturbances whileexit conditionsare constrained to keep value
of Ze fixed in the immediate vicinityof ZeuNa, stability, like the
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Ze5ZeuNa solutions, are expected. However, unsteady simulati
for initial disturbances while retaining exit constraint at all tim
are outside the scope of this paper as such simulations req
allowance of density fluctuations in the vapor phase and acco
ing for their interactions with fluctuations in other variables. It
however, easily conjectured that many steady solutions with c
strained the values~at all times! sufficiently farfrom ZeuNa, such
asZe50.26 case shown in Fig. 12~with its unlikely liquid veloc-
ity profiles resulting from the inappropriate constant density
sumptions!, will have oscillatoryinstability in response to initial
disturbances. This is because sustained density and o
fluctuations/waves are expected.

5 Effects of Noise and Resonance Condition

The natural and stable solutions described in Fig. 9 and ob
tained in Fig. 8 were shown, in Fig. 10, to beintrinsically wavyto
initial disturbances. It is shown in Fig. 13~a! that, despite the
stability, the interface is quite sensitive to even minuscule vib
tions of the bottom plate. This is because transverse conden
velocity componentv1 is very small~e.g., if axial vapor velocity
is O(1), axial condensate velocity is often aboutO(1023), and
transverse condensate velocity is often aboutO(1025)) and yet it
is a significant player in the forcing term on the right side of t
interface tracking equation in Eq.~23!. The small bottom plate
noises considered in this paper correspond to a velo
v1(x,0,t)5«• sin(2px/l)• sin(2pt/T) whose amplitude« is in the
range of 1310252331025. For the representative cases cons
ered here~e.g.,T512, l55, h5.004 m, andU50.41 m/s), the
maximum displacement amplitude of the vibrations is about 0
mm, the maximum velocity amplitude is about 0.12mm/s, and the
maximum acceleration amplitude is about 6.2531024 m/s2

~which is less than 1024 g, g>10 m/s2). Such transverse con
densing surface vibrations are typically induced by structura
coolant noise sources and are indeed commonly present in
0–30 Hz range considered here. Thus these noise-induced w
Transactions of the ASME
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Fig. 11 „a… For flow situation specified in Table 1 with aÄ90 deg and x eÄ40, the charac-
teristics curve C1 denote curves along which infinitesimal initial disturbances naturally
propagate on the stable steady solution. Curve C18 denotes characteristics along which
finite disturbance arising from forced bottom wall noise actually propagate. On character-
istics originating at xÄ0, d„0,t …·0 implies d8·0. „b… For flow situations defined in Table 1
with aÄ90 deg and x eÄ48, the above ū „x ,t … predictions for tÐ0 are for „i… steady flow with
ZezNaÄ0.524, „ii … resonant case in Fig. 13, „iii … nonresonant case in Fig. 13, „iv … large initial
disturbance of Fig. 10 and „v… small initial disturbance d8„x ,0… which is one-fifth of d8„x ,0…
in Fig. 10. „c… For flow situations defined in Table 1 with aÄ90 deg and x eÄ50, the above
v% „t … values are along actual characteristics curves like C18 in Fig. 11 „a…. The predictions are
for „ i … the steady and stable flow with ZezNaÄ0.578, „ i i … the resonant case of Fig. 13, „ i i i …
the nonresonant case of Fig. 13, and „iv … the small initial disturbance case „scaled up and
shown in the lower figure … in Fig. 11 „c….
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discussed/studied here are the waves that appear as wavy in
cial oscillations in laminar/laminar condensing flows under u
constrained exit conditions.

The Fourier component of the standing-wave disturba
v1(x,0,t) used in Fig. 13~a! is equivalently written as the sum o
two traveling waves. Denoting the forward traveling wave’s pha
angle asa1[2p$x/l2t/T% and the backward traveling wave
phase angle asa2[2p$x/l1t/T%, the bottom plate noise is
given as

v1~x,0,t !5
«

2
@Re$exp~ ia1~x,t !!2exp~ ia2~x,t !!%#, (29)
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where ‘‘i’’ in the arguments of the exponential functions appeari
in Eq. ~29! denotes the complex numberA21 and ‘‘Re$ %’’ in Eq.
~29! denotes real part of the expression within ‘‘$ %.’’

Furthermore, results in Figs. 13~a! are in accord with the ex-
pectation~see Miyara@32# for the Nusselt problem! that noise
amplification is either sustained or increased with increas
downstream distances and film thickness values. For resona
nonresonant condensing surface vibration considered in Fig.
the corresponding oscillatory ‘‘growth/damping’’ factorv%̂ (t) val-
ues in Fig. 11~c! ~computed along the actual unsteady charac
istics such asC18 of Fig. 11~a!! are also, on average, either su
tained or amplified. In Fig. 11~b!, at large times, the noise-induce
JANUARY 2004, Vol. 71 Õ 81
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waves’ characteristics speedū(x,t) has a meanūmean(x) ~with
ūmean(x)>ūsteady(x)) and superposed oscillations/waves
ūmean(x). It is seen in Fig. 11~a! that theintegration involved in
obtaining the characteristicsC18 ,C28 , etc. smooth out the effects o
the fluctuating part ofū(x,t) while its meanūmean(x) mainly af-
fects thecharacteristicsat largex-locations where the noise ef
fects are large and nonlinear effects associated with the siz
ud8(x,t)u play a role. For the nonresonant wall noise case in F
13~a!, both the ‘‘growth/damping’’ factorv% (x,t) values~shown in
Fig. 11~c! asv%̂ (t) alongC1) andd8(x,t) values have been com
putationally verified to sustain waves with approximately t
same wavelengthl and frequencyf ext51/T as that of the externa
forcing noise. Thus the phase angles associated with these
facial waves are same as those associated with the forcing noi
Eq. ~29!. To better understand the connection between these
variables in terms of the resulting phase speeds and the intr
phase speed for the flow, analytical implications of Eq.~23! are
presented next for the case of small amplitude bottom wall no

For the purpose of identification of resonance conditions, i
assumed, as is the case in Fig. 11~b!, that an amplitude ‘‘«’’ for
bottom wall noise can be found up to which~i.e., small to mod-
erate values of«! the approximationū(x,t)>ūsteady(x) holds. The
82 Õ Vol. 71, JANUARY 2004
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above discussions for the bottom plate noise in Eq.~29! allow us
to assume that the form ofv% (x,t) and the form of the associate
d8(x,t) are given by

v% ~x,t !5Re$vg1~x,t !exp~ ia1~x,t !1vg2~x,t !exp~ ia2~x,t !%

d8~x,t !5Re$§g1~x,t !exp~ ia1~x,t !1§g2~x,t !exp~ ia2~x,t !%,
(30)

where the phase anglesa1 anda2 are same as in Eq.~29!. Fur-
thermorecomplex-valuedgrowth ratesvg1 andvg2 for v% (x,t) and
§g1 and§g2 for d8(x,t) are assumed to be non-oscillatory. Und
this assumption of nonoscillatoryū(x,t)>ūmean(x), the relation-
ships among the growth rates forv% (x,t) andd8(x,t) are found by
substituting Eq.~30! in Eq. ~27! and equating coefficients of th
two exponentials. This gives

d§g1

dt
1 i ~DD1!§g15vg1

d§g2

dt
1 i ~DD2!§g25vg2 , (31)
Transactions of the ASME
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Fig. 12 For the above flow situation specified in Table 1 with aÄ90 deg and x eÄ50, the
steady solutions are obtained for ZeÄZezminÄ0.26 and ZezNaÄ0.36
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where DD1[(2pū/l2 f ext), DD2[(2pū/l1 f ext), f ext[1/T,
and theordinary time derivatives in Eq.~31! are taken along the
characteristicsx5xc(t) defined in Eq.~25!. With J51 or 2 de-
noting the numerical subscripts in Eq.~31!, the solutions of the
two equations in Eq.~31! subjected to the requirement of ze
growth rates up tot<0 are given by

§gJ5exp~2 i ~DDJ!t !E
0

t

vgJ~t!exp~ i ~DDJ!t!•dt. (32)

From Eq. ~32! it is easily inferred that, ifuDDJu values are
significantly nonzero forJ51 and 2~as in nonresonant cases!, the
growth ratesvgJ for v% (x,t) and §gJ for d8(x,t) are of the same
order of magnitude. Thus the physical mechanisms inherent in
~27! do not affect these growth rates in anyspecialway. However,
for uDD1u>0 in Eq. ~32!, §g1 significantly starts growing as
u§g1u>u*0

t vg1(t)dtu'tuvg1(xc(t),t)uav>O(«•t). Therefore by
choosing frequencyf ext5 f ext(x)[1/T(x) to satisfy the resonanc
condition uDD1u>0, i.e.,

l f ext~x!5ū~x,t !>ūsteady~x!>ūmean~x!, (33)

one can match the phase speedl f ext(x) of the bottom wall noise
to the phase speedūsteady(x) of the intrinsic initial disturbance
waves. It should be noted that, even for this case,uDD2u is non-
zero. Indeed, under these conditions, this resonance phenom
is seen in Fig. 13~a!. The fact that, in Fig. 13~a!, interfacial waves’
wavelengths only approximately equal wall-noise wavelengthl
and ū(x,t) only approximately equalūsteady(x) is due to the fact
that the amplitude ofd8(x,t) are not infinitesimal~as was as-
sumed in the above analysis!. All else being the same in Fig
13~a!, it is clear that the resonant case has significantly more w
energy than the same amplitude non-resonant noise. Thus w
ever resonance condition in Eq.~33! is satisfied, the mechanism
represented by Eq.~27! imply that the forward moving componen
of the noise and the small amplitudeintrinsic interfacial waves
have the same phase speeds and this leads to phase reinforce
and significant increase in the amplitude ofd8.

Although the results shown in Fig. 13 are for a sinusoidal sta
ing wave on the condensing surface aty50, more complex two-
dimensional or three-dimensional patterns will arise from a m
general noise that wouldtypically be present. Furthermore, even
the noise itself is two-dimensional any three-dimensional imp
fection in the geometry may cause the wave to become th
dimensional further downstream, and this is perhaps the rea
why two-dimensional waves become three-dimensional in so
of the known experiments~see, e.g., Lu@21#!.
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Although it is not presented here, effects of anygeneral two-
dimensional noise~as measured experimentally by accelero
eters! can also be estimated by looking at the power density fu
tion of v1(x,0,t), through FFT, in thek-v space~wave number
k[2p/l and angular frequencyv[2p f ) and representing the
disturbancev1(x,0,t) by a representative sum of Fourier comp
nents of wavelengthsl and frequenciesf.

The CFD simulation restrictions on wavelengthsl that can be
investigated is:Dx* /2,l,xe/2, whereDx* is of the order of
magnitude of the largestx-width in grid A and grid B andxe is the
distance between the inlet and the outlet. The smallest time
Dt* is the minimum of (Dx/ū) values due to Cr>1 restriction in
Eq. ~24!. This restricts the maximum frequencyf 5 f max that can
be computationally studied to those that satisfy the Nyquist cr
ria f max,1/(2•Dt* ). Despite these restrictions on nois
sensitivity analyses, thestability results in Section 5 are true fo
all wavelengthsl. This is because the resulting interfacial wav
lengths are increasing in nature and they increase to a value w
it can be resolved by the refined grids employed in this paper

With regard to noise sources other than the bottom plate no
it was found that noise or fluctuations in the inlet velocity profi
only leads to fluctuations in the vapor profile and haslittle impact
on the interfacial waviness. In other words, under unconstrai
exit conditions, only fluctuations in flow variables that signi
cantly influence fluctuations in transverse liquid veloc
v1(x,y,t) cause significant interfacial waviness. However, this p
per can not account for density fluctuations that necessarily ap
in the study of effects of superposed fluctuations in the exit c
ditions while the inlet conditions are being held fixed.

6 Convergence, Accuracy, and Other Regularities of
the Solutions

For a computational solution to be accurate, it needs to sat
the following criteria:~i! the convergence criteria in the interior o
each fluid~i.e., smallness of ‘‘b’’ defined on p. 125 of Patanka
@40#!, ~ii ! the satisfaction of all the interface conditions,~iii ! grid
independent solutions for grids that are sufficiently refined, a
~iv! unsteady simulation results for the sensitive interface lo
tions should be free of computational noise in the absence
physical noise. The simulations presented here satisfy all
above criteria.

The satisfaction of the governing equations in the interior a
all the conditions at the interface is demonstrated in Liang@2#. For
sufficiently refined grid~i.e., both grid A and grid B described in
Section 3! and sufficiently large~but not too large! number of
JANUARY 2004, Vol. 71 Õ 83
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Fig. 13 „a… For the flow situations specified in Table 1 with aÄ90 deg, x eÄ50 and
ZeÄ0.578; the above d„x ,t … predictions compare the nonresonant noise with a
resonant noise of the same amplitude „«Ä0.9E-4…. The noise is given by:
v 1„x ,0,t …Ä«" sin „2pxÕl…" sin „2pt ÕT…, where „i… lÄ10 and TÄ24 for the nonresonant
case, and „ii … lÄ10 and TÄT„x …ÄlÕū steady „x …. „b… For the flow situations consid-
ered in Fig. 13 „a…, the above depicts the wall heat flux q w9 „x ,t …, in W, at tÄ25 for
the resonant case, and its time-averaged values q̄ w9 „x …, in W, for all other cases.
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iterations, the combined sum of decreasing truncation and incr
ing roundoff errors are minimized to a plateau level and the so
tions in Fig. 14~a! are grid independent to within 1–2%. Th
number of grid linesni3nj uL3nj uv given in Fig. 14, respectively
indicate the number of grid lines over 0<x<xe , 0<y
<dsteady(x), and dsteady(x)<y<1 for the interface location att
50. These numbers somewhat change with time. For grid I
Fig. 14~a!, (Dx)av[xe /ni50.77, (Dy)avL[d(xe)/nj uL55.77
31024, (Dy)avV[$12d(xe)%/nj uv50.015, andDt55. The cor-
responding representative grid spacing values in physical v
ables are (Dx)av53.08 mm, (Dy)avL52.31mm, (Dy)avV
50.06 mm, andDt50.049 s. For a technical estimate of tot
discretization error—Section 3.10 in Ferziger and Peric@41# is
used for estimating error on a representative flow variable~say,
film thickness in Fig. 14~b!! due to the coarseness ofx-grid. On
successive refinement of thex-grid, the results in Fig. 14~b! yield
the error to be within 3%. Considering this and the refinem
used in the time and in they-direction, the total error of all re-
ported results in this paper is about 6%.

Smooth interfaceunsteady solutions reported earlier in Fig. 8~a!
establish that the highly sensitive interface predictions are fre
computational noise whenever there is an absence of phy
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noise. In fact, in Liang@2#, it is shown that inappropriate discret
zation schemes for the interface tracking equation or unsuita
choice of splines for mapping variable values between grid A a
grid B can lead to wavy interface solutions even in the absenc
physical noise. Such waves that are entirely due to computati
noise have been eliminated from the present study.

Another regularity of the proposed computational approach
its ability to make steady predictions for the classical Nusselt@5#
problem in agreement with its classical solution while allowi
for improvements in it. This is shown in Fig. 15. The unstea
predictions for this classical problem will be discussed in a se
rate paper.

7 Trends of the Steady, Stable and Noise-Sensitive
Solutions

The steady and stable solution~associated withZe5ZeuNa) in
Fig. 8 for the vertical-channel case was found to be sensitive
noise in Fig. 13. Despite the waves, as seen in Fig. 13~b!, there are
no significant enhancements in heat transfer rates for the nonr
nant case. This is because the oscillations around the mean
thickness are small and nearly symmetric, and temperature
Transactions of the ASME
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Fig. 14 „a… The above d„x ,t … predictions for tÌ0 are for the steady solution curve
C1ÄC2 at tÄ0 and initial noise specified in Fig. 10. The tÄ0 solutions are obtained on
two grids I and II with „n iÃn j zLÃn j zV… IÄ„30Ã30Ã20… and „n iÃn j zLÃn j zV… IIÄ„50Ã50
Ã30…. The tÌ0 solution are shown as curves C1 and C2 and are, respectively, ob-
tained on grids that have: „n iÃn j zLÃn j zV… IÃDtÄ„30Ã30Ã20…Ã2.5 and „n iÃn j zL
Ãn j zV… IIÃDtÄ„50Ã50Ã30…Ã5. At tÌ0, the number of grid lines „n iÃn j zLÃn j zV…

changes somewhat from their value at tÄ0.
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files are nearly linear. This yields heat fluxqw9 (x,t);DT/d(x,t)
whose time-averaged values show no significant enhancemen
less the wave amplitudes are large. As a result, for the la
amplitude resonant case in Fig. 13, there is a significant h
transfer enhancement of 10% or more in the downstream ha
the channel. Therefore these stable and quasi-steadyZe5ZeuNa
solutions obtained in Fig. 8 are important in their own right for t
purpose of estimatingtypical heat flux values. Hence it is good t
ascertain the trends of thesenatural steady solutions as the inle
Reynolds number Rein and the temperature differenceDT ~or,
equivalently, the parameter Ja! are changed. Figure 16 shows th
effect of these changes onZe5ZeuNa, Fig. 17 shows the effects o
wall heat fluxq̄w9 (x), and Fig. 18 shows the effects on flow field
(dsteady(x), etc.!. Since the vertical channel configuration studi
here is gravity-dominated, vapor motion does not significan
affect the condensate motion and, as expected, changes in
Reynolds number Rein has no effects on mean film thicknes
dsteady(x) or wall heat fluxq̄w9 (x). However, in Fig. 18, a thicken
ing of dsteady(x) occurs due to an increase in temperature diff
echanics
t un-
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Fig. 15 For the vertical plate situation specified in Table 1 with
aÄ90 deg, x eÄ48 and L cÄ0.004 m, Curve 1 is a plot of the
analytical solution of d„x … as given in Nusselt †5‡. Curve 2 is
the computational solution under the Nusselt assumption for
stagnant vapor and zero liquid inertia. Curve 3 is the computa-
tional solution under the assumptions of stagnant vapor while
allowing for liquid inertia. Curve 4 is the computational solution
that allows vapor motion and liquid inertia „the vapor Õliquid ve-
locity profiles are shown only for this case …. Though not shown
above, vapor velocity tends to zero as y\`.
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Fig. 16 The above is a plot of natural values of ZezNa for different x e values
for a representative flow situation specified in Table 1 with aÄ90 deg and
x eÄ48. The ‘‘Increased Re in’’ case just changes Re in to a new value of 1300.
The ‘‘Increased Ja’’ case just changes Ja to a new value of 0.0443 „i.e., DT
Ä65°C….

Fig. 17 For the flow situations described in Fig. 16 and x eÄ25.0, the above
figure reports the representative wall heat flux values q̄ w9 „x …, in W, as a func-
tion of x with 0 ÏxÏx e

Fig. 18 For the flow situations described in Figs. 16–17 and x eÄ30.0, the
above figure reports the values of dsteady „x …
Y 2004 Transactions of the ASME
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enceDT. This thickening occurs in a way so as to concurren
meet the requirements of increased heat flux values~see Fig. 17!
and increased liquid flow rates.

Streamline patterns for the flow, effect of shear over gravity
tilt angle a is reduced from its 90 deg value, comparisons w
experimental results for condensing flow simulations for a ho
zontal channel, effects of surface tension, effects of micrograv
negligible Marangoni effects, effects of fluctuations on the me
etc., are not discussed here but are reported in Liang et al.@1#.

8 Conclusions

• An algorithm for a successful computational approach
pable of accurate simulation of unsteady wavy interface c
densing flows has been presented.

• The ‘‘ellipticity’’ of the steady vapor flow equations and th
role of exit conditions for steady and unsteady simulatio
have been discussed.

• For unconstrained exit conditions and nearly incompress
vapor flows, an unsteady noise-free simulation method
identifying and obtaining thenatural andstablesteady solu-
tions has been presented and successfully used.

• The noise sensitivity of thestablesteady or quasi-steady so
lutions to ubiquitous minuscule bottom plate vibrations h
been demonstrated. To assist in quantitative noise-sensit
studies, a method for obtaining the underlyingcharacteristics
curvesand estimating ‘‘growth/damping’’ factors for interfa
cial disturbances has been presented.

• For design of smart condensers with actuators imbedded
the condensing surface, a new and hitherto unknown re
nance condition has been proposed, and its efficacy in
hancing wave energy and heat transfer rates~up to 10% or
more! has been demonstrated.

• For unconstrained exit situations, some trends of thestable
steady or quasi-steady solutions have been discussed.
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Appendix
The interface conditions that apply atH(x,y,t)5y2D(x,t)

50, involve values of flow variables at the interface that are
noted by a superscript ‘‘i.’’ The unit normal at any point on the
interface, directed from the liquid towards the vapor, is denoted
n̂ and is equal to¹H/u¹Hu. The unit tangent at any point on th
interface, directed towards increasingx, is denoted byt̂. Each
phase is modeled as a viscous and incompressible Newtonian
with stress tensorT52pI11SI whereSI5m I$(grad•vI)1(grad
•vI)

T%/2 and1 is the identity tensor.

• The surface velocityvs
i of a point on the interface (H50) at

time t is associated with this point’s movement to a ne
mapped position on the interface at timet1Dt. All such
mappings must be such that the normal component of thivs

i

is given by
vs

i
•n̂52~]H/]t !/u¹Hu. (A1)

• The tangential component of the vapor and liquid velocit
at the interface must be continuous, i.e.,

v1
i "t̂5v2

i "t̂. (A2)

• Ignoring normal component of¹ss and viscous stresses, th
normal component of momentum balance at a point on
interface is given by

p1
i 5p2

i 1ṁ2~1/r221/r1!1s¹s"n̂2¹ss"n̂1~S1
i 2S2

i !n̂"n̂

>p2
i 1ṁ2~1/r221/r1!2~sDxx!/@11Dx

2#2/3. (A3)
Journal of Applied Mechanics
tly

as
th
ri-
ity,
an,

a-
n-

e
ns

ble
for

-
as
vity

-

on
so-
en-

S-

e-

by

fluid

w

es

e
the

• The tangential component of momentum balance at any p
on the interface, for nearly constant surface tensions, re-
duces to

S1
i n̂"t̂5S2

i n̂"t̂1¹ss"t̂>S2
i n̂"t̂. (A4)

• The mass fluxesṁVK and ṁLK as determined by kinematic
restrictions imposed by interfacial values of vapor and liqu
velocities are

ṁVK[2r2~v2
i 2vs

i !"n̂ and ṁLK[2r1~v1
i 2vs

i !"n̂. (A5)

• The energy balance at a point on the interface impose
restriction on the interfacial mass fluxṁEnergy, and this is
given by

ṁEnergy51/hf gF $k1¹T1u i "n̂2k2¹T2u i "n̂%1
ds

dt U
s

1
1

2
ṁ$uv1

i 2vs
i u22uv2

i 2vs
i u2%

1$S1
i n̂"~v1

i 2vs
i !2S2

i n̂"~v2
i 2vs

i !%G
>1/hf gFk1

]T1

]n U i

2k2

]T2

]n U i G . (A6)

• Mass balance at any point on the interface requires sin
valuedness of the interfacial mass flux. That is

ṁLK5ṁVK5ṁEnergy[ṁ. (A7)

• To account for the effects of nonzero interfacial mass fluxṁ,
the interfacial pressuresp1

i and p2
i ~along with their differ-

enceDpi[p1
i 2p2

i ! that appear in Eq.~A3! are often consid-
ered to be controlled by nonequilibrium thermodynamic
fects that are represented by the functions:p1

i [p1 n-eq
i (T_1

i )
and p2

i [p2 n-eq
i (T 2

i ), whereT 1
i is the liquid side interfacial

temperature andT 2
i is the vapor side interfacial temperatur

In the limit of zero mass fluxṁ, these thermodynamic pres
sures reach their equilibrium thermodynamic values and
denoted asp1

i [psat(T 1
i ) andp2

i [psat(T 2
i ), wherepsat is the

inverse function of the saturation temperatureTs(p). Respec-
tively denoting the non-equilibrium and equilibrium values
the interfacial pressure differences as (Dpi)n-eq and (Dpi)sat,
it is common to seek or model a function f such that
(Dpi)n-eq5 f $(Dpi)sat,ṁ%, wheref, be it explicit or implicit
in form, allows the two pressure differences to become
same for zero mass fluxṁ. It is common tomodel f by
considerations~see, e.g., Plesset and Prosperetti@44# and Sec-
tion 4.5 of Carey@37#! involving kinetic theory of gas for the
vapor phase, the concept of accommodation coefficients,
The assumption that use of either (Dpi)n-eq or (Dpi)satdo not
significantly affect the value ofDT i[Ts(p2

i 1Dpi)2Ts(p2
i )

is well known and well justified in the present context whe
significantly larger thermal resistance is offered by the th
condensate at points away fromx;0 ~see Section 4.5 of
Carey@37# and Son and Dhir@22#!. Furthermore, the compu
tations in this paper also show that the solution further dow
stream is not affected by the nature of the singular solution
x;0 and computed values in this zone always satisfyDT i

[Ts(p2
i 1Dpi)2Ts(p2

i )>0— in the sense thatDT i!DT,
whereDT is the number defined in Eq.~1!. Therefore, under
negligible interfacial resistance approximation, the interfac
temperature values satisfy:

T 1
i >T 2

i 5Ts~p2
i !. (A8)

• The term@t# on the right side of Eq.~5! is given by
JANUARY 2004, Vol. 71 Õ 87
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@ t#5H m2

m1

]v2

]x U i

2
]v1

]x U i J 1
2dx

@12dx
2#

H ]u1

]x U i

2
]v1

]y U i J
2

2dx

@12dx
2#

m2

m1
H ]u2

]x U i

2
]v2

]y U i J . (A9)
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