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The paper presents a new two-dimensional computational approach and results for
Department of Mechanical laminar/laminar internal condensing flows. Accurate numerical solutions of the full gov-
Engineering—Engineering Mechanics, erning equations are presented for steady and unsteady film condensation flows on a
Michigan Technological University, sidewall inside a vertical channel. It is found that exit conditions and noise sensitivity are
1400 Townsend Drive, important. Even for stable steady solutions obtained for nearly incompressible vapor
Houghton, MI 49931 phase flows associated with unconstrained exit conditions, the noise sensitivity to the
condensing surface’s minuscule transverse vibrations is high. The structure of waves, the
underlying characteristics, and the “growth/damping rates” for the disturbances are dis-
cussed. A resonance condition for high “growth rates” is proposed and its efficacy in
significantly enhancing wave motion and heat transfer rates is computationally demon-
strated. For the unconstrained exit cases, the results make possible a separately reported
study of the effects of shear, gravity, and surface tension on noise sensitive stable
solutions.[DOI: 10.1115/1.1641063

1 Introduction et al.[8], Dhir and Lienhard9], Rose[10], Tanasawa11], Cess
12], Koh [13], etc). Heat transfer correlations for laminar and
Juavy condensate situations for the vertical/inclined plate geom-
densation flows on a sidewall inside a vertical channel. This E,er are given by Kutateladzd 4] and correlations for turbulent
| d try f dd - Li ¢ all1 : d !:%ndensate, as proposed by Labun{gd, are given in Incropera
aiso a good geometry for a ress'@e. lang € all1] an ._and DeWitt[16]. For smooth-interface laminar/laminar condens-
Liang[2]) thg '”f!“er.‘ce of shear over grawty—elther by changlng.'g flows over a flat plate in vertical, horizontal, and tilted con-
Lhe chgnr\el |rr1]cllr;|at|or1 frohm v%rtlcal to k}orlzor)(zslee Fig. llpr figurations; the computational approach developed in this paper
oy studying the flow in the absence of gravitypace applica- yio|qs results(see Yu[17]) in agreement with the relevant solu-
tions). Such results are important in understanding qualitati ns of Nussel{5] and Koh[14].
phe_nomena and (_Jbtalnlng quantitative res(dtiter SUItable_ €X- With regard tointernal condensing flows, some qualitative un-
perimental validations of the computational tool for quas"Stea%rstanding exists in papers by Chow and Pafi8], Narain
annular/stratified internal condensing flowthat are relevant to g 5] [19], etc. These analyses/predictions rely on integral control
good design and performance of condensers in applicat&®® \o|yme formulations that employnodelsfor interfacial shear
Krotiuk [3] and Faghri4]) such as looped heat pipes, capillarye g., Henstock and Hanraftg0]) and are typically available only
pumped loops, thermal management systems, and electronig- fast vapor motions requiring no exit condition specification
cooling devices. These applications often involve pure vapofse,, the vapor flow in Fig. 1 is “parabolid” To address laminar/
with none to negligible presence of noncondensable gases. Figiinar flow issues that cannot be addressed by the above ap-
damental results reported in this paper address issues of annulgdach, direct numerical simulations are undertaken here to better
stratified condensing flows’ heat transfer rates, flow realizabilitynderstand the wave phenomena and associated effects. Strictly
stability, resonant and nonresonant noise sensitivity, and exit c@peaking the results presented here are valid only for laminar va-
dition sensitivity. . ‘ o por flows (i.e., inlet vapor Reynolds number based on channel
This channel flow geometry is also a simple modification of theeight as characteristic length should be approximately less than
classical flat plate geometry associated with clasgig@rnalfim  1400-2000 and laminar condensate flowse., film Reynolds
condensation flow studies over vertical, horizontal, and tiltedumber as defined in Incropera and DeWits] should be ap-
wallls (Nusselt[5], Rohsenow[6], Sparrow and Greg§7], Koh proximately less than 1400—1800n practice, inlet vapor Rey-
nolds number up to 7000 is allowed because of sufficiently thick
*To whom correspondence should be addressed. laminar sub-layer in the vicinity of the interface. This is because
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF vapor streamlines, as they approach the interface, are almost per-
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- . . ! . .
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2002; final revision, June 9, 2003. Associate Editor: T. E. Tezduyar. Discussion 8tfeamlines are very small. This allows the vapor streamlines to
the paper should be addressed to the Editor, Prof. Robert M. McMeeking, Journalgierce the interface and drift downstream as liquid streamlines in
Applied Mechanics, Department of Mechanical and Environmental Engineerin ; ; [
University of California—Santa Barbara, Santa Barbara, CA 93106-5070, and will gep even slower mOtI.On of tHanjln.ar Condensatg' As aresult, itis
accepted until four months after final publication of this paper in the ASKIERI ound that computatlona_l predlct!ons of film thkneSSv heat trans-
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Accurate numerical solutions of the full governing equation
are presented for steady and unsteady laminar/laminar film ¢
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other methodgTezduyar[25], etc). The numerical scheme used
in this paper for thenterface tracking equatioexploits existing
mathematical knowledge and experience for this equatsae

U \ Abbott and Basc$26)) to sidetrack the inaccuracy problems as-
< sociated with reconstructing interface location within and around
\ theinterface cellgredicted by VOF or related interfacapturing

techniques(see Tezduyaf25], Li and Renardy{27], etc). The
scheme used here ensures convergence and accuracy of both the
amplitude and the phase of the interfacial waves. At each time
step, the scheme locates the interface, solves the Navier-Stokes
equation in each phase, satisfies the full nonlinear conditions at
the phase-change interface, and satisfies the relevant inlet, outlet,
% and wall conditions. Since vapor in internal condensing flows
slow down by the exit, the steady vapor flow equations are “el-
liptic” in the exit region (i.e., downstream points affect a flow
variable’s value at a representative point P in Fig.ahd exit

COOLANT g
IF o«

sswussE UNSTEADY condition needs to be specified for a solution. Note that any con-
STEADY denser section of the type shown in Fig. 1 is, typically, jupbst
) ) . of a flow loop. A flow loop which maintains a constant pressure
Fig. 1 Flow geometry for simulations P, and constant flow rate of saturated vapor at the inlet may also

be designedsee, e.g., Fig.)2o provide:(a) an unconstrained exit

condition (which is very often the case when exit pressure, or
not the predictions of vapor velocity profile outside the lamina@quivalently, exit vapor flow rate is free to adjust to any value it
sublayer of the vapor surrounding the interfacate in good seeks that allows the vapor to flow at nearly constant dengity
agreementsee Liang et al[1]) up to inlet Reynolds number asdensity at the inlgt or (b) a constrained exit conditiofthis situ-
high as 8000, with relevant experimental results of{ R]. ation arises, when further downstream of the exit, there are natural

This paper proposes a novel and direct computational technige@straints in the flow loop or, as in Fig. 2, there are active flow

for steady and unsteady internal condensing flows in the annuleehtrol devicey that forces non-negligible vapor density varia-
stratified regime. The unsteady laminar/laminar simulations ertiens between the inlet and the outlet of the condenser section. For
ploy a suitable adaptive grid and numerical solution of the apprtiie constrained exit case not considered in this paper, the “un-
priate hyperbolidanterface tracking equatiowhich is the same as steady” equations are also spatially “elliptic” near the exit and an
the one used in level-set meth@ebe Sussman et §22] and Son exit condition can be prescribed if a nonconstant vapor density
and Dhir [23]), VOF method(see Hirt and Nichol§24]), and and an equation of state—of the typge=p,(p,,75)— is incor-

i, V1, V2: Solenoid Valve
I.I.—.- = =========l’l Py \é23: glneumaticValve
F1, F2: Flow Meter

" Cold water I = S1, S2: Switch
" P: Variable Head Pump

Test T: Sub cooled Tank
Il Section C: Auxiliary Condenser
" APT: Absolute Pressure Transducer

" Cold water

Unconstrained Exit:
L With fixed pressure and flow rate at the inlet of

" M,_ :__M“_.k_ the test-section, valve V2 and pressure in T are
=7 not actively controlled (S1 and S2 open) and
P APT 3 steady state is naturally achieved with tank T
V2 completely filled with liquid. The system finds

S1 natural values of exit vapor quality Z, = Zn,

: Z | @ 1) and pressure at APT.

; : T
ZQin =M, s, (PB) ++ S2 With fixed pressure and flow rate at the inlet of
1 | __ - the test-section, valve V2 is controlled to a set
V3 fo point value in F2 while the pressure at APT in a

Boiler partially filled T is held fixed at a value lower
than its natural value for the unconstrained case.
The flow can now be steady/quasi-steady at
different exit vapor qualities (including Z, #
ZelNa)'

Fig. 2 The solenoid valve V1 (actively controlled by flow meter ~ F1) and constant heat input Q,nzl\'/l,»n~h,g(p5) to the
boiler fixes inlet pressure  p, and inlet flow rate to the test section. The mass flow rate through pump P is adjusted to
a value that matches the corresponding value at F1. A high flow rate of the coolant  (water) flow around the test section
fixes condensing surface temperature at a nearly uniform value of T,, while it still allows for different heat removed
rates for different exit qualities  Z,.
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porated in the governing equations for the vapor phase. The ygee Lighthill[33]), the reported waves, in their linearized limits,
constrained exit case, for which vapor compressibility is unimpoare nondispersivéi.e., phase speeds do not depend on the fre-
tant, is the focus of steady and unsteady simulations in this papguency or wavelengths of the disturbandeor the above reasons,
For these simulations the “unsteady” equations for the uncomeither a survey of results nor comparisons with results from the
strained exit case areot spatially “elliptic” and an exit condition vast literature on noncondensing air/water type film flakek-
cannot be prescribed if a constant inlet vapor dengjty p,o is  seenko et al[31]) is considered to be within the scope of this
assumed in the governing equations. Constant vapor density paper.

sumption is valid for conditions involving\p,/p,q<1 or, say, The results presented here underscore the importance of includ-
Ap,lpsyg is less than 5% —this being the typical criteria for asing the role of exit conditions and noise sensitivity in categorizing
suming incompressibility for gases that flow inside a duct arfateat transfer correlations and flow regime maps. Therefore cur-
have Mach number values less than 0.3. For the unconstrairiedtly available heat transfer correlatiaifsaviss et al[34]; Shah

exit cases involving an assumed constant density for the vap8bl; etc) and flow regime mapssee Hewitt et al[36], Carey
phase, it is shown in this paper that, iftat0, one starts aany [37], etc) can be improved to address their reported deficiencies
steady solution of the steady “elliptic” problem in Fig. (inder (See Palen et al38]). Therefore the reported results on exit con-
any reasonable and well-defined exit conditiothen, over time ditions, noise sensitivity, and flow regime boundaries—in con-
(utilizing unconstrained unsteady simulation fe¢0), a natural junction with proper experiments and use of computational tool

steady solution and an associated natural exit condition is uch as the one proposed here—will eventually be of value in

) . ) . )etter categorization and development of relevant heat-transfer
tained at large times. This naturally determined value of the e re|ations and flow regime maps.

condition for prescribed inlet condition is very similar to the well-
known behavior of other incompressible duct flog@gsgle phase
or air/water flow$ which also exhibit well-defined pressure dif- . .
ference for given inlet pressure and flow rate. In fact, in Liana Governing Equations
et al.[1], it is shown that the naturally selected quasi-steady com- The liquid and vapor phases in the flde.g., see Fig. Jlare
putational solutions that are obtained for flow cases considereddgnoted by a subscript | =1 for liquid andl =2 for vapor. The
the experimental runs of L[21] and Lu and Suryanarayafiag] fluid propertiesidensityp, viscosity », specific heaC,,, and ther-
yield values of film thickness, heat transfer rates, etc., that are'THal conduqtlwtyk) with subscriptl are assumed to take their
. ) : . representative constant values for each phasel(or 2). Let 7,
good agreement with experimentally obtained values. While t

) ) . . the temperature fieldp, be the pressure fieldgg(p) be the
generates confidence in the proposed method of identifying stalg,ration temperature of the vapor as a function of local pressure

steady solutions, these stable solutions are shown here to be $emx pe the film thicknessim be the local interfacial mass flux,
sitive to minuscule bottom plate noise that are typically almogt, (x) (<7Z(p)) be aknowntemperature variation of the cooled
always present. This makes the interface wavy for most situatiomgttom plate, and/,=u,i+v,j be the velocity fields. Further-
The reported determination of phase speeds eratacteristics more, let h be the channel heiglgt, andg, be the components of
curves(along which disturbances propagdafer the waves im- gravity alongx andy-axes,p, be the inlet pressuré\ T="7¢(p,)
prove our understanding of these flows and leads to a proposalo?w(0) be a representative controlling temperature difference be-
a new hitherto unknown resonance condition whose efficacy fi¥een the vapor and the bottom plale, be the heat of vapor-

also demonstrated in this paper. It is shown that specifically dgation at temperaturdy(p), andU be theaverageinlet vapor

signed noise sources placed at suitably specified locations an ed determined by the inlet mass flux. Witrepresenting the

o e ) . ..~ aciual time andX, y) representing physical distances of a point
specified variations in frequency satisfy the resonance criteria alfh respect to the axes in Fig. k€0 is at the inlet ang=0 is

enhance the wave energy and heat transfer rates significantly. ot the condensing surfageve introduce a new list of fundamental
Unsteady simulations starting from steady solutions for the COqgndimensional ~ variables—viz. x{y,t,8,u, v, , 6, ,m)

strained exit cases are not considered here. In this case, compresgyoygh the following definitions:
ibility effects on the stability and noise-sensitivity are expected to
be important and these effects are one of the underlying causes {x,y,A,u;,m={h.x,h-y,h-8,U-u;,p,;-U-m}
behind various interesting experimental resitse Bhatt et al.
[29], etp) dealing with experiments whose exit conditions are [, 7, ,p, ,t}={U-v,,(AT)- 6,,po+pU% m,(h/U)-t}.
constrained. The stability and flow oscillations issues associated (1)
with this case are also believed to arise in applications such as ) ) ] ) )
Looped Heat PipegFaghri [4]) where limits on the power of Interior Equations. The nondimensional differential fo_rms
passive pumpingwicks, etc) cause pressure variation constraint§f mass, momenturfx andy components and energy equations
at the condenser exit while approximately constant values of prd@t incompressible flow in the interior of either of the phases are
sure and flow rate is retained at the condenser inlet. the well-known equations:

This paper restricts itself to consideration of single but arbitrary
Fourier components of bottom plate noi@anding wavesand %Jr @:
avoids discussions of wave interactions resulting from more com- ax ay
plex random noises made up of several Fourier components.
Within this limited context, we find that the front-steepening soli- Jdu, au, au, am o, 1 u,
tary wave patterns that are experimentally observed on alr/waterﬁ"rulﬁ‘“’lw— o TR Re v EYd
type vertical liquid films(see Liu and Golluf30] and Alek-
seenko, et al.31]) or the ones that are obtained by Miy4&2] in v, v, v, o,
the reported computational simulations for the Nusgbétprob- —+u— 7( )
lem that deals with condensation on a vertical plate, occur much at
more gradually for the gravity dominated internal condensing flow

+F71+ 1 2U|+l§’2U|
'y Re | axZ " ay?

2 2
cases considered here. Categorizatiotypical noise levelgwith 9,90, 00 1 ((9 0 9 '9|) @
a random mix of amplitude, frequency, and wavelengémsltypi- at " ox Yoy RePr|ax? " ay?)

cal responsesor strange attractorsas termed by Liu and Gollub . ) .
[30]) requires separate study and is outside the scope of this papérere Re=pUhw,, Pi=w,Cp/k, Fr,"=gh/U* and Fy
Furthermore, unlike gravity driven shallow or deep water waves gyh/UZ.
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Interface Conditions. The nearly exact interface conditions e at the top wall §=1,0<x<Xx,) at any timet:
(see Delhayd39], etc) for condensing flows are given in the B B _
Appendix (see Egs(Al1)—(A8)). Utilizing a superscript [ for U(x, 1) =0, v(x1,)=0, 6(x,1)=650).  (12)
values of flow variables at the interfaéé=y—A(x,t)=0, non-  Furthermore, because of the nature of boundary conditions in Egs.
dimensional forms of the interface conditions in the Appendix ar@0)—(12), 6,(x,y,t)=64(0) is assumed/prescribed to limit the
as given below. discussions in this paper to the flow of saturated vapor. This is
e The nondimensional form of the requirement of continuity O?one because, for tiyeure vapor flows considered here, it is easy

: o . o verify the well-known fact that the effects of superhéaim-
Laénc%enr]lggl component of velocities, as given by E42), monly in the 5-10°C rangeare negligible.

Up=U;— 8 (vh—v}), (3) Exit Conditions. ~ Any condenser section of the type shown in
_ Fig. 1 is typically apart of a closed flow loop. A flow loofisee,
where §,= 9/ ox. ) : S
e.g., Fig. 2, which maintains a constant flow rate and constant
%ressurep, (i.e. m,=0) at the inlet, may also be designed to
provide: (a) an unconstrained exit conditigmvhich is very often

* The nondimensional form of the normal component of m
mentum balance at the interface, as given by EB),

becomes the casg or (b) a constrained exit conditiofthis may arise from
o P2 o 1 Oxx o[ P1 downstream constraints in the flow loop or active flow control of
1T T 2yap) T —— 1l (4) the downstream floyAn exit condition, at any timé is specified
1 Wel[1+ 8] P2

o by either specifying the value of the average cross-sectional pres-
where We=p,U?h/o, and surface tension is assumed to syre of the vapor at the exit or, equivalentls seen later from

be nearly constant because of the nearly constant interfagg@uits such as the one in Fig), ®y specifying the exit vapor
temperature. As reported elsewhere, results for quality Z.(t). Exit vapor qualityZ.(t) is the ratio of vapor mass
=0o(74(py)) in Egs. (A3)—(Ad4), are nearly the same as theflow rate at exit k=Xx,) to vapor mass flow rate at inlet.

ones reported here for constant For the case ofonstrainedexit conditions, vapor compressibil-
« The tangential component of momentum balance at the intély effects cannot be ignored for unsteady simulations, and hence
face, as given by EqA4), becomes one cannot treat vapor denspy(x,y,t) to be a constant equal to
. . its inlet valuep,y. For these compressible cases, the “elliptic”
% ':&% I+[t] ) equations for the vapor would require specification of the exit
ay| wm1 Iy ' vapor qualityZ.(t) defined as
where the tern{t] in Eq. (5) is defined in Eq.(A9) of the 1
Appendix. Ze(t):f {p2(Xe Y, 1) paotua(Xe,y,t)-dy,  (13)
e The nondimensional form of mass flux@s, andmy in Eq. olxe V)
(A5) become while allowing for nonconstant unsteady/steady vapor density val-
MKE[UE((?ﬁ/W)—(vil—ﬁﬁlﬂt)]/\/m, and ues. This constrained exit case, though important in some cases

) , i 5 because of the interesting compressibility effects on flow stability
My = (p2/p1)[U(I8IX) = (vy— 36l 9t) 1IN 1+ (9l Ix) and noise sensitivitygsee Bhatt et al27], etc), is not considered
(6) here.
For the “elliptic” steady cases considered here fex0, the
vapor density is assumed to be a constant itk p,g and exit
Menergy=Ja Rey Pry) {36, /an|'— (K, /ky)d6,/dn|'},  (7)  condition is specified here by assigning a fixed value for the exit

where JaeC AT/RS, andh%,=hio(7:(Po)). vapor qualityZ, given by
« Nondimensional form of interfacial mass balance in &) 7 f
o=

* The nondimensional form ahgpery, in EQ. (A6) becomes

1

becomes U3 steadfXe Y) - dY. (14)
m_ _r-n\/ _r-nz = (8) Ostead§Xe)

“ “ e For unsteady cases under the assumption of constant vapor den-
» The nondimensional thermodynamic restriction on interfaciaitiesp,(X,y,t) = p,g, the “unsteady” equations are not “elliptic”

temperatures, as given by E@8), becomes near the exit and unsteady exit vapor quality(t) in Eq. (13

D i ; cannot be specified.
= by=Tu(p,) AT= (). © P
o . _ Initial Conditions. If t=0 is chosen to be the time when

Within the vapor phase, for the refrigerants considered hergturated vapor first comes in contact and condenses on a dry
changes in absolute pressure relative to the inlet pressure are typbcooled 7,,(x)<74(p,)) bottom plate, the above described
cally small to affect temperatures. Therefdtg )= 6,(0). continuumequations do not apply at early times<0) because
they do not model and incorporate relevant intermolecular forces
into the governing equations. These intermolecular forces are im-
a[58rtant in determining the evolution of very thiapproximately

Boundary Conditions. The problem posed by Eq$2)—(9)
are computationally solved subject to boundary conditions that

« at the inlet k=0,0<y=<1) at any timet: over 10—100 nm of film thicknegxondensate filmy(x,t). Be-
cause of the above modeling limitations, the strategy here is to
Ux(0y,t)=1 wvy(0y,t)=0 start att=0, with any sufficiently thick steadysolution of the

_ _ continuumequations where all the governing equations clearly
m2(0y,)=0 02(0y.1)=064(0). (10) apply. That is, if¢(x,y,t) is any variablgsuch asi, , v,, m, 6,
« at the bottom wall y=0,0<x=<x,) at any timet: etc), the initial values ofp and film thickness(x,t) are such that

u(x,00)=0, ©vy(x,00)=0, 6,(x,00)=6,, (11) d(X,Y,0) = dgeaqfX,y)  and  (X,0)= SsieaqfX),  (15)

where 6,=7,(x)/AT is a constant unless it is otherwise speciwhere ¢geaqyand dgeagy@re solutions of the governing equations
fied. In case of flow in Fig. 2, this situation arises whenever, for@btained by dropping all time dependencies in E@$-(12) and
given heat load, the coolant flow rate is high enough to make tkelving the resulting steady equatiomeich areelliptic near exij
coolant its temperature rise negligible as it flows past the tefsrr any arbitrarily prescribed value 0Z,(0)=2.,, whereZ, is
section. given by Eq.(14). The prescription ofZ, within 0<Z.<1 is
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GRID - B EMPLOYS xud; LINES

T S SR N
F-fZZECC
R A

1 1 1 [ ]
1 1 [ T N I | 1
1 1 T T Y T B | 1
1 1 e 1
1 T T I I B T | ]
1 1 I 1
1 1 [ I N I | 1
1 L Ll Ll 1 1

xudi xudi.
YVm2
i i GRID — A LINES FOR CFD
YVinl (nlsuels)' - . 2.
V =
yVj : ? Is.... - i
1 . T
uj —;A' - Ujs
A —§(x,t)

t)lSTA]R—STEP :

- Interface-cell b s |

yv, & I

XUy XU;  XUjyp XUy

Fig. 3 Computational grids for flow simulation. For chosen xu; lines, yv; lines in grid
A are first generated by points ~ P; on &(x,t). Above the “highest”  yv; line thus obtained,
the remaining yv; lines are independently generated with suitable unequal spacings.
Grid B lines at x=xud; are different from xu; lines and are used for tracking the inter-
face &(x,t).

arbitrary except that it should be such that it should allow a steatym, the fluid flow computational domains for each phdseX or
computational solution in the stratified/annular regime indicate?) are defined by grid A in Fig. 3. A finite number of discrete
in Fig. 1. It is shown later that there exists a naturally selectqubintsP; on the interface define a stair-step geometrical approxi-
value ofZ, (denoted aZ |y, Which allows the steady solution to mation for the interfaced(x,t). Use of this stair-step approxima-
be stable and consistent with the chosen constant vapor densitjon still allows second-orderG(Ax?) and O(At?)) accurate
An inspection of all the non-dimensional governing equationphysical values oB(xp,t) because these values are used to gen-
interface condlt_lons, and boundary conditions reveal th_e fact thatte higher order approximations to estimate intermediate physi-
the flows considered here are affected by the following set g values of5(x,t) for discretization of the interface conditions
nondimensional parameters: (e.g., piecewise linear approximations for evaluation of the slope
L P2 M2 B terms and cubic splines for evaluation @5/ 9x? term appearing
R&n,Ja,FL~ —, —,Pr,Xe,Ze(0),We,Fg *1,  (16) in the surface tension term of EGf)). Each interface poir®; , at
P11 x=xu (i), are marked by a tagging functiorx (i)” to identify
where Rg=p,Uh/u,=Re,. Here Reg,, Fr;l, and Ja are control Whether the point belongs to an increasingx (i)=1), flat
parameters associated with inlet spégdnclination a, and tem- (XX (i) =0), or decreasingXx (i) = — 1) section of the interface.
perature differencA 7. Forunconstrainedexit conditions consid- These points are also used to generate and defingutaed yv
ered here, it is seen later thEg(O) is not important because it lines that are parallel to the coordinate a)(eee Section 4.3 of
does not affect the naturally selected steady solution and its askt#ng [2] for detail9. These lines also form the faces of the rect-
ciated exit vapor qualityZ,|y,. For constrainedexit conditions angular finite volume cells in the interior of each of the two
not studied here, e.g., a prescription of time-averagett) Phases.
=Z7,(0) or Z,(t)=Z.(0) for all t=0, the value of the parameter For theinteriors of the two fluid phases defined by grid A in
Z+(0) becomes important. The density ratio/p, , viscosity ratio Fig. 3, the chosen CFD approach is same as the SIMPLER ap-
uo/py, and Prandtl number Prare passive fluid parameters.proach of PatankdrQ]. This makes the computations in the in-
Also, for unsteady or quasi-steady wavy-interface situations, thgyior quite conservative because all balance laws are satisfied
above equations imply additional dependences on a surface te¥en for the coarser control volumes. However, at any tirmed
sion parameter, Weber number ®jp,U2h/o, and a transverse location(x, y) where the control volumeésay of sizeAx.x Ay;)
gravity parameter l§r1£gyh/U2. For superheated vapors, there (&€ N€ar the interface cells, the truncation ertoés andA ¢ in

a very weak dependence, through E), on the thermal conduc- the discretizations for film thicknessand any other flow variable
tivity ratio ky/K; . ' ’ ¢ are given by the relations

Apr~VAQi+Aei+Ap!  and Adr~\AS+AS,

(17

here Ag,=do/dx-AX., Aey=0d¢ldy-Ay., Ae=deldt
“Ate, AS=0%810x%-(Ax.)?, and A&=09°8/0t?- (Aty)%. The
first order accuracy b above is due to second order discretiza-

Adaptive Grid and Computational Approach. At each in- tion of § and a mixed second-order and first-order discretizations
terface configuration, while solving the steady or unsteady profor the remaining terms appearing in the interface conditions.

3 Computational Approach for Steady and Unsteady
Solutions

For readers not interested in algorithm or code developme
only a cursory reading of this section is recommended.
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LIQUID DOMAIN CALCULATIONS VAPOR
UNDERNEATH 9§, (X,t)

. “GHOST” liquid over an “interface-cell” (see Fig. 3).

y
o
(a)

VAPOR DOMAIN CALCULATIONS VAPOR
ABOVE 8(x,t)
. — &(x,t)
U,
—_—
2
y if LIQUID
o
(b)
Fig. 4 (a) The liquid domain calculations underneath Ogniit (X, 1) with prescribed values of

(uhs,Vig, 05, on b4 (x,t) satisfy the shear and pressure condition on  &(x,t). (b) The vapor
domain calculations above  &(x,t) with prescribed values of  (uj,v5,05) on &(x,t) satisfy mx
= MEgnergy @nd the requirement of continuity of tangential velocities.

While consistent higher order discretizations of all the interfacgnd nearly constant temperatusand 6, obtained through Eq.
conditions can enhance accuracy, it is important to recall that t{®, the remainindfive guesses are updated to their correct values
overall discretization errors in the solutions is best estimated Qyth the help offiveinterface conditions—three from Eq8)—(5)
the convergence trends observed during refinement of the grigi§y two from Eq.(8). However, on use of the above described
(see Section 3.10 of Ferziger and Pdrd]). Since the nonuni- approach for obtaining a steady solution of the “elliptic” steady
form grid A is very refined in thei-direction near the interface problem, it is found that such steady solutions areurdgueand
(i.e., small Ay;) and acceptably coarse along thedirection many liquid/vapor interface configurations are possible unless a
(Axy), the overall convergence trenttiiscussed in Sectior) @re  suitable exit condition is specified. That is steady solutions carry
found to be good without excessive computational penalties the signature of the well-known degeneracy associated with satu-
terms of memory and speed requiremefstse Liang2]). rated vapor's qualityi.e., any liquid/vapor interference configu-
With the help of known inlet and boundary conditions and stanation or all vapor or all liquitl under quiescent and equilibrium
dard CFD approach for single fluid flows, separate solutions fgfiermodynamic conditions. To find a unique steady solution, the
each domain is easy to obtain provided one has a correct guesgxf vapor qualityZ, is specified(this is equivalent to specifying
the interfaces(x,t) and correct values dfu ,v},6;} on the in-  exit pressure or the amount of heat removedd only then a
terface in Fig. 4a) (or, as depicted in the inset of Fig. 3, on aunique solution is obtainetthis is accomplished by “creating’ a
representative liquid interface cell in grid)Aand, also, correct fictitious interface type condition described later in EtQ)). For
values of{u}, ,v5, 65} on the interface in Fig. @) (or, as depicted unsteady simulations, if the exit conditions are unconstrained and
in the inset of Fig. 3, on a representative vapor interface cell the vapor flow is incompressible, one can start from one of these
grid A). In reality though, one has to make tentative guesses steady solutions at time=0 and ascertain the real time evolution
these seven variables—vifu} v} , 6} ,u5,v5,605,5}—and then of this solution at>0 without specifying the exit qualiti(t).
iteratively arrive at their correct values by repeatedly updatings t— o, these unsteady solutions naturally seek out the right exit
them with the help of the interface conditions, vapor domain sgeeonditions that are consistent with the assumed constant value of
lutions, and liquid domain solutions. Disregarding the two knowthe vapor density. For these unsteady solutions, the five values of
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{u} v} ,u,,v5,8) at any time ‘t+At” are obtained from the domainé(x,t) is retained and the solution for the “ghost” liquid
known values of these variables at tim# &nd the fiveinterface  Of Fig. 4@) and the solution abovég(x,t) are discarded. In
conditions (three from Eqgs(3)—(5) and two from Eq.(8)) dis- short this method of fixing and adjustinfu’s,v}s, 6} on
cussed earlier. For the constrained exit case not considered in this(x,t) of Fig. 4a) allows one to find and adjusguil v'l il}
paper, prescription of the value @(t) at all times *t” (with the  on the actual interfacé(x,t) of Fig. 4a) while concurrently sat-
help of an equation of the type given in EG.9)) requires non- isfying the pressurdEq. (4)), shear(Eq. (5)), and temperature
constant vapor density, and this changes the list of interfaciaI(Eq. (9)) conditions on the actual interface.
unknowns to eight: viz{u} ,v,6} U5, v5,05,8,p5}. Again this It is important to note that the liquid and the vapor interface
compressible case becomes solvable with eight conditites cells depicted in the inset of Fig. 3 are not useéxplicitly satisfy
earlier seven interface conditions plus the eighth condition arisimgass, momenturtnormal and tangentiglenergy, etc. restrictions
from the specified exit conditiorfor eight interfacial unknowns on this cell. In this sense this approach is unlike some of the
that need to be guessed for the unsteady equations governing gaterface capturingandinterface trackingapproaches where bal-
densing flows with compressible vapor. ance laws arexplicitly invoked for the interface cells. The inter-
To obtain separate calculations for the vapor domain in Figace cells(see insets in Fig.)3are onlyindirectly used here to
4(b), the temporarily guessed valuesiaf, v} ,6,} on the inter- come up with a computational procedure where the values
face are temporarily held fixed along the interface and the entifg ,v' , 6} ,ul, v}, 6,5} are so adjusted that their converged val-
vapor flow field on grid A of Fig. 3 is obtained with the help of theyes satisfy thediscretized form of all the seven interface
inlet and the top wall conditions. After obtaining the full solutionconditions—viz. two for temperaturéEq. (9)), two for momen-
the flow field values underneath the interfdtfee liquid domain!  tum (Egs.(4)—(5)), two for masgEq. (8)), and one for continuity
is discarded because these values are neither sought nor do #feangential velocitieEq. (3)). Recall that the aforementioned
affect the vapor domain values obtained for the well-posed vapggjuations that are used were independently and analytically ob-
domain problem. The temporary fixing fi; ,v5, 65} on the in- tained to represent the restrictions imposed by various physical
terface 5(x,t) in Fig. 4(b) is accomplished by, respectively, addrequirements at a sharp interface.
ing terms calledt;,, t,;, and t;, to the right sides of the Between timest” and “t+ At,” adaptive grids(termed grid A
x-momentum,y-momentum, and the energy equations in B). and grid B are employed. At timé, grid A (as in Fig. 3 is based

with | =2. These terms are defined as on the geometrical features é{x,t) as a function ofx, and it
. . . changes whenever the liquid and the vapor flow variables need to
t15=Up* Ag(Xg)* 8(|X—Xg|) = Up* Ay (Xs ) * 8(|x—x]) be recomputed for a changed interfacial configurati®{m,t).
. , . However, to make the best changesdiix,t) which leads to ac-
to=0 5% Ap(Xs ) * (| X— X5 |) —v5* An(Xs ) )* O(|X—Xs5/|) curate prediction ob at time “t+ At,” a different grid (grid B) is
. 4 . generally required for the variables(,t), etc) appearing in the
t3o= 0% Ag(Xs)* O(|X— Xy |) — 0% Ag(Xg)* 8(|X—Xg]). interface tracking equatiottwhich results from one of the inter-

face conditions and has one less spatial dimension as ii2&g.
.. ) below) for this problem. Thus relevant variable values on grid A
In Eqg. (18) above,s is a “delta function” (see Greenberf#2])  are mapped onto grid B, and the best predictions for changes in
with x being the vectorial distance of any point from the origing(x,t) are obtained on grid B. These predicted valuessof,t)
Also, in Eq.(18), x5, is the position vector from the origin to any gre then interpolated back to obtain corresponding values on grid
p0|nt on the interface. With the additional terms in m) added A. At any time t, linear interpolations are employed for the ex-

to the appropriate equations on the right side of @.the modi- change of relevant flow variable values between grid A and grid
fied equations are discretized. The resulting equations and thgir

treatment, with appropriate choices of the interfacial-cell con-

stantsA, (1=1,2,3), lead(see Section 3.3 of Lianf2]) to the  Procedural Steps. The final solution is obtained by solving

“source term method” and its results given in E¢g.1)—(7.13 the liquid and vapor domairseparatelyanditeratively under re-

of Patankaf40]. The result of the above modifications is that thgpeated modifications of the interface configuratiéfx,t). The

original equations in Eq2) continue to hold in the interior while iterations modify, intimately connect, and converge the two solu-

the chosen values ¢fi,,vb, 6.} get fixed on the interfacé(x,t). tions with the help of all the interface and boundary conditions.
To obtain separate calculations for the liquid domain in Fay. 4This convergence is accomplished through the following substeps:

and to keep the interface sensitive to the pressure and shear cona) As described earlier, obtain grid A with the help of suitably
ditions (as given by Eqgs(4)—(5)) at the interface, instead of selected point$; on an initial guess or a tentative intermediate
guessing and temporarily fixing values faf; ,v , 63} on the in- prediction of the interface location.

terfaced(x,t) of Fig. 4(a), a scheméddescribed and termed the “ (b) Fi - . .

o - : - First extend the liquid domain by a singieterface cell

4 Ip rri1ethiod in Yu [17] and L'af‘g 2] is emplqyed where depicted in Fig. 3 and shown as the gray region in Fig))4to
{U1s,015, 01} are 9“955?" and f_|xed on th_e shlﬁed |_nt§rfac efine 5nin(X,t) as ashifted extensionf §(x,t). Utilizing the “
Ssnir(*,t) of Fig. 4(b). This extension of the liquid domain into -, method ‘described above and using guessed values of
the vapor domain by a single liquidterface cell(as depicted in {ul,,vi, 61} on the estimate for shifted interfackyq(x,t) of

e isetof Pl ard show, e e ey reson i P 114l abiana i volme SoUiorSINPLER (e o
i A p » . Patankaif40]) for the liquid domain underneat(x,t).

{U1s.015. 01} ON dghin(x,t) by the “source term method.” This ~ ¢ unsteady solutions fot>0 are being sought, one skips the

m?th?d i's identical to the one descrl_bed earllgr fo.r f'),('ngemaining operations described here in this paragraph and moves

{uz,v3,05} on 5(x.t) for the vapor domain calculations in Fig. o 1o the next substefr). However, for obtaining the steady so-

4(b). In this “7-p” method (see Liang 2]), the values oli;s are  |ution att=0, another liquid domain problem underneath the ac-

adjusted to ensure that the appropriate relationship between thgl interfaces(x,t) is solved toincorporatethe exit-condition

tangential stresses, i.e., E®), is satisfied. Similarly', values prescription necessary for obtaininguaiquesteady solution. For

are adjusted to ensure that the appropriate relationship betwelis, the just obtained values of liquid velocity components

the normal stresses’;, and 75, i.e., Eq.(4), is satisfied. The (u’,v}) and temperatur@; from the “r-p” method (which in-

values ofé; are presented to satisfy E). After the satisfaction volves dghir(X,t)) are now temporarily fixed on the actual inter-

of the pressure, shear, and temperature conditions on the acfage locations(x,t). The values ofx-component of interfacial

interface 5(x,t), the entire solution underneath the actual liquidelocity u} and temperatur@; are retained as they are while the
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y-component of interfacial velocity, is modified to satisfy the for the next time step t+ At” or is used merely to improve the
current status of the equation = Mgpergy This is in preparation €XISting estimates o and other flow variables for timet*

to achieve closure with the subsequent chain of mass flux equaltiAt.” Whatever be the case, at each relevanll liquid and

ties Viz.: My = Mgnergyin Substefic) below, and the exit condition vapor flow variables are linearly mapped to the new liquid and
restriction imposed asify ) modified= Menergy N SUbStepsd)—(e) ;/ap(:_r domains defined by each new prediction of the interface
below. ocation.

(c) Making use of the vapor domain calculation method de; REPetiion of the stepga—(€) above with a starting guess
scribed earlier, obtain guesses far, ,v! Hi} on the interface dgueskX) for the interface location leads first to a convergent so-
) far, ,v;, 65

A h lution dgeaaf X) Of the steady equations. This solution is consistent
8(x,t) in Fig. 4b) and then solve the vapor domain flow probleny i, theStearescr'bed exit qualitz.. becauses introduced and com-
by a finite volume techniquéSIMPLER technique of PatankarwI P ! xit quality usgs .

g S X A ‘“! puted in substepd) above satisfies the requirement gf—1.
[40]). Utilizing the liquid domain solution in substef@) above; Starting from this converged steady solutiort a0, steps(a)—(e)

values ofu}, are obtained from a first order discretization of thgphove are repeated a suitable number of times for each new time
continuity of tangential velocitiesondition in Eq.(3), values of step, viz.t=At, t=2At, etc. This leads to a convergent unsteady
v, are obtained from a discretization of the requirememt  solution consistent with the choice of initial and boundary data.
= Menergyin EQ. (8), and values o#, are obtained from the ther- The ability to improve the results at any time step by dwelling at
modynamic restriction in E¢9). that time step for repeated iterations between the time step under
consideration and the previous time step makes the process of

(d) While obtaining unsteady solutions for 0, this substep is forward time marchingimplicit (or, more appropriatelysemi-

skipped, and one moves on to the next subsgpHowever, to

X X - . -explicif).
\?g:)%l? c?uz[l?t?/%i 23';110)2 H{T:(c),r |’;h|is;120(rens(;s c?i;iyezjo \E’;Szfr:ggsa;nfﬁﬁfe The solution obtained by the above procedure not only satisfies

. el e : the pressure, shear, temperature, and continuity of tangential ve-

E)rl?e’lﬁglmé’g'{'gﬁ]’ﬁ] erSVSKole'r;g?gglgg?Hg?; aFI) %?&?tg 6'\2 St Tre anngf)((er , ,Jil(f(%'ty conditions at the interface, but also satisfies the various flow
o M ] ield restrictions that arise from having a nonzero interfacial mass

across the entire interfaoeomputed asfy"p1/p2- (Myk)modiied  flux m. The steady solutionatt=—0 satisfym, = Mgnergyin sub-
-V1+ 82.dx) consistent with the given value of exit qualiB,  Step(a), Myk=Mgnergy iN Substep(b), and the exit condition re-
(i.e., it is made equal to 4Z,). To account for changing vapor Striction imposed as k) modified™ Menergy iN SUbStEpS(d)—(€).
control volume and moving interface, suitable modifications ofheunsteady solutionatt>0 satisfymy = Mgnergyin substepb)
this approach is needed to specify exit conditions for compressit#8d M = Menergy in substep(d).
unsteady cases not considered in this paper. Ghiseobtained,
the interfacial values of liquid velocity, (denoted as)) are
updated so as to satisfy, for steady flows, the additional exit o
straint:

Discussions for the Interface Tracking Equation and Its So-
ion. When the right side of Eq20) is zero, spatial extension
of Eqg. (20) leads to a color functiori{ whose initial valuesi
Mk = (Myi) modified- (19) =0 and}=1 within each of the phases are retained for all times
t>0, and this forms the basis of the popular VOlume of
The steady solution procedure then moves to the next subBtepfiuids) techniquessee Hirt and Nichola§24], etc) for air/water
to updates(x) values from Eq.(22) given below at the end of type flows. Similarly, a suitable spatial extension of E20), in
substep(e). conjunction with some other techniques, is used in the level-set
method (Sussman et al[22], etc) for capturing the interface
through iterative single domaiftconsisting of both the phases
calculations. For boiling related phase change flows, the level-set
technique has recently been used by Son and [28ir In order to
better understand and sidetrack some of the problesss e.g., Li
and Renardy27]) associated with interfaceapturingtechniques

(8). The only remaining interface conditiam, x =Mgpe/qy iN
Eq. (8) (which, for steady flow computations, because of @)
above, becomesity k) modified™= Menergy 1S Satisfied in this substep.
It should be noted that the physical variable faimp, = Mg, Of
this equation arises from E@A7) in the Appendix, and can be
written in the following popular form fotracking the interface

H(x,y,t)=0: (be it level-set, VOF, et¢.that utilize Eq.(20), we look at the
e ' existing knowledge base for the reduced form of &) given in
IH . —ky 973 Eqg. (21). Equation(21) is theinterface tracking equatiomhich,
ot TV VH=E - — |[VH]. (20)  for t>0, defines the followingnterface tracking problem:
p1-Ngg N
Focusing on locating the interface prior to any break up or pinch 8—6+U(x t) a_‘szv—(x t)
off, the interface in Eq. (20) is represented by a simple single at ox '
valued form given byH=y—A(x,t)=0. Nondimensionalizing
the resul_tin_g Eq(20) unde_r Eq.(2), t_he followir_lg nonlinear and 5(0t)=0
hyperbolic interface tracking equation is obtained: 8(%,0) = SyeasfX) OF other prescriptions. (23)
) ) i i i i afi ; .
20T 2 =5, 1) The computational issues for discretization and numerical solu

ot ox tion of Eq.(23) are well understood and extensively discussed in
o ; — Abbott and Basc26] with regard to various algorithms’ stability
where u=u;+{Ja/(Re-Pr)}dd,/9x|' and v=v3+{Ja/(R& and accuracy in determining both the amplitude and the phase of
-Pr))}96,/9y|" typically depend strongly, but indirectly, oA its often-wavy numerical solutions. It is known from there that
While obtaining the steady solution &t0, however, all time among various possible discretizations for E2@), the one that
derivatives are set equal to zero, and the interface is updated byiges best results in marching from,f) to (x+Ax,t+At) has a

simple numerical integratiofirapezoid rulg of the steady formof  Courant number Cr (Gru(x,t) - At/Ax) equal to 1(i.e., Cr=1)

Eq. (21), which is and the following discretizations:
déldx=v(x)/u(x) for x>0. (22) S(X+AX,t+At)=8(x,t)+v(X,7)- At
In this substep, Eq(21) or Eq. (22) is solved to obtain new 981 t=[ S(x+ AX,t+At)— S(x+Ax,t) /At
values ofé. For the steady case, E@2) yields NnewdgeaqfX) and
for the unsteady case, EQ1) is solved to obtain new values éf 36l ox=[ 8(x+ Ax,t)— 8(x,t) ]/AX. (24)
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Fig. 5 The above predictions are for vertical channel flows of saturated R-113 vapor. The

flow cases are specified in Table 1 with
tions, viz. Z, =0.5and Z,,=0.38.

The intermediate time (t< r<t+ At) in Eq. (24) above(appear-

a=90 deg, x,=50 and two different exit condi-

of U at xu(i) locations. Theéd values thus obtained from Egs.

ing in the definition of Cr throughu and in the first equation (23)—(24) on grid B are then mapped back to grid A with the help
throughv) is chosen such that, by the end of iterations for thisf linear interpolations.

time interval,u and v satisfy u(x,7) ={u(x,t) +u(x,t+At)}/2

It is further noted that the discretizations in E@4) are the

andv(x,7) ={v(x,t) +v(x,t+At)}/2. It should be noted that one same as the discretizations for thmethod of characteristictsee,
can tentatively use any convenient and stable discretization fag., Greenberf2]). That is, evolution of5(x,t) as a solution of
48l dx andd sl dt in substepga)—(d) above, as long as the optimal Eq. (21) takes place alongharacteristic curves x x.(t) given by
discretizations in Eq.24) are employed and satisfiéy the endf
repeated iterations of subste{@—(e) for any given time step.
The above requirement of EuAt/Ax~1 in Eq. (24) is
handled by mapping theu(i) locations in grid A toxud(i) loca-
tions in grid B(see Fig. 3. This is accomplished by setting, at any
time t, xud(3)=xu(3)=&e>0 and sequentially finding all subse-
quent xud(i) for i=4 by the relation: xud(i+1)=xud(i)
+u(xud(i),t)- At whereu(xud(i),t) values are also sequentially
obtained from linear interpolations within the known set of valuesherex* is any given value ok between the inlet and the outlet

X(0)=x* or x.(t*)=0,

Xe

dt

u(XC(t)!t)

(25)

Table 1 Specification of reported flow situations involving saturated R-113 vapor

of the inlet. Properties of R-113 are taken from ASHRAE Handbook, [45].
Fig. # Po I(po) AT h U
for flow (kPa) °0) (°C) (m) (m/s)
Rei, Ja Fr"x Fr"y P2/P1 Ha/py We Pr;

5,6,7,8a, | 108.855 | 49.47 5 0.004 0.41
8b, 10, 11a,

11b, 1lc,

Lol 1200 | 0.0341 | 02379 | 032x10° [ 0.0053 | 0.0209 | 67.6335 | 7.2236
14b, 15, 16,

17,18
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0.10 4 Stability of Steady Solutions and the Role of Exit
0.00 Conditions

For slow laminar/laminar internal condensing flows considered
here, it is computationally shown in Fig. 5 that, for different exit
conditions(i.e., exit vapor qualityZ.=Z,(0)), oneobtains differ-
ent steady solutions for any given inlet pressure and inlet mass
-0.30 flow rate. In Fig. 6, we see that the prescription of a different exit
vapor qualityZ, is equivalent to a prescription of a different exit
pressurem,.=1/(1— 5)f};772dy. Because of the nonuniqueness
of steadysolutions in the absence of prescribed exit conditions,
the following questions arise with regard to different solutions
Fig. 6 For the flow situations specified in Table 1 with =90 associated with differenZ, values: (i) all else remaining the

-0.10

2e
-0.20

-0.40 '

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Z.

deg, x,=50, the figure shows the equivalence of specifying exit same, is there a range @f, values that can be prescribed at a
vapor quality Z, or exit pressure @.=1/(1—8)[}m,dy to givenx=X for which a range of steady solutions can be obtained;
specify exit conditions. It is computationally more convenient (i) is a particular steady solution for a givé&g stable or unstable

to specify exit condition  Z. in the absenceof exit constraints fot>0 (i.e., if Z,(0)=Z, but

Z(t) can take any value far>0); and(iii ) is a particular steady
solution for a givenZ, stable or unstable in thgresenceof exit
constraints fot>0 (e.g.,Z¢(t)=Z, for t=0)?
in Fig. 1 andt* >0. Equationg23) and (25) together imply that ~ Representative answer to questidhabove is given in Fig. 7
the evolution of §(x,t) along thecharacteristic curveds gov- Which computationally demarcates a rangeZgf0)=Z, values

erned by for eachx, while all other nondimensional parameters determin-
ing the flow are held fixed. The demarcation in Fig. 7 is of the
dst) . type Ze|min<Ze=<ZJmax Where the lower and upper bounds are

T:ﬁ(t) rather well defined. The parameter range shown in Fig. 7 changes

as the remaining significant parametéviz. Re,, Ja,a, p,/p1,
moluq, and Py) are changed.

Answer to questioriii) regarding stability of solutions for the
unconstrained exit case follows from results given in Figs. 8-9.
Based on two-dimensionainsteadysimulations results shown in
Fig. 8(a) for the idealized noise-free case and its noise-sensitive

of the type d(e,,t) =&, for any suitably chosem,>0 ande, quasi-steady counterpart in Figbd, it is found that, for uncon-

>0 does not affect the solutions x#¢,. Therefore, unless one stralngd exit qondltlons, as— oo, there is anattractive solution
is interested in the singularity at=0, the proposed approach(see Fig. 9 while the remaining steady solutions anestable All

works rather well for all cells except the first two to three cells aggﬁtigﬁl?r? lg'vegé)trif (;Ierlr%tee;azillg | Obtﬁ'?ﬁgcgotg tt?]?;lt&il;[tir;ﬁtelve
the leading edge cornéire., left corner of Fig. 2 This is because I | g- ' | o th elNa f oxi )
solution obtained away from the leading edge remains larg twrally selected value df, in the absence of exit constraints.
unaffected by changes in specific reasonable choices mads for is naturally selected attractive steady solution for unconstrained

. - - L exit conditions is found to betable(see definition oftability in
ande,. Thus, as expected, integrability of this singularity in twcgpseph[AS]) becausanitial two-dimensional disturbances damp

or three-dimensional calculations poses no problem. Howev : ) ;
resolution of the same singularity becomes more challenging ngt over time. It should be noted that a solution mightsbable

one-dimensional pproachee Narain et al19) tat empioy oy ¢! 08 ATEuL0 eali n practce becousefstvyto
semi-empirical interfacial shear models. yp :

stand the stability and noise sensitivity issues, the problem in Eq.
(23) and its solution along characteristics, as defined by Egs.
(25)—(26), is best rewritten in terms of the evolution of a distur-
bance 6’ (x,t)=6(X,t) — seaafX). Under this change of vari-

3(0)=5stead)(x*) or other prescriptions, (26)

where 5(t)= 8(x.(t),t) and5(t)=v(xc(t),t).
It is found that the integrable singularity &t-0 is such that
replacement of the conditiof(0,t) =0 in Eq.(23) by a condition

1.00 ables, the characteristics continue to be defined by(Zs).while
Eqg. (23) changes to
0.80
2 a2 =5
— +u(x,t) —=0(X,
0.60 r ot X
Z. 8'(0t)=0
040 1 Y “he r 5'(x,0) or other prescriptions, 27)
—_— Zn ) - o o
020 L —a— Zun I where 5(th)z[v(xvt)7Ustead)(x)7{u7ustead}(dastead)/dx)]
and Eq.(26) changes to
0.00 . : : : : ds'(t) .
0 8 16 2 32 40 a8 mrrai
Xe
5'(0)=0 or other prescriptions, (28)

Fig. 7 With all remaining flow parameters specified as in Table

1 with =90 deg, the above figure shows that exit condition where A&’(t)Eé’(xC(t),t) and 5(t)55(xc(t),t). It should be
specified by the number  Z, at a given x. must lie within two 04 that— T, o) and|d(x,t)| are identically zero for steady
well-defined values, viz.  Zg|min (X)) <Ze<Zmax(Xe). This restric- - L e . .

tion, presumably, arises from the fact  (see Carey [37]) that the ~ Solutions withs”=0 and are small for disturbances with smalll
assumed annular /stratified flows only occur within certain pa- The attractive solution in Figs. 8-9 is such that disturbances

rameter ranges. &' (x,t) again propagate along characteristics curves given by Eq.
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Fig. 8 (a) For flow situation specified in Table 1 with

a=90 deg and x,=30, the figure

depicts two sets of

&(x,t) predictions for

=0, and tends, as t—®, to the solution for

t>0. One curve C1 starts at Z,=0.51 at ¢
Z.|na=0.47. The other curve C2 starts at

Z,=0.44 at t=0 and tends, as t—o, to the same steady Z|y. Solution. (b) For flow

situations considered in Fig. 7

(a), the above predictions for

t>0 starts at t=

0 from the

same curves C1 and C2 in Fig. 7 (a). However, at t>0, there is a condensing surface
noise given by v,(x,0,t)=g- sin (2@x/\)- sin (2#t/T), with €=0.3E-6, A=10, and T=24. As
t— o, the mean part of wavy quasi-steady solutions coincides with the smooth solu-

tion, shown in Fig. 8 (&) for Z,=Z,|\.=0.47.

(25). For the steady solution in Fig. 10, representative character-
istics curvesC,, C,, etc. are shown in Fig. 14). These curves
are generated by numerical integratiéourth-order Runge Kutja

of Eg. (25) with the characteristic spe@r{X,t) = UgeagfX). Figure
11(b) shows that the characteristics speed for small initial distur-
banceqwhich, because of the nature and form of E2j7), is the
same as phase spgeshtisfiesu(x,t) =UgeaafX). For intrinsic
waves induced by small initial disturbances, unlike gravity waves
on water(see Lighthill [31]), the waves are nondispersivie.,
wave speeds are nearly independent of wavelengthd become

somewhat dispersive only for large amplitude initial disturbancesy. 9 Qualitative nature of the stable, steady

(seeu for this case in Fig. 1(b)). For the steady and initial dis- solutions
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Fig. 10 For flow situations specified in Table 1 with =90 deg and x,=20, the
above 4(x,t) predictions (At=2.5) are for initial data  J(x,0)= bgeaqy (X)+ ' (x,0),
where a nonzero disturbance &’ (x,0) has been superposed at t=0 on the steady
solution  &geaqy (Shown as curve C1 above for t<0). The steady solution corre-
sponds to Z,=Z.|n.=0.5. Here &'(x,0)=0 except in the interval x*<x<x*+10,
where x*=3.5and &' (x,0)=0.5 6geaqy (X) - SiN (27x/5). Itis clear that even this large
a disturbance damps at later times.

turbance cases shown in Fig. 10, Fig(cdlshows values of the Z.=Z.|\, Solutions, are expected. However, unsteady simulations

“growth/damping” factoro (t) along a representative characterisfor initial disturbances while retaining exit constraint at all times

tic curve(such asC; in Fig. 11(a)). The initial disturbance in Fig. are outside the scope of this paper as such simulations require

10 typically damps because, in Fig.(&] we have a typical re- allowance of density fluctuations in the vapor phase and account-

~ . , ing for their interactions with fluctuations in other variables. It is,

sponse Ofv(tzfo for all sufficiently larget and &"(xc(1).t)  however, easily conjectured that many steady solutions with con-

=¢6"(x*,0)+ [ou(7)-d7 tends to zero as—c along characteris- strained the valuegt all timeg sufficiently farfrom Z|y,, such

tics originating on thé=0 line. Furthermore, besides damping OEasZe:O.26 case shown in Fig. 1@ith its unlikely liquid veloc-

initial disturbances along the characteristics curves, disturbanggsprofiles resulting from the inappropriate constant density as-

leave the computational domain€Xx=<x,) with a forward phase sumptiong, will have oscillatoryinstability in response to initial

speed ofi>0. As a result, in Fig. 1f)), at a fixedx ast—o, one disturbances. This is because sustained density and other

would leave the solid line initial disturbance characteristics origfluctuations/waves are expected.

nating on thet=0 line and get on the characteristics originating

on thex=0 line (these curves are overt* for anyt* >0). The

values of " on these characteristi¢ever t=t* andt*>0) are

not affected by the nonzero initial disturbances since these chgr- Effects of Noise and Resonance Condition

acteristics only carry the nearly zero-noise information of

0'(0t)~0 for allt=t*. This stability of a natural steady solution  The natural and stable solutions described in Fig. 9 and ob-

associated with the exit conditiaf,=Ze|, is typically true for tained in Fig. 8 were shown, in Fig. 10, to igrinsically wavyto

any initial disturbancenot just the large initial disturbance ex-injtial disturbances. It is shown in Fig. (@ that, despite the

ample used in Fig. JQunder unconstrained exit conditions. Whilestapility, the interface is quite sensitive to even minuscule vibra-

the small intrinsic initial disturbance waves damp out as theyons of the bottom plate. This is because transverse condensate

propagate downstream with increasing wavelengths and incregstocity component, is very small(e.g., if axial vapor velocity

ing speedi~UgeaqfX). For the initial disturbance cases with ini-jq 0O(1), axial condensate velocity is often abdd{10 ), and

tial wavelength ), at later timest the wavelengthsh(x,t) transverse condensate velocity is often al@(20 %)) and yet it

=N (xc(1),t) with A(x;(0),0)=\. Here reciprocal oh(x,t), as s a significant player in the forcing term on the right side of the

in Lighthill [33], is in terms ofx-derivative of phase angles thatinterface tracking equation in E423). The small bottom plate

are constant as they propagate along the characteristics curygsses considered in this paper correspond to a velocity

Since these derivatives get smaller with increasingecause of 4, (x,0t)=¢- sin(2m/)\)- sin(2mt/T) whose amplitude: is in the

the increasing«-separation among incrementally apart charactefange of X 107°— 3% 107°. For the representative cases consid-

istics (this is also the case with finitely spaced characterigfics ered heregle.g.,, T=12, A\=5, h=.004 m, andU=0.41 m/s), the

C,, etc. shown in Fig. 1(h) the wavelengths?(x,t) increase as maximum displacement amplitude of the vibrations is about 0.25

the disturbances propagate forward under continued damping. #m, the maximum velocity amplitude is about 0.A&/s, and the
Earlier, in Fig. 5, it was shown that different steady solutiongaximum acceleration amplitude is about 624 m/S

are possible for different exit constrairtise., different values of (which is less than 10* g, g=10 m/€). Such transverse con-

Z.). With regard to stability of such steady solutions to initialensing surface vibrations are typically induced by structural or

disturbances whilexit conditionsare constrained to keep valuescoolant noise sources and are indeed commonly present in the

of Z, fixed in theimmediate vicinityof Z|y,, stability, like the 0-30 Hz range considered here. Thus these noise-induced waves
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Fig. 11 (a) For flow situation specified in Table 1 with =90 deg and x,=40, the charac-
teristics curve C; denote curves along which infinitesimal initial disturbances naturally
propagate on the stable steady solution. Curve C; denotes characteristics along which
finite disturbance arising from forced bottom wall noise actually propagate. On character-

istics originating at x=0, &(0,f)=0 implies &'=0. (b) For flow situations defined in Table 1
with @=90 deg and x.=48, the above u(x,t) predictions for t=0 are for (i) steady flow with
Zo|na=0.524, (ii) resonant case in Fig. 13, (iii) nonresonant case in Fig. 13, (iv) large initial
disturbance of Fig. 10 and (v) small initial disturbance &’ (x,0) which is one-fifth of 6’ (x,0)
in Fig. 10. (c) For flow situations defined in Table 1 with a=90 deg and x,=50, the above
v(t) values are along actual characteristics curves like C; in Fig. 11 (a). The predictions are
for (i) the steady and stable flow with ~ Z.|y,=0.578, (ii) the resonant case of Fig. 13, (iii)
the nonresonant case of Fig. 13, and  (iv) the small initial disturbance case  (scaled up and
shown in the lower figure ) in Fig. 11 (c).

discussed/studied here are the waves that appear as wavy intesfizere “i” in the arguments of the exponential functions appearing
cial oscillations in laminar/laminar condensing flows under unn Eq. (29) denotes the complex numbgr1 and “Re }"in Eq.
constrained exit conditions. (29) denotes real part of the expression withif}*
The Fourier component of the standing-wave disturbance Fyrthermore, results in Figs. @8 are in accord with the ex-
v1(x,01) used in Fig. 18a) is equivalently written as the sum of hectation(see Miyara[32] for the Nusselt probleinthat noise
two traveling waves. Denoting the forward traveling wave’s phasgnpiification is either sustained or increased with increasing
angle asa;=2m{x/\ —t/T} and the backward traveling wave's yo\ynstream distances and film thickness values. For resonant or
phase angle as,=2m{x/\+t/T}, the bottom plate noise is nonresonant condensing surface vibration considered in Fig. 13,
given as the corresponding oscillatory “growth/damping” facté(t) val-
ues in Fig. 11c) (computed along the actual unsteady character-
_¢ . _ . istics such a<C; of Fig. 11(a)) are also, on average, either sus-
v1(00=3 [Refexpliay(x,1) ~expliaa(x.0)}],  (29) tained or amplified. In Fig. Xb), at large times, the noise-induced
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Fig. 11 (continued )

waves' characteristics speafx,t) has a meani,.,{x) (with above discussions for the bottom plate noise in @§) allow us
Umead X) =UgeagfX)) and superposed oscillations/waves oo assume that the form of(x,t) and the form of the associated
UnmeadX). It is seen in Fig. 1¢a) that theintegrationinvolved in  6’(x,t) are given by

obtaining the characteristi€3; ,C,, etc. smooth out the effects of : _ . .
the fluctuating part oﬁ(x,t«)%lwhilfe its MmeanUpyeq(X) mainly af- 5(X,1) = Re{v gy (x, D) expli g (x,1) + v ga(x, ) expli ap(x,1)}

fects thecharacteristicsat largex-locations where the noise ef- , _ ; ;

fects are large and nonlinezgr effects associated with the size of (x,t)—Re{ggl(x,t)exp(lal(x,t)+ggz(x,t)exp(|az(x,t)}(,

|8’ (x,t)| play a role. For the nonresonant wall noise case in Fig.

13(a), both the “growth/damping” facto (x,t) values(shown in where the phase angles and a, are same as in Eq29). Fur-
Fig. 11(c) aso(t) alongC,) and &' (x,t) values have been com- thermorecomplex-valuegrowth ratesy; ando g, for v(x,t) and
putationally verified to sustain waves with approximately theg: andsg, for §’(x,t) are assumed to be non-oscillatory. Under
same wavelength and frequency,= 1/T as that of the external this assumption of nonoscillatoy(x,t) =uea{X), the relation-
forcing noise. Thus the phase angles associated with these ing#ips among the growth rates f@x,t) andé’(x,t) are found by

facial waves are same as those associated with the forcing noisgiiBstituting Eq(30) in Eq. (27) and equating coefficients of the
Eqg. (29). To better understand the connection between these tyg, exponentials. This gives

variables in terms of the resulting phase speeds and the intrinsic

phase speed for the flow, analytical implications of E2f) are ds
presented next for the case of small amplitude bottom wall noise. —gl+i(DAl)g 1=Uq1
For the purpose of identification of resonance conditions, it is dt ¢ ¢
assumed, as is the case in Fig(l)1that an amplitude &” for
bottom wall noise can be found up to whi¢he., small to mod- @H(DA )Sqp="D 31)
erate values of) the approximation(x,t) =UgeaqfX) holds. The dt 2)Sg2~ Vo2)
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Fig. 12 For the above flow situation specified in Table 1 with =90 deg and x,=50, the
steady solutions are obtained for  Z,=Z|nin=0.26 and Z|y,=0.36

where DA =(27UIN—foy), DA=(27UIN+Tgy), e =1/T, Although it is not presented here, effects of aggneraltwo-
and theordinary time derivatives in Eq(31) are taken along the dimensional noisgas measured experimentally by accelerom-
characteristicsk=x.(t) defined in Eq.(25). With J=1 or 2 de- eterg can also be estimated by looking at the power density func-
noting the numerical subscripts in E(1), the solutions of the tion of v,(x,0t), through FFT, in thek-w space(wave number
two equations in Eq(31) subjected to the requirement of zerok=2#/\ and angular frequencyw=27f) and representing the
growth rates up ta<0 are given by disturbancev1(x,0t) by a representative sum of Fourier compo-
) nents of wavelengths and frequencie&
qu=exp(—i(DAJ)t)f vgy(T)EXp(i(DA))7)-d7.  (32) The_ CFD s_|r.nuli1t|on restrictions on Wal/e_lengmﬂ;hat can be
0 investigated iSAX*/2<\<X./2, whereAx* is of the order of
. L ) magnitude of the largestwidth in grid A and grid B andk, is the
_From Eq.(32) it is easily inferred that, ifiDA,| values are isiance between the inlet and the outlet. The smallest time step
significantly nonzero_foﬂ: 1 and 2(as in nonresonant cagethe At* is the minimum of Ax/U) values due to Ce 1 restriction in
growth ratesv, for v(x,t) andsg, for &'(x,t) are of the same pq (24 This restricts the maximum frequenéy= f s, that can
order of magnitude. Thus the physical mechanisms inherent in '533 computationally studied to those that satisfy the Nyquist crite-
(27) do not affect these growth rates in aspecialway. However, ria fh<1/(2-At*). Despite these restrictions on noise-

for |DA1t|:O in Eq. (32), sq1_ significantly starts growing as sensitivity analyses, thstability results in Section 5 are true for
Isg1|=|/ovg1(7)d7[=tlvg(Xc(1),1)|a,=O(z ). Therefore by g5 wavelengths\. This is because the resulting interfacial wave-
choosing frequencye= fex(X)=1/T(x) to satisfy the resonance |engths are increasing in nature and they increase to a value where
condition|DA4[=0, i.e., it can be resolved by the refined grids employed in this paper.
—Tix ) =0 =T With regard to noise sources other than the bottom plate noise,
Mexd(X) = U(X,1) = Ustead X) = Umeal X). (33) it was found that noise or fluctuations in the inlet velocity profile
one can match the phase speed,(x) of the bottom wall noise only leads to fluctuations in the vapor profile and h#le impact
to the phase speegfqqfx) Of the intrinsic initial disturbance on the interfacial waviness. In other words, under unconstrained
waves It should be noted that, even for this cadeA,| is non- exit conditions, only fluctuations in flow variables that signifi-
zero. Indeed, under these conditions, this resonance phenomeg@itly influence fluctuations in transverse liquid velocity
is seen in Fig. 1&). The fact that, in Fig. 1®), interfacial waves’ v ,(x,y,t) cause significant interfacial waviness. However, this pa-
wavelengths only approximately equal wall-noise wavelength per can not account for density fluctuations that necessarily appear
andu(x,t) only approximately equaligeaqfX) is due to the fact in the study of effects of superposed fluctuations in the exit con-
that the amplitude ofs’(x,t) are not infinitesimal(as was as- ditions while the inlet conditions are being held fixed.
sumed in the above analysisAll else being the same in Fig.
13(a), it is clear that the resonant case has significantly more waye
energy than the same amplitude non-resonant noise. Thus when- .
ever resonance condition in E(@®3) is satisfied, the mechanismstn€ Solutions
represented by Eq427) imply that the forward moving component For a computational solution to be accurate, it needs to satisfy
of the noise and the small amplitudetrinsic interfacial waves the following criteria:(i) the convergence criteria in the interior of
have the same phase speeds and this leads to phase reinforcenagiats fluid(i.e., smallness of B” defined on p. 125 of Patankar
and significant increase in the amplitude &t [40]), (i) the satisfaction of all the interface conditiortsi,) grid
Although the results shown in Fig. 13 are for a sinusoidal stanthdependent solutions for grids that are sufficiently refined, and
ing wave on the condensing surfaceyat 0, more complex two- (iv) unsteady simulation results for the sensitive interface loca-
dimensional or three-dimensional patterns will arise from a mot®ns should be free of computational noise in the absence of
general noise that wouliypically be present. Furthermore, even ifphysical noise. The simulations presented here satisfy all the
the noise itself is two-dimensional any three-dimensional impeabove criteria.
fection in the geometry may cause the wave to become three-The satisfaction of the governing equations in the interior and
dimensional further downstream, and this is perhaps the reasadhthe conditions at the interface is demonstrated in LigjgFor
why two-dimensional waves become three-dimensional in sorsefficiently refined gridi.e., both grid A and grid B described in
of the known experimenttsee, e.g., L§21]). Section 3 and sufficiently large(but not too large number of

Convergence, Accuracy, and Other Regularities of
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Fig. 13 (a) For the flow situations specified in Table 1 with «=90 deg, x,=50 and
Z,=0.578; the above &(x,t) predictions compare the nonresonant noise with a
resonant noise of the same amplitude (¢=0.9E-4). The noise is given by:
v1(x,0,t)=¢€- sin (2@x/\)- sin (2%t /T), where (i) A=10 and T=24 for the nonresonant
case, and (i) A=10 and T=T(x)=\/Ugeaqy(X). (b) For the flow situations consid-
ered in Fig. 13 (a), the above depicts the wall heat flux  g},(x,t), in W, at t=25 for
the resonant case, and its time-averaged values g,,(x), in W, for all other cases.

iterations, the combined sum of decreasing truncation and increasise. In fact, in Liand2], it is shown that inappropriate discreti-
ing roundoff errors are minimized to a plateau level and the solmation schemes for the interface tracking equation or unsuitable
tions in Fig. 14a) are grid independent to within 1-2%. Thechoice of splines for mapping variable values between grid A and
number of grid lines; X n;|_ X ny|, given in Fig. 14, respectively, grid B can lead to wavy interface solutions even in the absence of
indicate the number of grid lines over <k<x,, O0<y physical noise. Such waves that are entirely due to computational
< OsteadfX), aNd SgeaqfX)<y=1 for the interface location @ noise have been eliminated from the present study.
=0. These numbers somewhat change with time. For grid 1l in Another regularity of the proposed computational approach is
Fig. 14a@), (AX)a,=Xe/nj=0.77, (Ay)a, 1 =38(Xe)/n;| =5.77 its ability to make steady predictions for the classical Nug&git
X 1074, (Ay)avvz{l—5(xe)}/nj|v=0.015, andAt=5. The cor- problem in agreement with its classical solution while allowing
responding representative grid spacing values in physical vafier improvements in it. This is shown in Fig. 15. The unsteady
ables are £x),,=3.08mm, QAy),, =2.31um, (Ay), predictions for this classical problem will be discussed in a sepa-
=0.06 mm, andAt=0.049 s. For a technical estimate of totarate paper.
discretization error—Section 3.10 in Ferziger and Pédit] is
used for estimating error on a representative flow varidbés, A .
film thickness in Fig. 1)) due to the coarseness xfgrid. On ! Tr.ends of the Steady, Stable and Noise-Sensitive
successive refinement of thggrid, the results in Fig. 1) yield Solutions
the error to be within 3%. Considering this and the refinement The steady and stable solutigassociated wittZ,=Z|y,) in
used in the time and in thg-direction, the total error of all re- Fig. 8 for the vertical-channel case was found to be sensitive to
ported results in this paper is about 6%. noise in Fig. 13. Despite the waves, as seen in Figh)1&ere are
Smooth interfacensteady solutions reported earlier in Figgl8 no significant enhancements in heat transfer rates for the nonreso-
establish that the highly sensitive interface predictions are freemdint case. This is because the oscillations around the mean film
computational noise whenever there is an absence of physittdtkness are small and nearly symmetric, and temperature pro-
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Fig. 14 (a) The above é&(x,t) predictions for t>0 are for the steady solution curve
C1=C2 at t=0 and initial noise specified in Fig. 10. The  t=0 solutions are obtained on
two grids | and Il with  (n;Xnj,Xnj,)=(30X30X20) and (n;Xn;, Xn;,);=(50X50
X30). The t>0 solution are shown as curves C1 and C2 and are, respectively, ob-
tained on grids that have:  (n;Xn; Xn;,),XAt=(30X30X20)X2.5 and (n;Xn;,
Xnjy) X At=(50X50X30)X5. At t>0, the number of grid lines  (n;Xn; Xny,)
changes somewhat from their value at  t=0.

files are nearly linear. This yields heat flgg (x,t) ~AT/5(x,t)

whose time-averaged values show no significant enhancement un- 015
less the wave amplitudes are large. As a result, for the larger & Cune§ 0.04ms
amplitude resonant case in Fig. 13, there is a significant heat | | e -
transfer enhancement of 10% or more in the downstream half of y=yl & —o—Cune 4
the channel. Therefore these stable and quasi-st€aehZ|na §=A/L;

solutions obtained in Fig. 8 are important in their own right for the
purpose of estimatintypical heat flux values. Hence it is good to
ascertain the trends of thegatural steady solutions as the inlet ¢
Reynolds number Regand the temperature difference7 (or,

equivalently, the parameter)Jare changed. Figure 16 shows theig 15 For the vertical plate situation specified in Table 1 with
effect of these changes @ =Z,|y,, Fig. 17 shows the effects on =90 deg, x,=48 and L,=0.004 m, Curve 1 is a plot of the
wall heat fluxqy,(x), and Fig. 18 shows the effects on flow fieldsanalytical solution of ~ &(x) as given in Nusselt [5]. Curve 2 is
(OsteafX), €tc). Since the vertical channel configuration studiedhe computational solution under the Nusselt assumption for
here is gravity-dominated, vapor motion does not significantﬁ}ag”‘"‘”t vapor and zero liquid inertia. Curve 3 is the computa-

affect the condensate motion and, as expected, changes in iR Solution under the assumptions of stagnant vapor while
allowing for liquid inertia. Curve 4 is the computational solution

Reynolds number Re ha_s" no effects on' me'an film th'_CkneS%hat allows vapor motion and liquid inertia (the vapor /liquid ve-
OsteaafX) OF wall heat fluxqy,(x). However, in Fig. 18, a thicken- |ocity profiles are shown only for this case ). Though not shown
ing of dseaqfX) OCCUrs due to an increase in temperature diffeabove, vapor velocity tends to zero as =~ y—.

———

10 £ 30 0
x=x/Le
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Fig. 16 The above is a plot of natural values of  Zg\, for different x, values
for a representative flow situation specified in Table 1 with a=90 deg and
X.=48. The “Increased Re ;," case just changes Re ;, to a new value of 1300.
The “Increased Ja” case just changes Ja to a new value of 0.0443 (e, AT
=65°C).
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Fig. 17 For the flow situations described in Fig. 16 and Xe=25.0, the above

figure reports the representative wall heat flux values qyw(x), in W, as a func-
tion of x with 0 =x=x,
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Fig. 18 For the flow situations described in Figs. 16—17 and X=30.0, the
above figure reports the values of  dgeaqy (X)
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enceA7. This thickening occurs in a way so as to concurrently ¢
meet the requirements of increased heat flux valses Fig. 1Y
and increased liquid flow rates.

Streamline patterns for the flow, effect of shear over gravity as
tilt angle « is reduced from its 90 deg value, comparisons with
experimental results for condensing flow simulations for a hori-
zontal channel, effects of surface tension, effects of microgravity,
negligible Marangoni effects, effects of fluctuations on the mean,
etc., are not discussed here but are reported in Liang gt]al.

8 Conclusions

e An algorithm for a successful computational approach ca-
pable of accurate simulation of unsteady wavy interface con-
densing flows has been presented.

The “ellipticity” of the steady vapor flow equations and the

role of exit conditions for steady and unsteady simulations

have been discussed.

e For unconstrained exit conditions and nearly incompressible
vapor flows, an unsteady noise-free simulation method for
identifying and obtaining theatural and stablesteady solu-
tions has been presented and successfully used.

* The noise sensitivity of thetablesteady or quasi-steady so-
lutions to ubiquitous minuscule bottom plate vibrations has
been demonstrated. To assist in quantitative noise-sensitivity
studies, a method for obtaining the underlyttaracteristics
curvesand estimating “growth/damping” factors for interfa-
cial disturbances has been presented.

» For design of smart condensers with actuators imbedded on
the condensing surface, a new and hitherto unknown reso-
nance condition has been proposed, and its efficacy in en-

The tangential component of momentum balance at any point
on the interface, for nearly constant surface tensiomne-
duces to

S A-t=S,A-t+ Vo= St (A4)

* The mass fluxesn,kx andm g as determined by kinematic

restrictions imposed by interfacial values of vapor and liquid
velocities are

M= —pa(Vo—Ve)*N and M x=—py(vi—Vy)-A. (A5)

The energy balance at a point on the interface imposes a
restriction on the interfacial mass fluRg,eqy, and this is
given by

. o . do
Menergy™ l/hfg[{leTlll'n_k2V7—2||'n}+E
s

1' i 12 i i12
+§m{|V1—VS| _|V2_Vs| }

+{S1A(V1 = Vg~ SA(v— Vo))

Zh

i 67—2
Kion

_k_
29N

=1/h¢qg . (A6)
Mass balance at any point on the interface requires single
valuedness of the interfacial mass flux. That is

My =Myk= r-r\EnergyE m. (A7)

hancing wave energy and heat transfer rdtgsto 10% or .

more has been demonstrated.
¢ For unconstrained exit situations, some trends of dtable
steady or quasi-steady solutions have been discussed.
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Appendix
The interface conditions that apply &f(x,y,t)=y—A(x,t)

=0, involve values of flow variables at the interface that are de-

noted by a superscripti:” The unit normal at any point on the

interface, directed from the liquid towards the vapor, is denoted by

f and is equal t&/+/|VH|. The unit tangent at any point on the
interface, directed towards increasingis denoted byt. Each

phase is modeled as a viscous and incompressible Newtonian fluid

with stress tensofl = —p,1+ S, where S = u,{(grad v,) + (grad
-v))T}/2 and1 is the identity tensor.

e The surface velocitwiS of a point on the interface{=0) at

time t is associated with this point's movement to a new

mapped position on the interface at time At. All such
mappings must be such that the normal component ofvthis
is given by

Vi-A=—(aH/at)/|VH]. (A1)

* The tangential component of the vapor and liquid velocities

at the interface must be continuous, i.e.,
Vh-t=vhet. (A2)

« Ignoring normal component df ;o and viscous stresses, the

normal component of momentum balance at a point on the

interface is given by
py=phy+m(Up,—1py) + o Vel —Veo-ii+ (S~ S, A

=ph+m?(Lpo— Lpy) — (oA, /[ 1+ AZ]%°. (A3)

Journal of Applied Mechanics

To account for the effects of nonzero interfacial mass ftyx
the interfacial pressurepzil and pi2 (along with their differ-
enceAp'=p} —p,) that appear in Eq/A3) are often consid-
ered to be controlled by nonequilibrium thermodynamic ef-
fects that are represented by the functiop$=p} , ¢(74)

and pb=p},, (7). whereT'} is the liquid side interfacial
temperature and’i2 is the vapor side interfacial temperature.
In the limit of zero mass fluxn, these thermodynamic pres-
sures reach their equilibrium thermodynamic values and are
denoted ap’=ps(71) andpsL=ps(75), Wherepgyis the
inverse function of the saturation temperatgép). Respec-
tively denoting the non-equilibrium and equilibrium values of
the interfacial pressure differences @§x),.eq and Ap')sar,

it is common toseek or model a function f such that
(AP n-eq= FH{(AP)san M}, Wheref, be it explicit or implicit

in form, allows the two pressure differences to become the
same for zero mass flur. It is common tomodel fby
considerationgsee, e.g., Plesset and Prospefddi and Sec-
tion 4.5 of Careyf37]) involving kinetic theory of gas for the
vapor phase, the concept of accommodation coefficients, etc.
The assumption that use of eithe¥ff) ,.¢q Or (Ap')sado Not
significantly affect the value of 7'=7¢(p,+Ap') — Zo(p))

is well known and well justified in the present context where
significantly larger thermal resistance is offered by the thin
condensate at points away fror~0 (see Section 4.5 of
Carey[37] and Son and Dhif22]). Furthermore, the compu-
tations in this paper also show that the solution further down-
stream is not affected by the nature of the singular solution at
x~0 and computed values in this zone always satisf'
=T(p,+Ap')—7Ty(p5)=0— in the sense thah7'<AT,
whereA T is the number defined in E@l). Therefore, under
negligible interfacial resistance approximation, the interfacial
temperature values satisfy:

TY=TH=Tp)). (A8)

» The term[t] on the right side of Eq(5) is given by
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