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Nonlinear Stability of the
Classical Nusselt Problem of Film
Condensation and Wave Effects
Accurate steady and unsteady numerical solutions of the full two-dimensional (2D) gov-
erning equations for the Nusselt problem (film condensation of quiescent saturated vapor
on a vertical wall) are presented and related to known results. The problem, solved
accurately up to film Reynolds number of 60 �Re��60�, establishes various features of
the well-known steady solution and reveals the interesting phenomena of stability, insta-
bility, and nonlinear wave effects. It is shown that intrinsic flow instabilities cause the
wave effects to grow over the well-known experiments-based range of Re��30. The wave
effects due to film flow’s sensitivity to ever-present minuscule transverse vibrations of the
condensing surface are also described. The results suggest some ways of choosing wall
noise—through suitable actuators—that can enhance or dampen wave fluctuations and
thus increase or decrease heat transfer rates over the laminar-to-turbulent transition
zone. �DOI: 10.1115/1.2198249�
Introduction
The Nusselt problem �1� of film condensation of quiescent satu-

ated vapor on a vertical wall has been extensively studied—
nalytically, computationally, and experimentally. For this prob-
em, the state of empirical knowledge with regard to typical wave
ffects on the heat transfer rates is quite good �see �2��. Despite
his, a good understanding of noise effects and instability mecha-
isms for the flow has been lacking. With the help of first-
rinciples-based computational simulations, this paper explores
hese issues and presents new results and understanding. Further-

ore, compatibility with the well-known results for this problem
rovides a test of the efficacy of the first-principles-based simula-
ion methodology employed here. This benchmark study, along
ith some experimental results, also strengthens the confidence in
ther convergent computational solutions obtained by essentially
he same simulation methodology for internal condensing flows
tudied elsewhere �3–5�.

The well-known analytical solution �1� of the Nusselt problem
as improvised by Rohsenow �6� to account for the effects of the

nergy convection term. Subsequently, Sparrow and Gregg �7�
rovided a similarity solution under the assumption of zero inter-
acial shears. Vapor shear effects were accounted for, by an inte-
ral method, in the work of Chen �8�, and, by a similarity solution
echnique, in the work of Koh et al. �9�. Dhir and Lienhard �10�
pplied/generalized the solution for situations involving varying
ravitational inclinations. The computational solution of the
teady problem that has been presented in this paper is consistent
ith the well-known Nusselt solution and its improvements. A
ood review of the criteria for the range of applicability of the
usselt solution and its modifications is available in Arnas et al.

11�. More specifically, this paper solves the steady Nusselt prob-
em without making any of the usual approximations for the gov-
rning equations and yet yields the solutions which are in a good
greement with the Nusselt solution �1�. The paper also shows
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that, for steady solutions, it is only the near-interface vapor pres-
sure field �p2-p0� that is significantly affected by the presence or
absence of surface tension.

The unsteady solution for this problem—after ignoring the re-
striction based on the continuity of tangential velocities at the
interface—has been attempted by Miyara �12�. This work has
tried to improvise upon earlier related computational efforts �13�
for this problem. But these computational results suffer from the
fact that the three different ways of computing interfacial mass
flux values �from considerations of the relative velocity of vapor
at the interface, the relative velocity of liquid at the interface, and
the heat transfer rates across the interface� are not equal to one
another. In this regard, the simulation results presented here are
accurate and are shown to satisfy this and all the remaining inter-
face conditions.

Wave initiation mechanisms can, in principle, also be under-
stood by linear or nonlinear stability analyses. The linearized sta-
bility analyses of Unsal and Thomas �14� and Spindler �15� yield
results that are mutually consistent but do not satisfy the well-
known experimental results that are associated with laminar-to-
turbulence transition over Re�� �Re��Cr with �Re��Cr�30. The ex-
perimental observance of this laminar-to-turbulent transition is
believed to be related to Tollmien-Schlichting-type instability
waves �16� that are suitably modified by free surface phenomena
and mass transfer across the interface. The paper shows that the
instability mechanism for this problem is necessarily a nonlinear
phenomenon in time �as opposed to nonlinearities due to the size
of the amplitudes alone� and, therefore, cannot be identified by
either the linearized stability analyses assumption ��14,15�� or par-
tial nonlinear analyses ��17�� that employ two term expansions in
wave number and wave amplitude. This full nonlinear stability
analysis presented here does achieve agreement with the reported
values of �Re��Cr�30.

Our results are in basic agreement with the known experimental
result that laminar wavy flows occur over a zone for which, ap-
proximately, Re��30 �see Re� definition in the Nomenclature and
Incropera et al. �2�� and that the waves are typically small to
nonexistent over a zone for which, approximately, Re��30. Ex-
perimentally obtained local heat transfer coefficients for the wavy
regime have been proposed by Kutateladze �18�, Chun and Seban
�19�, etc., and are also given in Incropera et al. �2�. The results
given here are consistent with the range of heat transfer enhance-

ments that are expected under typical wavy conditions.
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Unlike the linearized stability analyses, the accurate simulations
eported here also suggest an insignificant role of surface tension
n the value of �Re��cr�30. This is in agreement with experi-
ents for this gravity driven flow but not in agreement with the

esults based on the linearized stability analyses given in �14,15�.
This paper also clearly identifies how significantly wall noise

nteracts with Tollmien-Schlichting-type growing waves in the
avy laminar regime �i.e., transition to turbulence regime, which

s typically characterized by 30�Re��1800�. It is shown that
all noise—modeled as a linear superposition of transverse dis-
lacement standing waves of different amplitude, frequency, and
avelength—can either diminish or accentuate the wave effects.
he enhancement of wave effects can be ensured if one can place
uitably chosen noise sources �e.g., actuators� that satisfy a certain
esonance condition. This result highlights the fact that knowledge
nd control of wall noise are important issues in ensuring repeat-
bility of wave effects in the transition-to-turbulence regime.

Governing Equations
The liquid and vapor phases in the flow �e.g., see Fig. 1� are

enoted by a subscript I: I=1 for liquid and I=2 for vapor. The
uid properties �density �, viscosity �, specific heat Cp, and ther-
al conductivity k� with subscript “I” are assumed to take their

epresentative constant values for each phase �I=1 or 2�. Let TI be
he temperature fields, pI be the pressure fields, Ts�p� be the satu-
ation temperature of the vapor as a function of local pressure p, �
e the film thickness, ṁ be the local interfacial mass flux, Tw�x�
�Ts�p�� be a known temperature variation �here Tw�x�
constant=Tw�0�� of the cooled bottom plate, and vI=uIêx+vIêy
e the velocity fields. As shown in Fig. 1, instead of the original
nfinite domain �x�0 and y�0�, solutions are only to be obtained
ver a finite subdomain �0�x�Xc and 0�y�Yc�. For conve-
ience, the characteristic length for this problem is chosen to be
c, where Yc is a known numerical multiple of the well known

�1�� physical value of the steady Nusselt film thickness �N�x� at
=Xc. That is, Yc�c ·�N�Xc�, where c is a known number �e.g.,
=47 for all cases shown here�. This makes Yc a priori known and
ufficiently large to capture all the relevant vapor flow. While
ther choices of characteristic length Yc are possible �e.g., Yc
�N�Xc��, this choice is convenient for implementing the compu-

ational approach employed here. Furthermore, let the character-
stic speed U be the average value, at x=Xc, of the x component

ig. 1 Cooled vertical plate in a quiescent „far field… vapor
ow—geometry used for simulations
f the liquid speed obtained from the well-known �1� Nusselt
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solution. That is, U�g��1-�2� ·�N�Xc�2 /3�1. The above choices
of characteristic length and speed are used for defining the nondi-
mensional variables whose computationally obtained values are
reported in this paper. As needed, this choice is related to other
results obtained from other commonly used choices of character-
istic length and speed. Let gx and gy be the components of gravity
along x and y axes, p0 be the pressure of the far-field quiescent
vapor, �T�Ts�p0�−Tw�0� be the representative controlling tem-
perature difference between the vapor and the bottom plate, and
hfg be the heat of vaporization at saturation temperature Ts�p�.
With t representing the physical time, we introduce a new list of
fundamental nondimensional variables through the following
definitions:

	x,y,�,uI,ṁ
 � � x

Yc
,

y

Yc
,

�

Yc
,
uI

U
,

ṁ

�1U
�

	vI,�I,	I,t
 � � vI

U
,
TI

�T
,
pI − p0

�1U2 ,
t

�Yc/U�� �1�

2.1 Interior Equations. The nondimensional differential
forms of mass, momentum �x and y components� and energy
equations for flow in the interior of either of the phases are well-
known and are given in �A1�–�A4� of the Appendix. The simpli-
fied forms that are used in obtaining the Nusselt ��1�� solution are
given by �A1� and �A5� of the Appendix.

2.2 Interface Conditions. The nearly exact interface condi-
tions �Delhaye �20�� for condensing flows, with some approxima-
tions, are given in Narain et al. �3�—see their Appendix Eqs.
�A1�–�A9�. Utilizing a superscript “i” for values of the flow vari-
ables at the interface given by H�y−��x , t �=0, the nondimen-
sionalized forms of the interface conditions are given below.

• The nondimensional form of the requirement of continuity
of tangential component of velocities �Eq. �A2� of �3��
becomes:

u2
i = u1

i − �x�v2
i − v1

i � �2�

where �x���/�x.
• The nondimensional form of the normal component of mo-

mentum balance at the interface �Eq. �A3� of �3�� becomes:

	1
i =

�2

�1
	2

i −
1

We

 �xx

�1 + �x
2�3/2� + ṁ2
�1

�2
− 1� �3�

where We−1�
 /�1U2Yc and surface tension 
=
�T� with
T being the interfacial temperature.

• The tangential component of momentum balance at the in-
terface �Eq. �A4� of �3�� becomes:

� �u1

�y
� i

= ��2

�1

�u2

�y
� i

+ �t� �4�

The term �t� used here is defined by Eq. �A6� of the
Appendix.

• The nondimensional forms of non-zero interfacial mass
fluxes ṁLK and ṁVK �defined in Eq. �A5� of �3�� impose
kinematic constraints on the interfacial values of the liquid
and vapor velocity fields and are given by:

ṁLK � �u1
i ���/�x� − �v1

i − ��/�t��/�1 + ���/�x�2 and

ṁVK � ��2/�1��u2
i ���/�x� − �v2

i − ��/�t��/�1 + ���/�x�2

�5�
• The nondimensional form of nonzero-interfacial mass flux

ṁEnergy �as given by Eq. �A6� of �3�� represents the con-
straint imposed on mass flux by the balance equation for the
F
fl

net energy transfer across the interface, and is given by:
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ṁEnergy � Ja/�Re1 Pr1�	���1/�n�i − �k2/k1����2/�n�i
 �6�

where Ja�Cp1�T /hfg
0 and hfg

0 �hfg�Ts�po���hfg�Ts�p2
i ��.

• The interfacial mass balance requires that the net mass flux
�in kg/m2/s� at a point on the interface, as given by Eq.
�A7� of �3�, be single valued regardless of which physical
process is used to obtain it. The nondimensional form of this
requirement becomes:

ṁLK = ṁVK = ṁEnergy � ṁ �7�

It should be noted that negligible interfacial thermal resis-
tance and equilibrium thermodynamics on either side of the
interface are assumed to hold for x values downstream of
the origin �i.e., second or third computational cell onward�.
And hence, as in Nusselt �1� solution and as per discussions
leading to Eq. �A8� in �3�, no nonequilibrium thermody-
namic model for the interfacial mass-flux ṁ is needed to
obtain a solution.

• The nondimensional thermodynamic restriction on interfa-
cial temperatures �as given by Eq. �A8� in �3�� becomes:

�1
i � �2

i = Ts�p2
i �/�T � �s�	2

i � �8�

Within the vapor domain, for any of the typical refrigerants
�such as R113 considered here� changes in absolute pressure
relative to the inlet pressure are sufficient to affect vapor
motion, but, at the same time, they are too small to affect
saturation temperatures. This allows the approximation:
�s�	2

i ���s�0�.

2.3 Boundary Conditions. Since the vapor is stationary at
ocations far away from the condensate, the appropriate far field
apor boundary conditions are prescribed along lines AB �x=0�,
C �y=Yc�, and CD �x=Xc or x=xc=Xc /Yc� in Fig. 1. These are:

• 	2�0,y,t� = 0 and � �u2

�x
�

�0,y,t�
= 0

• 	2�x,1,t� = 0 and � �v2

�y
�

�x,1,t�
= 0

• 	2�xc,y,t� = 0 and � �u2

�x
�

�xc,y,t�
= 0 �9�

t the condensing surface �y=0�, we have:

u1�x,0,t� = v1�x,0,t� = 0 and �1�x,0,t� = �w � Tw/�T �10�

Furthermore, vapor can be assumed to be at uniform saturation
emperature—i.e., �2�x ,y , t���s�0� at all locations in the vapor
omain. This is reasonable because effects of superheat �Tsup �in
he typical 5–10°C range� are verifiably negligible for the typi-
ally small values of vapor Jacob number �Jav�Cp2 ·�Tsup/hfg

o �
ncountered for most vapor flow conditions studied here. The
oint D at x=Xc is considered to be slightly but sufficiently above
he interface and no exit condition is imposed along ED. However
he mass flow over ED—which specifically includes the liquid
ortion 0�y���xc�—is required to satisfy the overall mass bal-
nce for a control volume formed by the bounding surfaces x=0,
=Xc, y=0, and y=Yc.

2.4 Initial Conditions. The above described continuum equa-
ions do not model and incorporate various intermolecular forces
hat are important in determining the time evolution of very thin
10–100 nm� condensate film thickness ��x , t�. As a result, t=0
annot be chosen to be the time when saturated vapor first comes
n contact with and condenses on the dry subcooled �Tw�x�
Ts�p0�� vertical/inclined wall. With the above modeling limita-

ions, the strategy here is to start at a time �t=0� for which one has

sufficiently thick steady solution of the continuum equations

ournal of Applied Mechanics
�where all of the governing equations clearly apply� and then,
from there, one can obtain the natural large time �t→�� smooth
or wavy �steady/quasi-steady� solutions with the help of the un-
steady equations. That is, if ��x ,y , t� is any variable �such as, uI,
vI, 	I, �I, etc.�, the initial values of � and film thickness ��x , t� are
given as:

��x,y,0� = �steady�x,y� and ��x,0� = �steady�x� �11�

where �steady and �steady are the solutions of the governing equa-
tions obtained by dropping all time dependencies in Eqs. �2�–�11�.

An inspection of all the non-dimensional governing equations,
interface conditions, and boundary conditions reveals the fact that
the flows considered here are affected by the following set of eight
independent non-dimensional parameters:

�Re1,Ja,Frx
−1,Fry

−1,
�2

�1
,
�2

�1
,Pr1,We� �12�

where Re1��1UYc /�1 indirectly depends on the physical value
of x=Xc.

2.5 Nusselt Formulation/Solution. Besides the assumptions
and approximations that lead to the interior equations given in the
Appendix—namely �A1� with I=1 and �A5�, this Nusselt ��1��
formulation for the underlying steady problem assumes: a small
slope approximation ���2
1�, negligible surface tension �We−1

�0� as well as negligible momentum transfer effects on the right
side of Eq. �3�, and zero to negligible vapor viscosity. The as-
sumption of negligible vapor viscosity makes continuity of tan-
gential velocity condition in Eq. �2� to become irrelevant. This
means that condensate motion is not affected by the equations
governing the vapor motion and any constraints arising from the
interfacial mass flux ṁVK defined in Eq. �5�. As a result, the steady
Nusselt formulation requires that �A1� for I=1 and �A5� in the
Appendix be solved subject to Eqs. �9� and �10� and the following
simplified interface conditions:

• 	2
i = 0 and 	1

i = 0 as a replacement of Eq. �3�

• � �u1

�y
� i

= 0 as a replacement of Eq. �4�

• ṁLK = �u1
i d�

dx
− v1

i �
=

d

dx��
0

��x�

u1�x,y� · dy� as a replacement of Eq. �5�

• ṁEnergy � Ja/�Re1 Pr1� · ���1/�y�i as a replacement of Eq. �6�

• ṁLK = ṁEnergy as a replacement of Eqs. �2� and �7�

• �1
i = �2

i = �s�	2
i �, i.e., Eq. �8� remains the same �13�

The analytical solution of the above Nusselt formulation is
known as the Nusselt ��1�� solution and is well known ��2��. This
classical solution �see, e.g., �2�� and its principle results are:

��x� � �N�x� � Yc�N = � 4k1�1�Tx

g�1��1 − �2�hfg
�1/4

u1�x,y� � Uu1�x,y� =
g��1 − �2��N

2

�1
� y

�N
−

1

2

 y

�N
�2�

�1�x,y� = �w +
�s − �w y
�
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ū1�x� �
1

�
�

0

�

u1 dy =
g��1 − �2���N�x��2

3�1

Re1�x� �
�1g��1 − �2���N�x��2x

3�1
and

Re��x� �
4�1U�N�x�

�1
�14�

Computational Approach
Most of the details of the 2D steady/unsteady approach are the

ame as described in Narain et al. �3�, Liang et al. �4�, and Liang
5�. However, unlike the internal condensing flows considered in
he earlier papers, the external condensing flow of this paper em-
loys a different computational approach for the implementation
f the pressure boundary condition described in Eq. �9�. Since the
oundary conditions that need to be imposed along lines AB, BC,
nd CD in Fig. 1 are much like prescribing the shear and pressure
n the interface, the “tau-p” approach for the interface �see
tau-p” method described in Liang �5�, Narain et al. �3�, and Yu
21��—instead of other available approaches �22�—was adapted
o satisfy the boundary conditions in Eq. �9�.

The solutions’ convergence in the interior of each phase, grid
ndependence, and satisfaction of interface and boundary condi-
ions are better �i.e., within 5%—see a representative case in Table
� than what were reported �within 7% on average� in �3–5�. On
ny interface with propagating waves, the critical and difficult to
atisfy requirement is Eq. �7�—the requirement of the equality of
hree differently computed/obtained values of interfacial mass flux
this is known to be difficult for the more general interface cap-
uring techniques such as level set �23� or Volume of Fluid �24��.
owever, this requirement is met by the interface tracking ap-
roach employed in this paper �see Table 2�. As shown in �3,4�,
ne of the interface conditions �viz. ṁLK= ṁEnergy in Eq. �7��
ields the interface tracking equation that is used in this paper.
his equation is of the hyperbolic form:

��

�t
+ ū�x,t�

��

�x
= v̄�x,t� �15�

here the characteristic speed is ū��u1
i + 	Ja/ �Re1 Pr1�
��1 /�x�i

nd the forcing function is v̄��v1
i + 	Ja/ �Re1 Pr1�
��1 /�y�i.The

patial and temporal grid spacings and total lengths impose a re-
triction on wavelength � and frequency f that can be adequately
esolved. If the maximum spacing of the grid in the x direction is
xm and its total length is xe while the total time duration is te and

s divided in equal intervals of duration �t; the restrictions im-
osed by Nyquist criteria �25� are well satisfied for ��4�xm and

f � �4�t�−1 and the restrictions imposed by the domain lengths are
ell satisfied for ��xe /2 and f �2/ te. The initial �t=0� spatial

nd temporal grids are defined by �ni�nj �nt�, where ni is the
otal number of initial grid points along x, nj is the total number of

able 2 Representative interfacial values of nondimensional
xposed to initial disturbance with �=0.7 and �o=15… beca
nother—as required by Eqs. „2…–„4…, „7…, and „8…

x ṁLK ṁVK ṁEnergy 	1
i �2 /�1	2

i +t

4 5.37E−05 5.33E−05 5.34E−05 1.86E−04 1.86E−0
8 3.55E−05 3.52E−05 3.53E−05 −2.22E−06 −2.22E−

12 3.09E−05 3.07E−05 3.05E−05 −2.00E−06 −2.00E−
16 2.77E−05 2.73E−05 2.74E−05 9.88E−07 9.88E−0
20 2.33E−05 2.31E−05 2.35E−05 −1.64E−06 −1.64E−
24 2.41E−05 2.41E−05 2.46E−05 5.57E−07 5.57E−0

1 �xx ˙ 2 �1
ote: terms=−We� �1+�x
2�3/2 �+m ��2

−1�.
82 / Vol. 74, MARCH 2007
initial grid points along y �0 to 1�, and nt is number of time steps
with equal intervals ��t�. Typical values of ni �and nj� used were
30–40 �and 50–70� for typical maximum values of x �and y� of 50
�and 1�. Attainable values of nt depend on ni, nj, �t, and the
available computer memory for the storage of flow variables. For
the cases reported here, typical maximum nt��t �=t� values are
in the range from 30�5 �=150� to 36�7.5 �=270�.

4 Computational Results

4.1 Simulation Results for the Steady Problem. The classi-
cal Nusselt solution �1� was improvised by Rohsenow et al. �6� to
account for the effects of the neglected convection term in the
energy equation. Subsequently, Sparrow and Gregg �7� and Koh et
al. �9� accounted for the effects of convection and inertia terms
within the framework of the boundary layer and small slope ap-
proximations �� /�x
� /�y and ��2
1� of the governing
equations.

For a specific case �see Table 1 and �26��, Figure 2�a� demon-
strates not only the ability of our computational approach to solve
the problem as posed by the Nusselt formulation �1� but, also, to
solve the full steady problem without the Nusselt approximations.
Since a significant amount of parametric study has already been
done �see �7,9�, etc.� for this problem, no parametric study has
been done here. This is because this paper limits itself to a quali-
tative understanding of the steady base flow and has a greater
focus on an understanding of the superimposed wave effects.

In Fig. 2�a� and its inset, for the conditions described in Table
1, “Curve 1” represents the classical analytical solution of Nusselt
plotted as ���N /Yc against x�x /Yc, where �N is defined in Eq.
�14�. “Curve 2” represents the solution under all Nusselt approxi-
mations except one—namely, in the interior equations, “� /�x”
terms have been retained. “Curve 3” is for the case which retains
the negligible vapor viscosity and negligible vapor motion as-
sumptions �resulting in ��u1 /�y�i=0 and 	2

i =0� but does not ne-
glect liquid inertia and convection. “Curve 4” is for the full
problem—discussed below for “Curve 5”—except that the surface
tension term on the right side of Eq. �3� has been dropped. Curve
5 is for the full steady problem posed by Eqs. �A1�–�A4� under
interface conditions �2�–�8� and boundary conditions �9� and �10�.
The effects of the presence or absence of surface tension, as
shown in Figs. 2�c� and 2�e�, are negligible on the motion of the
vapor but are noticeable on the interfacial values of the pressures

able 1 Specification of a flow situation involving saturated
-113 „ASHRAE †26‡…

po
�kPa�

Ts�po�
�°C�

�T
�°C� �2 /�1 �2 /�1 We Pr1

108.85 49.5 5 0.005 0.020 67.9 7.3

iables show satisfaction of all interface conditions „for flow
appropriate contiguous columns are nearly equal to one

s u1
i u2

i �1
i �2

i �1
i �2

i

1.15E−02 1.15E−02 0.009621 0.009621 64.53 64.53
2.96E−02 2.96E−02 0.013676 0.013676 64.53 64.53
4.29E−02 4.29E−02 0.005415 0.005415 64.53 64.53
5.36E−02 5.36E−02 0.030117 0.030117 64.53 64.53
6.76E−02 6.76E−02 0.004087 0.004087 64.53 64.42
6.34E−02 6.34E−02 0.011717 0.011717 64.53 64.53
T
R

T var
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a
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4
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Fig. 2 „a… For the case of R-113 „see Table 1… experiencing film condensation on a vertical plate, the figure above shows
steady film thickness values under different approximations. Here, xc=Xc /Yc=50 and c=Yc /�N„Xc…=47. „b… For the case of
R-113 „see Table 1… experiencing film condensation on a vertical plate, the figure above shows the streamline pattern and
contour zones depicting a range of �uI� values. „c… For Curves 4 and 5 of the base flow in „a…, the figure above shows the u„x* ,y…
versus y for x*=20. „d… For the case of R-113 „see Table 1… experiencing film condensation on a vertical plate, the figure above
shows the contour zones for temperature and a representative plot of �I„x* ,y… for x*=20. „e… For Curves 4 and 5 of the base flow
in „a…, the figure above shows the � „x* ,y… versus y for x*=20.
I
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Generally, for all the cases considered here, the Jacob number

Ja� is small and hence all predictions of ��x� are within 2.5% of
he Nusselt solution.

4.2 Simulation Results for the Unsteady Problem.

4.2.1 Nonlinear Stability and the Effects of Initial
isturbances. The stable response of the flow in Fig. 2�a� to an

nitial sinusoidal disturbance of wavelength �=7 is shown in Fig.
�a�. Here, by stability, it is meant that as waves travel forward to
ownstream locations, the amplitudes of the waves diminish—
ith respect to the initial amplitude. Similarly, by instability, it is
eant that as waves travel forward to downstream locations, the

mplitudes of the waves increase and become significantly larger
han the initial amplitudes. Figure 3�b� shows an unstable re-
ponse of the flow in Fig. 2�a� to an initial sinusoidal disturbance
f wavelength �=15. Clearly, in Figs. 3�a� and 3�b�, the stability/
nstability phenomena manifests only after a certain downstream
istance marked by x=xcr. As indicated by the dual labeling of the
axis in Fig. 4, for any given flow, there is a one to one corre-

pondence between Re��x� and Re1�x�, and, therefore, between
�Re��cr and �Re1�cr where �Re��cr�Re��x=xcr�.

Figure 4 shows the general response, at t=247.5 of the flow in

ig. 3 „a… For the base flow in Fig. 2„a…, the figure above
hows the stable response „�t=7.5, t=150… of the film thick-
ess �„x , t… as a result of an initial disturbance �„x ,0…
�steady„x… †1+���„x ,0…‡, where ��„x ,0…Æsin„2�x /�o…, �=0.15
nd �o=7. „b… For the base flow in Fig. 2„a…, the figure above
hows the unstable response „�t=7.5, t=247.5… of the film
hickness �„x , t… as a result of an initial disturbance �„x ,0…
�steady„x… †1+���„x ,0…‡, where ��„x ,0…Æsin„2�x /�o…, �=0.15
nd �o=15.
ig. 2�a� to initial disturbances of various wavelengths—viz. � +

84 / Vol. 74, MARCH 2007
=5, 9, 15, and 23. Generally, for ���cr �here, �cr�11.5�, the
response is stable and for ���cr, the response is unstable. The
larger wavelength waves are clearly manifested for x�xcr�18
�i.e., �Re1�x��Re1�cr=7 or, equivalently, �Re��Re��cr�28�.

4.2.2 Effects of Surface Tension. The above described instabil-
ity mechanisms—of the Tollmien-Schlichting �16� type—are only
mildly affected by surface tension. Figure 5 shows that the waves
are gravity dominated and surface tension effects are negligible.
For the flow considered in Fig. 5, cases 
=
* and 
=2.5
*, when
compared to the 
=0 case, indicate that surface tension only
slightly assists in steepening the front of the wave.

4.2.3 Computed Values of �Re��cr. A compilation of various
experimental results �see Incropera and DeWitt �2� and Kutate-
ladze �18�� for steam and common refrigerants have led to the
commonly used estimate of �Re��cr�30 and a subsequent
laminar-to-turbulence transition regime that is characterized by
30� �Re��cr�1800. It is found that in the parameter set in Eq.
�12�, �1 and �1, are important parameters affecting the value of
�Re��cr because of their appearance in the definition of Re1 and in

the nondimensionalization process itself �e.g., ṁ�ṁ /�1U�. How-
ever, the remaining nondimensional parameters such as �2 /�1,
�2 /�1, etc., are unimportant because, as shown later in Fig. 8,

ig. 4 For the base flow in Fig. 2„a…, the figure above shows
he stable and unstable response „�t=7.5, t=247.5… of the film
hickness �„x , t… as a result of an initial disturbance �„x ,0…
�steady„x… †1+���„x ,0…‡, where ��„x ,0…Æsin„2�x /�o…, �=0.15
nd �o=5, 9, 15, and 23

ig. 5 For the base flow in Fig. 2„a…, the figure above shows
he effect of surface tension at the interface „�t=7.5… on the
ow exposed to initial disturbance �„x ,0…=�steady„x… †1
F
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a
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���„x ,0…‡, where ��„x ,0…Æsin„2�x /�o…, �=0.15 and �o=15
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apor motion does not significantly influence the wave phenom-
na. In addition, Table 3 shows that effects of changes in �T are
mall on the values of �Re��cr but not on xcr.

Since, for common fluids, an increase in �1 typically accompa-
ies an increase in �1, typical changes in the kinematic viscosity
1 ���1 /�1� values for nonmetallic vapors are limited. For this
eason, as shown in Table 4, the changes in �Re��cr with
he changes in the fluid are not much and �Re��cr remains
n the 27–35 range. This justifies the continued use of the
stimate �Re��cr�30. However, for uncommon or specially de-
igned fluids, one may be able to change �1 without significantly
hanging �1 �Table 5� or change �1 without significantly chang-
ng �1 �see Table 6�. Under these special conditions, one can ex-
ect a more significant departure from “30” in the estimated value
f �Re��cr �e.g., in Table 6, one finds a case for which �Re��cr
9�.

4.2.4 Comparison of Exact Nonlinear Stability Analyses Re-
ults Presented Here With the Known Linearized Stability Results.
inearized stability analyses and associated results by Unsal and
homas �14� and Spindler �15� for the Nusselt solution are avail-
ble in the literature. However their results, though mutually com-
atible, are not compatible with the above described experimental
stimates of �Re��cr�30. Subsequent attempts at nonlinear analy-
is for this problem �see, e.g., Unsal and Thomas �17�� indicate the
artially correct view that the instabilities predicted by linear
nalyses are not going to work and the problem needs some sort
f non-linear analysis.

To facilitate a comparison with the known results, we present
ere, for the first time, the nearly exact nonlinear stability analyses
nd associated results. It should be noted that the predictions of
he time dependent disturbances ���x ,��=��x , t�−�steady�x� in
igs. 3 and 4, associated with an initial nonzero disturbance
��x ,0�, are obtained by nearly exact nonlinear simulations �see
able 2 for representative satisfaction of all the interface condi-

ions� and, therefore, these simulations are capable of providing
ood results from the point of view of both linear and nonlinear
tability analyses. The initial disturbances in Figs. 3 and 4 are
inusoidal in nature and are given by the relation:

���x,0� = � cos ��x,0� � � cos�2	

�o
�x − xo

*�� , �16�

ver a suitable range of x values with ��0 and x=xo
* being a

ocation where the phase angle ��x ,0� corresponds to a positive
eak and is defined to be zero.

The time evolution ���x , t� of the initial disturbance in Eq. �16�

Table 3 Effects of changes in �T

�T xcr Re�

5 19.6 27.72
10 10.7 29.54
15 7.64 31.15
20 6.25 33.27

ote: All fluids considered here have �2 /�1=0.00525, �2 /�1=0.0289, We
402.133, and Pr1=7.223.

Table 4 Effects of changes in viscosity „�1=�1 /	1…

�1 �1 �1=�1 /�1 Fluid name for same �1 xcr Re�

1225 0.000199 1.62204E−07 R 12 5 31.93
989.4 0.000577 5.83485E−07 Water 20 25.2
508.8 0.000519 3.44168E−07 R 113 19.6 27.72

ote: All fluids considered here have �2 /�1=0.00525, �2 /�1=0.0289, We

402.133, and Pr1=7.223. =

ournal of Applied Mechanics
can be characterized by a sinusoidal Fourier component—
associated with the disturbance in Eq. �16�—and is given as:

���x,t� = a�t� · cos � �x,t� �17�
However the linear and nonlinear stability analyses of condens-

ing flow in the literature �14–17� and other air-water free-surface
flows �see �27�� make the common, but restrictive, assumption
that Eq. �17� can have a special simplified form, viz.

���x,t� = Re	� exp�i� · �x − Ct��
 �18�

where ��2	 /�0 is a wave number �with �0 being the constant
wavelength� independent of x, “i” is the complex number �−1,
and C�Cr+ i ·Ci is a complex number dependent only on wave-
length �0 �or wave number ��. This means that the popular analy-
ses restrict the amplitude and phase-angle variations in Eq. �17�
to:

a�t� = � exp��Cit� and

��x,t� � ��x − Crt� �19�
The restriction in Eq. �19� is particularly severe for free surface
problems �such as this problem and other air/water and evaporat-
ing flow free-surface problems� because, as shown in Eq. �27� of
Narain et al. �3�, the equation governing ���x , t� is given by:

���

�t
+ ū

���

�x
= v� �20�

where v� �x , t�� v̄�x , t�− v̄steady�x�− 	ū− ūsteady�x�
d�steady/dx,
v�x , t��v1

i +Ja/Re1Pr1����1 /�y�i�, as per its definition in Eq. 27 of
�3�.

As a result of the above, it is easy to see that waves travel along
a family of characteristics curves x=xc�t�, where xc�t� satisfies Eq.
�25� of �3�. That is:

dxc

dt
= ū�xc�t�,t�

xc�0� = x* or xc�t*� = 0 �21�

where x* is any given value of x*�0 and t* is any given time t
�0. For the no disturbance �ū�x , t�� ūsteady� and large disturbance

able 5 Effects of changing 	1 without significantly changing
1

�1 �1 xcr Re�

2262 5.19E−03 15.8 28.91
1885 5.19E−03 17.4 28.35
1508 5.19E−03 19.6 27.72

1206.4 5.19E−03 19.6 24.77
1005.3 5.19E−03 17.77 22.6

ote: All fluids considered here have �2 /�1=0.00525, �2 /�1=0.0289, We
402.133, and Pr1=7.223.

able 6 Effects of changing �1 without significantly changing
1

�1 �1 xcr Re�

1508.8 1.04E−02 14 9.06
1508.8 7.79E−03 15.8 14.22
1508.8 5.19E−03 19.6 27.72
1508.8 3.46E−03 12.3 32.5
1508.8 2.60E−03 8.5 35.22

ote: All fluids considered here have �2 /�1=0.00525, �2 /�1=0.0289, We
N
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N

T
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N
=

T
	

N

402.133, and Pr1=7.223.
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ases shown in Fig. 6�a�, representative plots of ū�x , t� are shown
n Fig. 6�b�. The linearized stability analyses assumption leading
o Eq. �19� is ū�x , t�=Cr��0�, where �0 is independent of x. The
lots in Fig. 6�b� clearly indicate that ū�x , t��Cr��0� and hence
his linearized stability assumption is not appropriate. Further-

ore, this assumption implies that the characteristics governing
he problem are a set of parallel straight lines �xc=xc�0�
Cr��0�t�. However, a fourth-order Runge-Kutta solution of Eq.

21� for ū= ūsteady or ū�x , t� leads to a set of characteristics whose
lopes either change gradually with x �this is the case when ū
ūsteady� or have some superimposed oscillations on these gradu-
lly varying slopes �as shown for, ū= ū�x , t�, in Fig. 6�b��. The
haracteristics associated with ū= ū�x , t� in Fig. 6�b� are shown in
ig. 6�c�. Clearly, the actual characteristics do not agree with the

inearized stability assumption of them being a set of parallel
traight lines.

In fact, with ���x ,0� given by Eq. �16�, it is easily seen that the
haracteristics speed ū in Eq. �21� is also the phase-speed and
aves traveling along the characteristics have a constant phase-

ngle ��x , t�, provided ��x , t� is given by:

��x,t� =
2	

�o
�x − xo

* −�
0

t

ū�xc���,�� · d�� �22�

here xc��� is the characteristic �0��� t� which, at time t, passes

Fig. 6 „a… For the base flow in Fig. 2„a… and initial disturbances
„�t=7.5, t=247.5…, for �o>�cr, of the film thickness �„x , t… as
where �=0.15 and �o=15. „b… For the case shown in „a…, the fi
value at t=0 and disturbed value at t=247.5… as function of
characteristic curves found by solving Eq. „21… through a fourt
the figure above shows values of a„t… /a„0… for different values
hrough the point x and thus satisfies d� /dt=0 along a character-

86 / Vol. 74, MARCH 2007
istic x=xc�t�. Also, Eq. �22� is compatible with the correct phase
angle associated with the initial �at t=0� disturbance in Eq. �16�.
Therefore, all along xc��� �0���0�, we have � �x , t�
=� �xc��� ,��=� �xc�0� ,0�=2	 /�o�xc�0�−xo

*�=constant.
Substitution of Eq. �22� in the definition of local wavelength

��x , t��2	��� /�x�−1 and local time-period T�x , t��
−2	��� /�t�−1 �see Eq. 1.28 in �28�� imply nonconstant wave-
lengths �unlike the assumption in linear stability analyses� and
frequencies �or time periods T� given by:

��x,t� = �o�1 −�
0

t
�ū

�x
�xc���,��d��−1

and T�x,t� = ��x,t�/ū�x,t� �23�

Also, substitution of Eq. �17� �with � �x , t� given by Eq. �22�� in to
the governing equations �Eqs. �20� and �21�� imply that, along the
characteristics, the amplitude a�t� grows according to the
equation:

da

dt
=

1

cos	� �xc�0�,0�

v�̂ �24�

where v�̂ �v� �xc�t� , t� is the value of v� in Eq. �20� along a charac-
teristic curve. An integration of Eq. �24� along a characteristic

fined in Fig. 3, the figure above shows the unstable response
sult of an initial disturbance �„x ,0…=�steady„x… †1+���„x ,0…‡,
e above shows the values of characteristic speed ū „steady
„c… For the case shown in „a…, the figure above shows the
rder Runge-Kutta method. „d… For the cases shown in „a…–„c…,
initial disturbance wavelength �o for xc„t…=6.65.
de
a re
gur
x.
h-o

of
yields:
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= 1 +
1

a�0�cos	� �xc�0�,0�
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v�̂ ��� · d� �25�

or the flow cases considered in Figs. 6�a�–6�c�, a plot of
a�t� /a�0�” for different values of initial disturbance wavelength

o �see Eq. �16��, with xc�0�=6.65, is shown in Fig. 6�d�.
From Fig. 6�d�, it is clear that the long time growth of a�t�

equires the full nonlinear analysis result in Eq. �25� and cannot be
aptured by the linearized stability assumption �14,15� of a�t� be-
ng given by the exponential function in Eq. �19�.

For the above reasons, for the flow considered in Figs.
�a�–6�d�, the simulation-based approximate stability boundary
epicted in Fig. 7 is far more trustworthy �it is compatible with
he experimental estimate on �Re��cr�30� than the Unsal �14� and
pindler �15� results, based on the inappropriate assumptions in
qs. �18� and �19�.
It should be further noted that the nonlinear instability mecha-

isms illustrated by the full nonlinear solutions in Fig. 4—besides
eing in agreement with experiments regarding �Re��cr�30—also
how two other regularities. These regularities are: �i� As shown in
ig. 8 and its caption, the vapor motion or its fluctuations do not
lay a significant role in the evolution of gravity dominated
aves, and �ii� the results in Fig. 5 indicate negligible impact of

urface tension and this is consistent with experimental results but

ig. 7 Stability boundaries as obtained by Unsal and Thomas
14‡ and Spindler †15‡, and this work

ig. 8 Result showing waves while accounting for vapor mo-
ion and its fluctuations and, also, while neglecting vapor mo-
ion and its fluctuations „by not incorporating vapor domain
-05.

ournal of Applied Mechanics
not with the linearized stability theory’s result of a strong depen-
dence of xcr on the presence or absence of surface tension �see Eq.
�32� in �14� that states xcr�
4/11�.

4.2.5 Different Wave Mechanisms in Different Zones. As
marked in Fig. 4, for x�xcr, the initial disturbances may persist
but the zone is considered stable because the growth of the waves
is considered small. However, at longer lengths in Fig. 6�d�, there
is a loss of stability, that is, amplitudes for �o��cr are eventually
sufficiently large. The largeness of amplitude a�t� is defined here
to mean that, for x�xcr, a�t� /a�0��2.5 at large t and, at the same
time, the peaks of the resulting disturbances are off by more than
15% of the initial undisturbed film thickness values at the current
locations of the waves �see Fig. 4�. In the above definition of xcr,
the large amplitude waves at x�xcr �see Fig. 4� arise from initial
disturbances at x�0, where their amplitudes are sufficiently small
�less than 10% of the small steady film thickness at x�0�. An-
other feature of xcr being defined this way is that for �o��cr, the
amplitude ratio a�t� /a�0� is eventually less than 1,0 �i.e.,
a�t� /a�0��1� at large t. Under the above definition, the longer
length flows lose stability for �Re��Re��cr�30.

The wall noise is assumed to be a superposition of standing
waves of the form given by:

v1�x,0,t� = �b sin�2	x/�b�sin�2	t/Tb� �26�

As shown in �3�, one expects a resonance condition to hold if the
time period of oscillations Tb in the wall noise of Eq. �26� is such
that the forward travelling component of the standing noise has
approximately the same phase-speed as ū�x , t� �which is nearly
equal to ūsteady for small amplitude interfacial waves�. This means,
for resonance with large amplitude waves, Tb=Tb�x , t� must
satisfy:

�b

Tb�x,t�
= ū�x,t� � ū�x,t − �t� �27�

or Tb=Tb�x� must satisfy:

�b

Tb�x�
= ūsteady�x� �28�

For nonresonant single frequency �Tb=constant� wall noise, as
shown in Figs. 9�a� and 9�b�, depending on the value of Tb, one
may have either a negligible �if Tb is nowhere in the resonant
range� or a constructive �if Tb is somewhere in the resonant range�
interference between wall noise and intrinsic waves. As shown in
Fig. 10�a�, for the unstable �b=15��cr case �where �cr is same as
the one obtained from the earlier initial disturbance analysis�, the
resonant wall noise �in the sense of Eqs. �27� and �28�� interacts
with the intrinsic waves and sustains a large amplitude travelling
wave. Differently, but interestingly, as shown in Fig. 10�b�, for the
damped or stable �b=5��cr case, the resonant bottom wall noise
governed by Eq. �28� interacts with the intrinsic waves and sus-
tains a travelling wave which “beats” in the sense that the noises
are alternately damped over a period of time and then regained
over a subsequent period of time.

The above shows that wave effects will, in general, be present.
They may be intrinsic in the absence of wall noise �i.e., due to
initial disturbances alone� or they may be interactive in the pres-
ence of wall noise. Furthermore, the extent of the wave effects on
heat transfer rates and interfacial shear will, in general, remain
nondeterministic unless, experimentally, one can use wall noise
actuation to have a well-defined, enhanced, or diminished form of
wave effects.

4.2.6 Impact on the Heat Transfer Rates and Shear Stress.
Effect of waves on the wall heat transfer rate and wall shear stress,
for the ���cr initial disturbance case of Fig. 4, is shown in Figs.
11�a� and 11�b�. This confirms the well known �2� fact that, in the
F
†

presence of gravity-assisted drainage, intrinsic waves enhance
F
t
t
calculations in the simulations…. Here, �t=7.5 and �b=0.15
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oth of these important parameters. The extent of the heat transfer
nhancements is typically found to be within the range �i.e. 1.2
imes the values associated with smooth-interface heat transfer
ates� suggested by empirical correlations �see �2,18��. This en-
ancement can be actively increased or reduced with the help of
esonant or nonresonant wall noises.

Conclusions

• The computational approach presented here accurately
solves the steady Nusselt problem and produces results in
agreement with the Nusselt solution.

• The results considered thus far affirm the experimental re-
sult that instability mechanisms associated with laminar to
turbulence transitions can typically be estimated to occur
around �Re��cr�30.

• The waves and the wave effects are quite sensitive to the
presence or absence of the wall noise. This sensitivity to the
frequency and wavelength spectrum of the wall noise can be
exploited either to suppress or enhance the wave effects.

• As is well known for this problem, the results affirm that
heat transfer rates and shear rates are significantly enhanced
by the presence of waves.
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omenclature
Xc � distance from leading edge �BC in Fig. 1�, m

ig. 9 „a… Nonresonance bottom wall noise that do not lead to
rowing waves. Here, �t=7.5, �b=0.15 E-05, and Tb=30. „b…
onresonance bottom wall noise that lead to growing waves.
ere, �t=7.5, �b=0.5 E-05 and Tb=250.
Yc � characteristics length �AB in Fig. 1�, m
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U � average liquid speed �Nusselt� at x=Xc,
g��1-�2��N

2 �Xc� /3�1, m/s
�x ,y , t � � physical distances �see Fig. 1� and physical

time, �m, m, s�
�x ,y , t� � nondimensional values of �x ,y , t�

k � thermal conductivity, W/�m K�
Cp � specific heat, J/�kg K�

p � pressure, N/m2

po � pressure at the inlet, N/m2

�u ,v� � values of x and y components of velocity, m/s
�u ,v� � nondimensional values of u and v

T � temperature, K
�T � temperature difference between the vapor and

the wall, K
hfg � latent heat �hg-hf�, J/kg
Ja � Jacob number, Cp1�T /hfg

ReI � Reynolds number �IUXc /�I
Re1�x� � Reynolds number �1Ux /�1
Re��x� � film Reynolds number 4�1U�N�x� /�1

PrI � Prandtl number �ICpI /kI
Fr � Froude number U2 /gYc

We � Weber number �1U2Yc /

qw� � bottom wall heat flux at any point and time,

W/m2

Greek Symbols
	 � nondimensional pressure

ig. 10 „a… Effects of resonant noise for �b=15>�cr and with
t=7.5 and �b=0.35 E-05. „b… Effects of resonant noise for �b
5<�cr and with �t=7.5 and �b=0.5 E-05.
F
g
N

F
�
=

� � nondimensional temperature
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S

�

J

� � density, kg/m3

� � viscosity, Pa s
� � physical value of condensate thickness, m

�N � physical value of Nusselt film thickness at x,
��4k1�T�1x� / �hfg�1��1-�2�g��1/4, m

� � nondimensional value of condensate thickness
� � kinematic viscosity � /�, m2/s

 � surface tension, N/m
� � amplitude of nondimensional disturbances rep-

resenting values of ���x ,0�
�b � amplitude of nondimensional bottom wall vi-

brations sensed through v1�x ,0 , t�
� � nondimensional wavelength

�o � nondimensional wavelength for the initial dis-
turbance ���x ,0�

� � wave number, 2	 /�

ubscripts
I � it takes a value of 1 for liquid phase and 2 for

vapor phase
s � saturation condition

w � wall

ig. 11 „a… For the base flow in Fig. 2„a…, the figure above
hows the wall heat flux „W/m2

… for cases with and without
nitial disturbance �„x ,0…=�steady„x… †1+���„x ,0…‡, where
�„x ,0…Æsin„2�x /�o…, �=0.15, �o=15, and �t=7.5. „b… For the
ase flow in Fig. 2„a…, the figure above shows the wall shear
tress for cases with and without initial disturbance �„x ,0…
�steady„x… †1+���„x ,0…‡, where ��„x ,0…Æsin„2�x /�o…, �=0.15,
o=15, and �t=7.5.
b � bottom wall

ournal of Applied Mechanics
Superscripts
i � value of a variable at an interface location

Appendix
The differential forms of mass, momentum �x and y compo-

nents�, and energy equations in terms of nondimensional variables
for flows in the interior of either of the phases �I=1 or 2� for this
external flow are given as

�uI

�x
+

�vI

�y
= 0 �A1�

�uI

�t
+ uI

�uI

�x
+ vI

�uI

�y
= − 
 �	I

�x
� + Frx

−1 +
1

ReI

 �2uI

�x2 +
�2uI

�y2 �
�A2�

�vI

�t
+ uI

�vI

�x
+ vI

�vI

�y
= − 
 �	I

�y
� + Fry

−1 +
1

ReI

 �2vI

�x2 +
�2vI

�y2 �
�A3�

��I

�t
+ uI

��I

�x
+ vI

��I

�y
�

1

ReI PrI

 �2�I

�x2 +
�2�I

�y2 � , �A4�

where Re1��1UYc /�1, Pr1��1Cp1 /k1, Frx
−1�gxYc /U2, and

Fry
−1�gyYc /U2.
Under negligible inertia, negligible convection, and boundary

layer �� /�x
� /�y� approximations for thin condensate, Nusselt
formulation �1� effectively replaces, for I=1, �A2�–�A4� above by:

0 � −
�	I

�x
+ Frx

−1 +
1

ReI

�2uI

�y2

0 � −
�	I

�y
+ Fry

−1

0 �
1

ReI PrI
·
�2�I

�y2 �A5�

For I=2, the additional Nusselt �1� approximation of negligible
vapor viscosity and saturated vapor eliminates any consideration
of vapor motion and vapor temperature variation for obtaining the
steady liquid condensate solution. Therefore, one does not need to
consider the vapor �I=2� Eqs. �A1�–�A4� in order to obtain the
Nusselt ��1�� solution.

The term �t� on the right side of Eq. �4� is given by:

�t� = ���2

�1

�v2

�x
� i

− � �v1

�x
� i� +

2�x

�1 − �x
2��� �u1

�x
� i

− � �v1

�x
� i�

−
2�x

�1 − �x
2�

�2

�1
�� �u2

�x
� i

− � �v2

�y
� i� �A6�
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