C$4811 Neural Network Learning Algorithms

From: Stuart Russell and Peter Norvig
Artificial Intelligence a Modern Approach
Prentice Hall Series in Artificial Intelligence, 2003.

The following is a gradient descent learning algorithm for perceptrons, assuming a differentiable
activation function g. For threshold perceptrons, the factor g’(in) is omitted from the weight update.
NEURAL-NET-HYPOTHESIS returns a hypothesis that computes the network output for any given
example.

function PERCEPTRON-LEARNING(examples, network)
returns a perceptron hypothesis

inputs:
examples, a set of examples, each with input x = X1...,Xn and output y
network, a perceptron with weights Wj, j =0, ...n and activation function g
repeat
for each e in examples do
in«— Z?:OWJ Xj €]
err — yle] —g(in)
Wj —W;j+cx Errxg/(in) x xje]
until some stopping criterion is satisfied
return NEURAL-NET-HY POTHESIS(Network)

The following is the back propogation algorithm for learning in multilayer networks.

function BACK-PROP-LEARNING(examples, network)
returns a neural network

inputs:
examples, a set of examples, each with input vector x and output vector y.
network, a multilayer network with L layers, weights Wj j, activation function g
repeat
for each e in examples do
for each node j in the input layer do aj < X;|e]
for| =2toL do
inj < szjyiaj
aj < g(ini)
for each node i in the output layer do
A — g'(ini) x (yile] —ay)
forI=L—1toldo
for each node j in layer | do
Aj —g'(inj) 3iWjih
for each node i in layer | +1 do
Wji —Wji+cxaj x4
until some stopping criterion is satisfied
return NEURAL-NET-HY POTHESIS(network)

For g, use the hyperbolic tangent: tanh(x). The derivative of tanh is sech?.

-
sech(x) = sini(x)

