
CS4811 Neural Network Learning Algorithms

From: Stuart Russell and Peter Norvig
Artificial Intelligence a Modern Approach
Prentice Hall Series in Artificial Intelligence, 2003.

The following is a gradient descent learning algorithm for perceptrons, assuming a differentiable
activation function g. For threshold perceptrons, the factor g′(in) is omitted from the weight update.
NEURAL-NET-HYPOTHESIS returns a hypothesis that computes the network output for any given
example.

function PERCEPTRON-LEARNING(examples, network)
returns a perceptron hypothesis

inputs:
examples, a set of examples, each with input x = x1 . . . ,xn and output y
network, a perceptron with weights W j, j = 0, . . .n and activation function g

repeat
for each e in examples do

in← ∑n
j=0Wj x j[e]

err← y[e]−g(in)
Wj←Wj + c×Err×g′(in)× x j[e]

until some stopping criterion is satisfied
return NEURAL-NET-HYPOTHESIS(Network)

1



The following is the back propogation algorithm for learning in multilayer networks.

function BACK-PROP-LEARNING(examples, network)
returns a neural network

inputs:
examples, a set of examples, each with input vector x and output vector y.
network, a multilayer network with L layers, weights W j,i, activation function g

repeat
for each e in examples do

for each node j in the input layer do a j← x j[e]
for l = 2 to L do

ini← ∑ j Wj,ia j

ai← g(ini)
for each node i in the output layer do

∆i← g′(ini)× (yi[e]−ai)
for l = L−1 to 1 do

for each node j in layer l do
∆ j← g′(in j)∑iWj,i∆i

for each node i in layer l +1 do
Wj,i←Wj,i + c×a j×∆i

until some stopping criterion is satisfied
return NEURAL-NET-HYPOTHESIS(network)

For g, use the hyperbolic tangent: tanh(x). The derivative of tanh is sech2.

tanh(x) =
sinh(x)
cosh(x)

sech(x) =
1

sinh(x)
.

2


