
1

Structures and Strategies for
State Space Search3

3.0 Introduction

3.1 Graph Theory

3.2 Strategies for State
Space Search

3.3 Using the State Space to
Represent Reasoning
with the Predicate
Calculus

3.4 Epilogue and
References

3.5 Exercises

Additional references for the slides:

Russell and Norvig’s AI book.

Robert Wilensky’s CS188 slides:
www.cs.berkeley.edu/~wilensky/cs188/lectures/index.html

2

Chapter Objectives

• Learn the basics of state space representation

• Learn the basics of search in state space

• The agent model: Has a problem, searches for
a solution.

3

Graph theory: The city of Königsberg

The city is divided by a river. There are two
islands at the river. The first island is connected
by two bridges to both riverbanks and is also
connected by a bridge to the other island. The
second island two bridges each connecting to
one riverbank.

Question: Is there a walk around the city that
crosses each bridge exactly once?

Swiss mathematician Leonhard Euler invented
graph theory to solve this problem.

4

The city of Königsberg

5

Graph of the Königsberg bridge system

6

Definition of a graph

A graph consists of

• A set of nodes (can be infinite)

• A set of arcs that connect pairs of nodes.

An arc is an ordered pair, e.g.,
(i1, rb1),
(rb1, i1).

7

A labeled directed graph

8

A rooted tree, exemplifying family
relationships

9

Definition of a graph (cont’d)

A graph consists of nodes and arcs.

If a directed arc connects N and M, N is called
the parent, and M is called the child. If N is also
connected to K, M and K are siblings.

A rooted tree has a unique node which has no
parents. The edges in a rooted tree are directed
away from the root. Each node in a rooted tree
has a unique parent.

10

Definition of a graph (cont’d)

A leaf or tip node is a node that has no children
(sometimes also called a dead end).

A path of length n is an ordered sequence of
n+1 nodes such that the graph contains arcs
from each node to the following ones.

E.g., [a b e] is a path of length 2.

On a path in a rooted graph, a node is said to be
an ancestor of all the nodes positioned after it
(to its right), as well as a descendant of all
nodes before it (to its left).

11

Definition of a graph (cont’d)

A path that contains any node more than once
is said to contain a cycle or loop.

A tree is a graph in which there is a unique path
between every pair of nodes.

Two nodes are said to be connected if a path
exists that includes them both.

12

A unifying view (Newell and Simon)

The problem space consists of:

• a state space which is a set of states
representing the possible configurations of the
world

• a set of operators which can change one state
into another

The problem space can be viewed as a graph
where the states are the nodes and the arcs
represent the operators.

13

Searching on a graph (simplified)

Start with the initial state (root)

Loop until goal found

find the nodes accessible from the root

14

285

67

341

85

267

341

15

State space of the 8-puzzle generated by
“move blank” operations

16

State space search

Represented by a four-tuple [N,A,S,GD], where:
• N is the problem space
• A is the set of arcs (or links) between nodes.
These correspond to the operators.
• S is a nonempty subset of N. It represents the
start state(s) of the problem.
• GD is a nonempty subset of N. It represents
the goal state(s) of the problem. The states in
GD are described using either:

a measurable property of the states
a property of the path developed in the
search (a solution path is a path from

node S to a node in GD)

17

The 8-puzzle problem as state space search

• states: possible board positions

• operators: one for sliding each square in each
of four directions,
or, better, one for moving the blank square in
each of four directions

• initial state: some given board position

• goal state: some given board position

Note: the “solution” is not interesting here, we
need the path.

18

State space of the 8-puzzle (repeated)

19

Traveling salesperson problem as state space
search

The salesperson has n cities to visit and must
then return home. Find the shortest path to
travel.

• state space:

• operators:

• initial state:

• goal state:

20

An instance of the traveling salesperson
problem

21

Search of the traveling salesperson
problem. (arc label = cost from root)

22

Nearest neighbor path

Nearest neighbor path = AEDBCA (550)

Minimal cost path = ABCDEA (375)

23

Tic-tac-toe as state space search

• states:

• operators:

• initial state:

• goal state:

Note: this is a “two-player” game

24

Goal-directed search

25

Data-directed search

26

27

Trace of backtracking search (Fig. 3.12)

28

A trace of backtrack on the graph of
Fig. 3.12

29

Graph for BFS and DFS (Fig. 3.13)

30

Breadth_first search algorithm

31

Trace of BFS on the graph of Fig. 3.13

32

Graph of Fig. 3.13 at iteration 6 of BFS

33

Depth_first_search algorithm

34

Trace of DFS on the graph of Fig. 3.13

35

Graph of Fig. 3.13 at iteration 6 of DFS

36

BFS, label = order state was removed
from OPEN

37

DFS with a depth bound of 5, label =
order state was removed from OPEN

38

State space graph of a set of
implications in propositional calculus

39

And/or graph of the expression q∧r→p

40

Hypergraph

A hypergraph consists of:

N: a set of nodes.

H: a set of hyperarcs.

Hyperarcs are defined by ordered pairs in which
the first element of the pairs is a single node
from N and the second element is a subset of N.

An ordinary graph is a special case of
hypergraph in which all the sets of descendant
nodes have a cardinality of 1.

41

And/or graph of the expression q∨r→p

42

And/or graph of a set of propositional
calculus expressions

44

And/or graph of the part of the state
space for integrating a function (Nilsson 1971)

45

The solution subgraph showing that fred
is at the museum

46

Facts and rules for the example

47

Five rules for a simple subset of English
grammar

48

Figure 3.25: And/or graph for the grammar of Example 3.3.6. Some of the nodes (np, art, etc.)
have been written more than once to simplify drawing the graph.

49

Parse tree for the sentence

50

“Blind search”

BFS and DFS are blind in the sense that they
have no knowledge about the problem at all
other than the problem space

Such techniques are also called brute-force
search, uninformed search, or weak methods

Obviously, we can’t expect too much from
these, but they provide

• Worst-case scenarios
• A basis for more interesting algorithms later on

51

BFS and DFS

Worst case scenarios are equally bad
(exponential)

How to evaluate search algorithms
• Completeness: a search algorithm is complete if it is

guaranteed to find a solution when one exists
• Quality of solution: usually the path cost
• Time cost of finding the solution: usually in terms of

number of nodes generated or examined
• Memory cost of finding the solution: how many nodes do

we have to keep around during the search

52

Evaluating BFS

• Complete?
Yes

• Optimal quality solution?
Yes

• Time required in the worst case
O(bd)

• Memory required in the worst case (in OPEN)
O(bd)

where b is the branching factor, d is the depth
of the solution

53

Evaluating DFS

• Complete?
Yes (only if the tree is finite)

• Optimal quality solution?
No

• Time required in the worst case
O(bm)

• Memory required in the worst case (in OPEN)
O(bm)

where b is the branching factor, m is the
maximum depth of the tree

54

Example search problems

Puzzles: missionaries and cannibals,
cryptarithmetic, 8-puzzle, 15-puzzle, Rubik’s cube,
n-queens, the Tower of Hanoi, …

2-player games: chess, checkers, Chinese Go, …

Proving theorems in logic and geometry

Path finding

“Industrial” problems: VLSI layout design,
assembling a complex object

“AI problems”: speech recognition, planning, …

55

The importance of the problem space

The choice of a problem space makes a big
difference

in fact, finding a good abstraction is half
of the problem

Intelligence is needed to figure out what
problem space to use

still poorly understood: the human
problem solver is conducting a search in the
space of problem spaces

