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Additional references for the slides:

Russell and Norvig’s AI book.

Robert Wilensky’s CS188 slides: 
www.cs.berkeley.edu/~wilensky/cs188/lectures/index.html
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Chapter Objectives

• Learn the basics of state space representation

• Learn the basics of search in state space

• The agent model: Has a problem, searches for 
a solution.
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Graph theory: The city of Königsberg

The city is divided by a river. There are two 
islands at the river. The first island is connected 
by two bridges to both riverbanks and is also 
connected by a bridge to the other island. The 
second island two bridges each connecting to 
one riverbank. 

Question: Is there a walk around the city that 
crosses each bridge exactly once?

Swiss mathematician Leonhard Euler invented 
graph theory to solve this problem.



4

The city of Königsberg
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Graph of the Königsberg bridge system
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Definition of a graph

A graph consists of

• A set of nodes (can be infinite)

• A set of arcs that connect pairs of nodes.

An arc is an ordered pair, e.g.,
(i1, rb1),
(rb1, i1).
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A labeled directed graph
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A rooted tree, exemplifying family 
relationships
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Definition of a graph (cont’d)

A graph consists of nodes and arcs.

If a directed arc connects N and M, N is called 
the parent, and M is called the child. If N is also 
connected to K, M and K are siblings.

A rooted tree has a unique node which has no 
parents. The edges in a rooted tree are directed 
away from the root. Each node in a rooted tree 
has a unique parent.
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Definition of a graph (cont’d)

A leaf or tip node is a node that has no children 
(sometimes also called a dead end).

A path of length n is an ordered sequence of 
n+1 nodes such that the graph contains arcs 
from each node to the following ones.

E.g., [a b e] is a path of length 2.

On a path in a rooted graph, a node is said to be 
an ancestor of all the nodes positioned after it 
(to its right), as well as a descendant of all 
nodes before it (to its left). 
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Definition of a graph (cont’d)

A path that contains any node more than once 
is said to contain a cycle or loop.

A tree is a graph in which there is a unique path 
between every pair of nodes.

Two nodes are said to be connected if a path 
exists that includes them both.
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A unifying view (Newell and Simon)

The problem space consists of:

• a state space which is  a set of states 
representing the possible configurations of the 
world

• a set of operators which can change one state 
into another

The problem space can be viewed as a graph 
where the states are the nodes and the arcs 
represent the operators.
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Searching on a graph (simplified)

Start with the initial state (root)

Loop until goal found

find the nodes accessible from the root
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State space of the 8-puzzle generated by 
“move blank” operations
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State space search

Represented by a four-tuple [N,A,S,GD], where:
• N is the problem space
• A is the set of arcs (or links) between nodes. 
These correspond to the operators.
• S is a nonempty subset of N. It represents the 
start state(s) of the problem.
• GD is a nonempty subset of N. It represents 
the goal state(s) of the problem. The states in 
GD are described using either:

a measurable property of the states
a property of the path developed in the
search (a solution path is a path from

node S to a node in GD )
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The 8-puzzle problem as state space search

• states: possible board positions

• operators: one for sliding each square in each 
of four directions,
or, better, one for moving the blank square in 
each of four directions

• initial state: some given board position

• goal state: some given board position

Note: the “solution” is not interesting here, we 
need the path.
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State space of the 8-puzzle (repeated)
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Traveling salesperson problem  as state space 
search

The salesperson has n cities to visit and must 
then return home. Find the shortest path to 
travel.

• state space:

• operators: 

• initial state:

• goal state: 
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An instance of the traveling salesperson 
problem
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Search of the traveling salesperson 
problem. (arc label = cost from root)
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Nearest neighbor path

Nearest neighbor path = AEDBCA (550)

Minimal cost path = ABCDEA (375)
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Tic-tac-toe as state space search

• states: 

• operators: 

• initial state:

• goal state: 

Note: this is a “two-player” game
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Goal-directed search
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Data-directed search
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Trace of backtracking search (Fig. 3.12)
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A trace of backtrack on the graph of 
Fig. 3.12
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Graph for BFS and DFS (Fig. 3.13)
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Breadth_first search algorithm
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Trace of BFS on the graph of Fig. 3.13
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Graph of Fig. 3.13 at iteration 6 of BFS
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Depth_first_search algorithm
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Trace of DFS on the graph of Fig. 3.13
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Graph of Fig. 3.13 at iteration 6 of DFS
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BFS, label = order state was removed 
from OPEN
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DFS with a depth bound of 5, label = 
order state was removed from OPEN
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State space graph of a set of 
implications in propositional calculus
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And/or graph of the expression q∧r→p
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Hypergraph

A hypergraph consists of:

N: a set of nodes.

H: a set of hyperarcs.

Hyperarcs are defined by ordered pairs in which 
the first element of the pairs is a single node 
from N and the second element is a subset of N.

An ordinary graph is a special case of 
hypergraph in which all the sets of descendant 
nodes have a cardinality of 1.
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And/or graph of the expression q∨r→p
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And/or graph of a set of propositional 
calculus expressions
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And/or graph of the part of the state 
space for integrating a function (Nilsson 1971)
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The solution subgraph showing that fred
is at the museum
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Facts and rules for the example
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Five rules for a simple subset of English 
grammar
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Figure 3.25: And/or graph for the grammar of Example 3.3.6. Some of the nodes (np, art, etc.) 
have been written more than once to simplify drawing the graph.
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Parse tree for the sentence
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“Blind search”

BFS and DFS are blind in the sense that they 
have no knowledge about the problem at all 
other than the problem space

Such techniques are also called brute-force 
search, uninformed search, or weak methods

Obviously, we can’t expect too much from 
these, but they provide

• Worst-case scenarios
• A basis for more interesting algorithms later on
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BFS and DFS

Worst case scenarios are equally bad 
(exponential)

How to evaluate search algorithms
• Completeness: a search algorithm is complete if it is 

guaranteed to find a solution when one exists
• Quality of solution: usually the path cost
• Time cost of finding the solution: usually in terms of 

number of nodes generated or examined
• Memory cost of finding the solution: how many nodes do 

we have to keep around during the search
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Evaluating BFS

• Complete? 
Yes

• Optimal quality solution?
Yes

• Time required in the worst case
O(bd)

• Memory required in the worst case (in OPEN)
O(bd)

where b is the branching factor, d is the depth 
of the solution
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Evaluating DFS

• Complete? 
Yes (only if the tree is finite)

• Optimal quality solution?
No

• Time required in the worst case
O(bm)

• Memory required in the worst case (in OPEN)
O(bm)

where b is the branching factor, m is the 
maximum depth of the tree 
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Example search problems

Puzzles: missionaries and cannibals, 
cryptarithmetic, 8-puzzle, 15-puzzle, Rubik’s cube, 
n-queens, the Tower of Hanoi, …

2-player games: chess, checkers, Chinese Go, …

Proving theorems in logic and geometry

Path finding

“Industrial” problems: VLSI layout design, 
assembling a complex object

“AI problems”: speech recognition, planning, …
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The importance of the problem space

The choice of a problem space makes a big 
difference

in fact, finding a good abstraction is half 
of the problem

Intelligence is needed to figure out what 
problem space to use

still poorly understood: the human 
problem solver is conducting a search in the 
space of problem spaces 


