3.0
3.1
3.2

3.3

Structures

Introduction 3.4

Graph Theory

Strategies for State 3.5

Space Search

Using the State Space to
Represent Reasoning
with the Predicate
Calculus

Additional references for the slides:

Russell and Norvig’'s Al book.

Robert Wilensky’s CS188 slides:
www.cs.berkeley.edu/~wilensky/cs188/lectures/index.html

rch

and Strategies for

Epilogue and
References

Exercises

Chapter Objectives

* Learn the basics of state space representation
e Learn the basics of search in state space

 The agent model: Has a problem, searches for
a solution.

Graph theory: The city of Konigsberg

The city is divided by ariver. There are two
Islands at the river. The first island is connected
by two bridges to both riverbanks and is also
connected by a bridge to the other island. The
second island two bridges each connecting to
one riverbank.

Question: Is there a walk around the city that
crosses each bridge exactly once?

Swiss mathematician Leonhard Euler invented
graph theory to solve this problem.

The city of Konigsberg

Riverbank 1

-
YA

6

Riverbank 2

Graph of the Konigsberg bridge system

rb1

i1 12

b7

rb2

Definition of a graph

A graph consists of
* A set of nodes (can be infinite)
e A set of arcs that connect pairs of nodes.

An arc is an ordered pair, e.qg.,
(i1, rbl),
(rbl,il).

A labeled directed graph

Nodes = {a,b,c,d,e}
Arcs = {(a,b),(a,d),(b,c),(c,b),(c,d),(d,a),(d,e),(e,c),(e,d)}

7

A rooted tree, exemplifying family
relationships

N
A

o ® o o
e f g h

Definition of a graph (cont'd)

A graph consists of nodes and arcs.

If a directed arc connects N and M, N is called
the parent, and M is called the child. If N is also
connected to K, M and K are siblings.

A rooted tree has a uniqgue node which has no
parents. The edges in arooted tree are directed

away from the root. Each node in arooted tree
has a unique parent.

Definition of a graph (cont'd)

A leaf or tip node is a node that has no children
(sometimes also called a dead end).

A path of length n is an ordered sequence of

n+1 nodes such that the graph contains arcs

from each node to the following ones.
E.g.,[a b e] is apath of length 2.

On a path in arooted graph, a node is said to be
an ancestor of all the nodes positioned after it
(to its right), as well as a descendant of all
nodes before it (to its left).

10

Definition of a graph (cont'd)

A path that contains any node more than once
IS said to contain a cycle or loop.

A tree is a graph in which there is a unique path
between every pair of nodes.

Two nodes are said to be connected if a path
exists that includes them both.

11

A unifying view (Newell and Simon)

The problem space consists of:

e a State space which is a set of states
representing the possible configurations of the
world

e a set of operators which can change one state
Into another

The problem space can be viewed as a graph
where the states are the nodes and the arcs
represent the operators.

12

Searching on a graph (simplified)

Start with the initial state (root)
Loop until goal found

find the nodes accessible from the root

13

14

State space of the 8-puzzle generated by
*move blank” operations

1143
7 . 6
5182
Up Left Down Right

]
4
8

N (3| W

1
-
<)

4] 3 43
SEGn
2 2 8|2
M Right A Down Left Right Mown

1..4 4 .14
6|1]7 8 3 6
ol|5]|8 2 2 8

l i l 15

(&)
(oe]
[$)
(&)

7 7
5 5

3
6|7
- JE

N
__EIE

<0 ([N |

- [~ |[=
N o | w
<« |~ |W
<o |00 | B
—he

<« o | o | b~

State space search

Represented by a four-tuple [N,A,S,GD], where:
* N is the problem space

 Alis the set of arcs (or links) between nodes.
These correspond to the operators.

e« Sis anonempty subset of N. It represents the
start state(s) of the problem.

« GD Is a nonempty subset of N. It represents
the goal state(s) of the problem. The states In
GD are described using either:
a measurable property of the states
a property of the path developed in the
search (a solution path is a path from
node Sto anode in GD)

16

The 8-puzzle problem as state space search

e States: possible board positions

e operators: one for sliding each square in each
of four directions,

or, better, one for moving the blank square in
each of four directions

e initial state: some given board position
e goal state: some given board position

Note: the “solution” is not interesting here, we
need the path.

17

State space of the 8-puzzle (repeated)

Down

Up

Right

Left

Down

‘A Right /\

6

7

1

714|606

6

4

18

Traveling salesperson problem as state space
search

The salesperson has n cities to visit and must
then return home. Find the shortest path to
travel.

» State space:
e Operators:
e INnitial state:

e goal state:

19

An instance of the traveling salesperson
problem

20

Search of the traveling salesperson
problem. (arc label = cost from root)

Path:
ABCDEA

Cost:
375

325 400 400
De Ee C
|
|
425 475 |
|
Ae Ae
Path: Path:
ABCEDA ABDCEA
Cost: Cost:
425 475 21

Nearest neighbor path

Nearest neighbor path = AEDBCA (550)
Minimal cost path = ABCDEA (375)

22

Tic-tac-toe as state space search

e States:

e Operators:
e initial state:
e goal state:

Note: this is a “two-player” game

23

Data-directed search

Goal

y
R T

Direction of
Data reasoning

25

function backtrack;

~ begin
SL :=[Start]; NSL :=[Start]; DE :=[]; CS := Start; % initialize:
while NSL #[] do % while there are states to be tried
begin
if CS = goal (or meets goal description)
then return SL; % on success, return list of states in path.
if CS has no children (excluding nodes already on DE, SL, and NSL)
then begin
while SL is not empty and CS = the first element of SL do
begin
add CS to DE; % record state as dead end
remove first element from SL; %backtrack
remove first element from NSL,;
CS :=first element of NSL;
end
add CS to SL;
end
else begin
place children of CS (except nodes already on DE, SL, or NSL) on NSL;
CS :=first element of NSL;
add CS to SL
end
end;
return FAIL;

end.

Trace of backtracking search (Fig. 3.12)

27

A trace of backtrack on the graph of

Fig. 3.12

Initialize: SL = [A]; NSL=[A]; DE=[]; CS = A;

AFTER ITERATION

0

CS

A
B
E
H

SL

[A]

[B A]

[E B A]

[HE B A]
[l EBA]
[F B A]

[J F B A]
[C Al

[G C A

NSL

[A]

[BCDA]
[EFBCDA]
[HIEFBCDA]
EFBCDA]
[FBCDA]
[JFBCDA]
[CDA]

[GCDA]

DE

[]

[]

[]

[]

[H]

[E | H]

[E | H]

[BF JEIH]

[BFJEIH],,

Graph for BFS and DFS (Fig. 3.13)

NN
: L]/M\. : J\P{\Q.\R.

Se Te Ue

Breadth first search algorithm

function breadth_first_search;

begin
open := [Start]; % initialize
closed :=[];
while open = [] do % states remain
begin
remove leftmost state from open, call it X;
if X is a goal then return SUCCESS % goal found
else begin
generate children of X;
put X on closed;
discard children of X if already on open or closed; % loop check
put remaining children on right end of open % queue
end
end
return FAIL % no states left

end.

30

Trace of BFS on the graph of Fig. 3.13

W o bk WD =

open = [A]; closed =[]

open = [B,C,D]; closed = [A]

open = [C,D,E,F]; closed = [B,A]

open = [D,E,F,G,H]; closed = [C,B,A]

open = [E,F,G,H,l,J]; closed = [D,C,B,A]

open = [F,G,H,l,J,K,L]; closed = [E,D,C,B,A]

open = [G,H,l,J,K,L,M] (as L is already on open); closed = [F,E,D,C,B,A]
open = [H,l,J,K,L,M,N]; closed = [G,F,E,D,C,B,A]

and so on until either U is found or open = |

31

Graph of Fig. 3.13 at iteration 6 of BFS

20 PRNNN e
|| |

Se Te Ue Open

32

Depth_first_search algorithm

begin
open := [Start];
closed :=[];
while open # [] do
begin
remove leftmost state from open, call it X;
if X is a goal then return SUCCESS
else begin
generate children of X;
put X on closed,;
discard children of X if already on open or closed,;
put remaining children on left end of open
end
end;
return FAIL
end.

% initialize

% states remain

% goal found

% loop check

% stack

% no states left

33

—

Trace of DFS on the graph of Fig. 3.13

=l S R R

open = [A]; closed =[]
open = [B,C,D]; closed = [A]
open = [E,F,C,D]; closed = [B,A]
open = [K,L,F,C,D]; closed = [E,B,A]
= [S,L,F,C,D]; closed = [K,E,B,A]
= [L,F,C,D]; closed = [S,K,E,B,A]
open = [T,F,C,D]; closed = [L,S,K,E,B,A]
= [F,C,D]; closed = [T,L,S,K,E,B,A]
= [M,C,D], as L is already on closed; closed = [F,T,L,S,K,E,B,A]
open = [C,D]; closed = [M,F,T,L,S,K,E,B,A]
open = [G,H,D]; closed = [C,M,F,T,L,S,K,E,B,A]

34

Graph of Fig. 3.13 at iteration 6 of DFS

D
A plf\o.\a.

R

Closed

Open

35

33

32

5
u

31

8(3]|2 312(8[3]2 M8

116|[(1[8]|6]|1]5]|6]|1][6]3

4283

30

-

6||7|5[(4]|7|5[4]|7

312

/

8

29

Al |

16A 18A

28

114|3||1[4]5

5

6

5(7|6|5|7

.

Al |

7

15

8l4]1]8

5

8|4

6

112]13]||2({3]4

-

5(7|6|5]|7]|6

1

7

- HE

14

4
5

8
1

6

2
7

24 k 26 27\

13

3((2]8]3

2(114|17]|1]4

w
w0
w
~

8

5

6
7

8
6|74

1

23

o

8
4
7

2
6
1

22

2.3
6|(8|4
117

1

2

1|23
sl 4
HBE

4]7]1

218]3|2]|8]3

7

4
7]6]5][e]1]5][c]s Il

811|3
4

6(8(4||6]8|4(6[4]3||6]4[(5(6]7[4||6]7(4(2]1]4]2

.2323.28.28328328383.

8]16]3
4

BFS, label = order state was removed

from OPEN

8.3
2|6|4
11715

20

‘1?51?51?51?51751?..1515.?65

34

s[sl

2(6[4]2

36

36 37 38 39 40 41 42 43 44 45 46
Goal

35

3
4
651

o |0

2
7
6

8

|| wn

o~~~

w w |

4
6|5
23

2
7

DFS with a depth bound of 5, label
order state was removed from OPEN

18

s[sl [s[1]s

21114

5

NS

8]3
714
18 EBE
17

2
6

4
5

15

R

7
1

5/ |6
| § |

8
6
F

4
7

6
1

4
-

13

6
1

23 21 [2[e]z3] [2]s]s
3
5

4
5

8
P

6
1

4
5

H::
6
1

8
7

3
4
715

2
1

T/

5

AR AD
2[6]4
7

1

37

27 31
Goal

26

22

16

14

11

10

State space graph of a set of
iImplications in propositional calculus

q—p 5
r-p
V—(Q

S—Tr

q r U
t—or
S —>u
S
t S

t v

38

And/or graph of the expression gar—p

P
.

39

Hypergraph

A hypergraph consists of:
N: a set of nodes.
H: a set of hyperarcs.

Hyperarcs are defined by ordered pairs in which
the first element of the pairs is a single node
from N and the second element is a subset of N.

An ordinary graph is a special case of
hypergraph in which all the sets of descendant
nodes have a cardinality of 1.

40

And/or graph of the expression gvr—p

P
O

SON
—

41

And/or graph of a set of propositional
calculus expressions

arb—d " f
anc—e /@ /c
bard—>f

f>g /1‘:3‘/ d

42

[investment(X) }

[investmem(savings) j

[savings_account(inadequate)]

[amount_saved{X)] [dependents(Y)] [ﬁgreater(X,minsavings(Y))]

=»xfail here and backtracksx++
[amount_saved(QOOOO)] [dependents(2)] I f

(investment(stocks)]

[savings_account(adequate)]

[amount_saved()()] [dependents(Y)] [greater(X,minsavings(Y))j

[amount_saved(QOO{}O)j [dependents(2)] [income(adequate)]

[earnings(X,steady)] [dependents(Y)] [greater(X,minincome(Y))J

(earnings(SOOOO, steady)] [dependents(2)]

And/or graph of the part of the state

space for integrating a function (Nilsson 1971)

Goal J X dx
(1-x%?2
X

d f\{‘-“[i V¥
] met! Trigonome tric | identity n 2
T
4 4 24
J.col_ vy Jtan ydy ‘[32 dz
(1 +z9)(1 -z
z =coty z =tany
J' dz J' 24
- dz
24(1 +z 2) 1 +z4
Divide numerator | by denomina tor
2 a.
d (1+z°9+ ——=) d
J J 1422 1422
tan w

The solution subgraph showing that fred
IS at the museum

. Direction
[Iocatlon (X,Z)J of search
.--"/
[gooddog(X)] [master(X,Y)] [Iocation(Y,Z)}

SN [TV

[collie(X) } [trained(X) } [master(fred,sam)] [day(saturday) } [—. (warm(saturday))]

[collie(fred)] [trained(fred)j

Substitutions = {fred/X, sam/Y, museum/Z}

45

Facts and rules for the example

1.

Fred is a collie.
collie(fred).

Sam is Fred’s master.
master(fred,sam).

The day is Saturday.
day(saturday).

It 1s cold on Saturday.
— (warm(saturday)).

Fred is trained.
trained(fred).

Spaniels are good dogs and so are trained collies.

Vv X[spaniel(X) v (collie(X) A trained(X)) —» gooddog(X)]

If a dog is a good dog and has a master then he will be with his master.
v (X,Y,Z) [gooddog(X) A~ master(X,Y) A location(Y,Z) — location(X,Z)]

[f'it is Saturday and warm, then Sam is at the park.
(day(saturday) A warm(saturday)) — location(sam,park).

[f it is Saturday and not warm, then Sam is at the museum.

(day(saturday) A~ — (warm(saturday))) — location(sam,museum). 46

Five rules for a simple subset of English
grammar

1.

10.
11,

A sentence is a noun phrase followed by a verb phrase.
sentence < np vp

A noun phrase is a noun.
np <> n

A noun phrase is an article followed by a noun.
np < artn

A verb phrase is a verb.
Vp <> V

A verb phrase is a verb followed by a noun phrase.
vp < Vv np

art & a

art < the
(“a” and “the” are articles)

n <> man

n < dog
(“man” and “dog” are nouns)

v & likes

v <> bites 47
(“likes” and “bites” are verbs)

Figure 3.25: And/or graph for the grammar of Example 3.3.6. Some of the nodes (np, art, etc.)
have been written more than once to ssimplify drawing the graph.

sentence

likes bites likes bites

man dog a the man dog [art]

i

man dog a the man dog

Parse tree for the sentence

(sentence]

(at) [(n)

the dog bites the man

49

“Blind search”

BFS and DFS are blind in the sense that they
have no knowledge about the problem at all
other than the problem space

Such techniques are also called brute-force
search, uninformed search, or weak methods

Obviously, we can’t expect too much from
these, but they provide

e \Worst-case scenarios
e A basis for more interesting algorithms later on

50

BFS and DFS

Worst case scenarios are equally bad
(exponential)

How to evaluate search algorithms

e Completeness: a search algorithm is complete if it is
guaranteed to find a solution when one exists

e Quality of solution: usually the path cost

e Time cost of finding the solution: usually in terms of
number of nodes generated or examined

e Memory cost of finding the solution: how many nodes do
we have to keep around during the search

51

Evaluating BFS

« Complete?
Yes

 Optimal quality solution?
Yes

 Time required in the worst case
O(b%)

« Memory required in the worst case (in OPEN)
O(b9%

where b is the branching factor, d is the depth
of the solution

52

Evaluating DFS

« Complete?
Yes (only if the tree is finite)

 Optimal quality solution?
No

 Time required in the worst case
O(b™)

« Memory required in the worst case (in OPEN)
O(bm)

where b is the branching factor, m is the
maximum depth of the tree

53

Example search problems

Puzzles: missionaries and cannibals,
cryptarithmetic, 8-puzzle, 15-puzzle, Rubik’s cube,
n-queens, the Tower of Hanoil, ...

2-player games: chess, checkers, Chinese Go, ...
Proving theorems in logic and geometry
Path finding

“Industrial” problems: VLSI layout design,
assembling a complex object

“Al problems”: speech recognition, planning, ...

54

The importance of the problem space

The choice of a problem space makes a big
difference

In fact, finding a good abstraction is half
of the problem

Intelligence is needed to figure out what
problem space to use

still poorly understood: the human
problem solver is conducting a search in the
space of problem spaces

55

