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Chapter Objectives

• Learn the basics of heuristic search in a state 
space.

• Learn the basic properties of heuristics: 
admissability, monotonicity, informedness.

• Learn the basics of searching for two-person 
games: minimax algorithm and alpha-beta 
procedure.

• The agent model: Has a problem, searches for 
a solution, has some “heuristics” to speed up 
the search.
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An 8-puzzle instance
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Three heuristics applied to states
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Heuristic search of a hypothetical state 
space (Fig. 4.4)

node The heuristic value 
of the node



6

Take the DFS algorithm
Function depth_first_search;

begin
open := [Start];
closed := [ ];
while open ≠ [ ] do

begin
remove leftmost state from open, call it X;
if X is a goal then return SUCCESS

else begin
generate children of X;
put X on closed;
discard remaining children of X if already on open or closed
put remaining children on left end of open

end
end;

return FAIL
end. 
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Add the children to OPEN with respect to 
their heuristic value
Function best_first_search;

begin
open := [Start];
closed := [ ];
while open ≠ [ ] do

begin
remove leftmost state from open, call it X;
if X is a goal then return SUCCESS

else begin
generate children of X;
assign each child their heuristic value;
put X on closed;
(discard remaining children of X if already on open or closed)
put remaining children on open
sort open by heuristic merit (best leftmost)

end
end;

return FAIL
end. 

new

will be handled differently
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Now handle those nodes already on 
OPEN or CLOSED
...     

generate children of X;
for each child of X do
case

the child is not on open or closed:
begin
assign the child a heuristic value;
add the child to open

end;
the child is already on open:

if the child was reached by a shorter path then
give the state on open the shorter path

the child is already on closed:
if the child was reached by a shorter path then
begin

remove the child from closed;
add the child to open

end;
end;

put X on closed;
re-order states on open by heuristic merit (best leftmost)

end;
...



The full algorithm
Function best_first_search;
begin

open := [Start];         closed := [ ];
while open ≠ [ ] do
begin

remove leftmost state from open, call it X;
if X is a goal then return SUCCESS
else begin

generate children of X;
for each child of X do
case

the child is not on open or closed:
begin
assign the child a heuristic value;
add the child to open

end;
the child is already on open:

if the child was reached by a shorter path
then give the state on open the shorter path

the child is already on closed:
if the child was reached by a shorter path then

begin
remove the child from closed;
add the child to open

end;
end;

put X on closed;
re-order states on open by heuristic merit (best leftmost)

end;
return FAIL

end. 
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Heuristic search of a hypothetical state 
space
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A trace of the execution of 
best_first_search for Fig. 4.4
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Heuristic search of a hypothetical state 
space with open and closed highlighted
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What is in a “heuristic?”

f(n) = g(n) + h(n)

The heuristic value of

node n

The actual cost of

node n 

(from the root to n)

The estimated cost of

achieving the goal 

(from node n to the goal)
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The heuristic f applied to states in the 8-
puzzle
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The successive stages of OPEN and 
CLOSED
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Algorithm A

Consider the evaluation function f(n) = g(n) + h(n) 
where

n is any state encountered during the search
g(n) is the cost of n from the start state
h(n) is the heuristic estimate of the distance 
n to the goal

If this evaluation algorithm is used with the 
best_first_search algorithm of Section 4.1, the 
result is called algorithm A.
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Algorithm A*

If the heuristic function used with algorithm A is 
admissible, the result is called algorithm A* 
(pronounced A-star).

A heuristic is admissible if it never overestimates 
the cost to the goal.

The A* algorithm always finds the optimal solution 
path whenever a path from the start to a goal state 
exists (the proof is omitted, optimality is a 
consequence of admissability).
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Monotonicity

A heuristic function h is monotone if 

1. For all states ni and nJ, where nJ is a  
descendant of ni,

h(ni) - h(nJ) ≤ cost (ni, nJ),

where cost (ni, nJ) is the actual cost (in 
number of moves) of going from state ni to
nJ.

2. The heuristic evaluation of the goal state is
zero, or h(Goal) = 0.



21

Informedness

For two A* heuristics h1 and h2, if h1 (n) ≤ h2 (n), 
for all states n in the search space, heuristic h2 
is said to be more informed than h1. 
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Game playing

Games have always been an important 
application area for heuristic algorithms. The 
games that we will look at in this course will be 
two-person board games such as Tic-tac-toe, 
Chess, or Go.
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First three levels of tic-tac-toe state 
space reduced by symmetry
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The “most wins” heuristic
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Heuristically reduced state space for tic-
tac-toe
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A variant of the game nim

• A number of tokens are placed on a table 
between the two opponents

• A move consists of dividing a pile of tokens 
into two nonempty piles of different sizes

• For example, 6 tokens can be divided into 
piles of 5 and 1 or 4 and 2, but not 3 and 3

• The first player who can no longer make a 
move loses the game

• For a reasonable number of tokens, the state 
space can be exhaustively searched
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State space for a variant of nim
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Exhaustive minimax for the game of nim
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Two people games

• One of the earliest AI applications

• Several programs that compete with the best 
human players:

• Checkers: beat the human world champion
• Chess: beat the human world champion (in 2002 & 2003)
• Backgammon: at the level of the top handful of humans
• Go: no competitive programs
• Othello: good programs
• Hex: good programs
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Search techniques for 2-person games

• The search tree is slightly different: It is a 
two-ply tree where levels alternate between 
players

• Canonically, the first level is “us” or the player 
whom we want to win. 

• Each final position is assigned a payoff:
• win (say, 1)
• lose (say, -1)
• draw (say, 0)

• We would like to maximize the payoff for the 
first player, hence the names MAX & MINIMAX



32

The search algorithm

• The root of the tree is the current board 
position, it is MAX’s turn to play

• MAX generates the tree as much as it can, and 
picks the best move assuming that Min will also 
choose the moves for herself.

• This is the Minimax algorithm which was 
invented by Von Neumann and Morgenstern in 
1944, as part of game theory.

• The same problem with other search trees: the 
tree grows very quickly, exhaustive search is 
usually impossible.
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Special technique 1

• MAX generates the full search tree (up to the 
leaves or terminal nodes or final game 
positions) and chooses the best one:

win or tie
• To choose the best move, values are 
propogated upward from the leaves:

• MAX chooses the maximum
• MIN chooses the minimum

• This assumes that the full tree is not 
prohibitively big
• It also assumes that the final positions are 
easily identifiable
• We can make these assumptions for now, so 
let’s look at an example
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Two-ply minimax applied to X’s move 
near the end of the game (Nilsson, 1971)
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Special technique 2
• Notice that the tree was not generated to full 
depth in the previous example

• When time or space is tight, we can’t search 
exhaustively so we need to implement a cut-off 
point and simply not expand the tree below the 
nodes who are at the cut-off level.

• But now the leaf nodes are not final positions 
but we still need to evaluate them:

use heuristics

• We can use a variant of the  “most wins” 
heuristic
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Heuristic measuring conflict



37

Calculation of the heuristic

• E(n) = M(n) – O(n) where
• M(n) is the total of My (MAX) possible winning lines
• O(n) is the total of Opponent’s (MIN) possible winning 

lines
• E(n) is the total evaluation for state n

• Take another look at the previous example

• Also look at the next two examples which use 
a cut-off level (a.k.a. search horizon) of 2 levels
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Two-ply minimax applied to the opening 
move of tic-tac-toe (Nilsson, 1971)
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Two-ply minimax and one of two 
possible second MAX moves (Nilsson, 1971)
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Minimax applied  to a hypothetical state 
space (Fig. 4.15)
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Special technique 3

• Use alpha-beta pruning

• Basic idea: if a portion of the tree is obviously 
good (bad) don’t explore further to see how 
terrific (awful) it is

• Remember that the values are propagated 
upward. Highest value is selected at MAX’s
level, lowest value is selected at MIN’s level

• Call the values at MAX levels α values, and the 
values at MIN levels β values
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The rules

• Search can be stopped below any MIN node 
having a beta value less than or equal to the 
alpha value of any of its MAX ancestors

• Search can be stopped below any MAX node 
having an alpha value greater than or equal to 
the beta value of any of its MIN node ancestors
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Example with MAX

MAX

MAX

MIN

3 4 5

β=3 β≤2

2

As soon as the node with
value 2 is generated, we 
know that the beta value will be 
less than 3, we don’t need
to generate these nodes 
(and the subtree below them)

α ≥ 3

(Some of) these
still need to be
looked at
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Example with MIN

MIN

MIN

MAX

3 4 5

α=5 α≥6

6

As soon as the node with
value 6 is generated, we 
know that the alpha value will be 
larger than 6, we don’t need
to generate these nodes 
(and the subtree below them)

β ≤ 5

(Some of) these
still need to be
looked at
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Alpha-beta pruning applied to the state 
space of Fig. 4.15
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Number of nodes generated as a 
function of branching factor B, and 
solution length L (Nilsson, 1980)
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Informal plot of cost of searching and 
cost of computing heuristic evaluation 
against heuristic informedness (Nilsson, 1980)
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Othello (a.k.a. reversi)

• 8x8 board of cells
• The tokens have two sides: one black, one white
• One player is putting the white side and the other 
player is putting the black side
• The game starts like this:
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Othello

• The game proceeds by each side putting a piece of 
his own color

• The winner is the one who gets more pieces of his 
color at the end of the game

• Below, white wins by 28
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Othello

• When a black token is put onto the board, and on the 
same horizontal, vertical, or diagonal line there is 
another black piece such that every piece between the 
two black tokens is white, then all the white pieces are 
flipped to black

• Below there are 17 possible moves for white
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Othello

• A move can only be made if it causes flipping of 
pieces. A player can pass a move iff there is no move 
that causes flipping. The game ends when neither 
player can make a move
• the snapshots are from 
www.mathewdoucette.com/artificialintelligence

• the description is from
home.kkto.org:9673/courses/ai-xhtml
• AAAI has a nice repository: www.aaai.org
Click on AI topics, then select “games & puzzles”
from the menu
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Hex

• Hexagonal cells are arranged as below . Common 
sizes are 10x10, 11x11, 14x14, 19x19.
• The game has two players: Black and White
• Black always starts (there is also a swapping rule)
• Players take turns placing their pieces on the board
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Hex

• The object of the game is to make an uninterrupted 
connection of your pieces from one end of your board 
to the other

• Other properties
• First player always wins
• No ties
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•Hex

• Invented independently by Piet Hein in 1942 
and John Nash in 1948.

• Every empty cell is a legal move, thus the 
game tree is wide b = ~80 (chess b = ~35, go 
b = ~250)

• Determining the winner (assuming perfect 
play) in an arbitrary Hex position is PSPACE-
complete [Rei81].

• How to get knowledge about the “potential” 
of a given position without massive game-
tree search?



55

Hex

• There are good programs that play with 
heuristics to evaluate game configurations 

• hex.retes.hu/six

• home.earthlink.net/~vanshel

• cs.ualberta.ca/~javhar/hex

• www.playsite.com/t/games/board/hex/
rules.html
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The Game of Go

Go is a two-player game played using black and white 
stones on a board with 19x19, 13x13, or 9x9 intersections.
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The Game of Go

Players take turns placing stones onto the intersections. 
Goal: surround the most territory (empty intersections).
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The Game of Go

Once placed onto the board, stones are not moved.
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The Game of Go
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The Game of Go
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The Game of Go
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The Game of Go
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The Game of Go
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The Game of Go

A block is a set of adjacent stones (up, down, left, right) of 
the same color.
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The Game of Go

A block is a set of adjacent stones (up, down, left, right) of 
the same color.
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The Game of Go

A liberty of a block is an empty intersection adjacent to 
one of its stones.
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The Game of Go
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The Game of Go



69

The Game of Go

If a block runs out of liberties, it is captured. Captured 
blocks are removed from the board.
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The Game of Go

If a block runs out of liberties, it is captured. Captured 
blocks are removed from the board.
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The Game of Go

If a block runs out of liberties, it is captured. Captured 
blocks are removed from the board.
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The Game of Go

The game ends when neither player wishes to add more 
stones to the board.



73

The Game of Go

The player with the most enclosed territory wins the game. 
(With komi, White wins this game by 7.5 pts.)
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Alive and Dead Blocks

White can capture by playing at A or B. Black can capture 
by playing at C. Black can’t play at D and E simultaneously.

With only one eye, 
these stones are 
dead. No need for 
Black to play at C.

With two eyes at D 
and E, these White 
stones are alive.
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Example on 13x13 Board

What territory belongs to White? To Black?
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Example on 13x13 Board

Black ahead by 1 point. With komi, White wins by 4.5 pts.
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Challenges for Computer Go

Much higher search requirements
• Minimax game tree has O(bd) positions
• In chess, b = ~35 and d = ~100 half-moves
• In Go, b = ~250 and d = ~200 half-moves
• However, 9x9 Go seems almost as hard as 19x19

Accurate evaluation functions are difficult to 
build and computationally expensive
• In chess, material difference alone works fairly well
• In Go, only 1 piece type with no easily extracted features

Determining the winner from an arbitrary 
position is PSPACE-hard (Lichtenstein and 
Sipser, 1980)
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State of the Art

Many Faces of Go v.11 (Fotland), Go4++ (Reiss), 
Handtalk/Goemate (Chen), GNUGo (many), 
etc.

Each consists of a carefully crafted 
combination of pattern matchers, expert 
rules, and selective search

Playing style of current programs:
• Focus on safe territories and large frameworks 
• Avoid complicated fighting situations 

Rank is about 6 kyu, though actual playing 
strength varies from opening (stronger) to 
middle game (much weaker) to endgame 
(stronger) 


