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Probability Theory

The nonmonotonic logics we covered introduce 
a mechanism for the systems to believe in 
propositions (jump to conclusions) in the face 
of uncertainty. When the truth value of a 
proposition p is unknown, the system can 
assign one to it based on the rules in the KB.

Probability theory takes this notion further by 
allowing graded beliefs. In addition, it provides 
a theory to assign beliefs to relations between 
propositions (e.g., p ∧ q), and related 
propositions (the notion of dependency).
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Probabilities for propositions

We write probability(A),or frequently P(A) in 
short, to mean the “probability of A.”

But what does P(A) mean?

P(I will draw ace of hearts)

P(the coin will come up heads)

P(it will snow tomorrow)

P(the sun will rise tomorrow)

P(the problem is in the third cylinder)

P(the patient has measles) 
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Frequency interpretation

• Draw a card from a regular deck: 13 hearts, 13 
spades, 13 diamonds, 13 clubs.
Total number of cards = n = 52 = h + s + d + c. 

• The probability that the proposition 
A=“the card is a hearts” 

is true corresponds to the relative frequency 
with which we expect to draw a hearts.

P(A) = h / n
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Frequency interpretation (cont’d)

• The probability of an event A is the 
occurrences where A holds divided by all the 
possible occurrences:

P(A) = #A holds / #total

• P (I will draw ace of hearts ) ?

• P (I will draw a spades) ?

• P (I will draw a hearts or a spades) ?

• P (I will draw a hearts and a spades) ?
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Definitions

• An elementary event or atomic event is a 
happening or occurrence that cannot be made 
up of other events.

• An event is a set of elementary events.

• The set of all possible outcomes of an event E 
is the sample space or universe for that event.

• The probability of an event E in a sample 
space S is the ratio of the number of elements 
in E to the total number of possible outcomes 
of the sample space S of E. 
Thus, P(E) = |E| / |S|.
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Subjective interpretation

• There are many situations in which there is no 
objective frequency interpretation:

• On a cold day, just before letting myself glide from the top of 
Mont Ripley, I say
“there is probability 0.2 that I am going to have a broken leg”.

• You are working hard on your AI class and you believe that 
the probability that you will get an A is 0.9.

• The probability that proposition A is true 
corresponds to the degree of subjective belief.
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Axioms of probability

• There is a debate about which interpretation to 
adopt. But there is general agreement about the 
underlying mathematics.

• Values for probabilities should satisfy the 
three basic requirements:

• 0≤ P(A) ≤ 1
• P(A ∨ B) = P(A) + P(B)
• P(true) = 1
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Probabilities must lie between 0 and 1

• Every probability P(A) must be positive, and 
between 0 and 1, inclusive: 0≤ P(A) ≤ 1

• In informal terms it simply means that nothing 
can have more than a 100% chance of occurring 
or less than a 0% chance
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Probabilities must add up

• Suppose two events are mutually exclusive
i.e., only one can happen, not both

• The probability that one or the other occurs is 
then the sum of the individual probabilities

• Mathematically, if A and B are disjoint,
i.e., ¬ (A ∧ B) then:    P(A ∨ B) = P(A) + P(B)

• Suppose there is a 30% chance that the stock 
market will go up and a 45% chance that it will 
stay the same. It cannot do both at once, and so 
the probability that it will either go up or stay 
the same must be 75%.
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Total probability must equal 1

• Suppose a set of events is mutually exclusive 
and collectively exhaustive. This means that 
one (and only one) of the possible outcomes 
must occur
• The probabilities for this set of events must 
sum to 1
• Informally, if we have a set of events  that one 
of them has to occur, then there is a 100% 
chance that one of them will indeed come to 
pass
• Another way of saying this is that the 
probability of “always true” is 1:   P(true) = 1



12

These axioms are all that is needed

• From them, one can derive all there is to say 
about probabilities.

• For example we can show that:
• P(¬A) = 1 - P(A) because

P(A ∨ ¬A) = P (true) by logic
P(A ∨ ¬A) = P(A) + P(¬A) by the second axiom
P(true) = 1 by the third axiom
P(A) + P(¬A) = 1 combine the above two 

• P(false) = 0 because 

false = ¬ true by logic
P(false) = 1 - P(true) by the above
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Graphic interpretation of probability

A B

• A and B are events

• They are mutually exclusive: they do not 
overlap, they cannot both occur at the same 
time

• The entire rectangle including events A and B 
represents everything that can occur

• Probability is represented by the area
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Graphic interpretation of probability (cont’d)

A B

• Axiom 1: an event cannot be represented by a 
negative area. An event cannot be represented 
by an area larger than the entire rectangle

• Axiom 2: the probability of A or B occurring 
must be just the sum of the probability of A and 
the probability of B

• Axiom 3: If neither A nor B happens the event 
shown by the white part of the rectangle (call it 
C) must happen. There is a 100% chance that A, 
or B, or C will occur

C
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Graphic interpretation of probability (cont’d)

• P(¬B) = 1 – P(B)

• because probabilities must add to 1

BB
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Graphic interpretation of probability (cont’d)

• P(A ∨ B) = P(A) + P(B) - P(A ∧ B)

• because intersection area is counted twice

A B
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Random variables

• The events we are interested in have a set of 
possible values. These values are mutually 
exclusive, and exhaustive.

• For example:
coin toss: {heads, tails}
roll a die: {1, 2, 3, 4, 5, 6}
weather: {snow, sunny, rain, fog}
measles: {true, false}

• For each event, we introduce a random variable
which takes on values from the associated set. 
Then we have:

P(C = tails) rather than P(tails)
P(D = 1)   rather than P(1)
P(W = sunny) rather than P(sunny)
P(M = true) rather than P(measles)
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Probability Distribution

A probability distribution is a listing of  
probabilities  for every possible value a single 
random variable might take.

For example:

1/6

1/6

1/6

1/6

1/6

1/6

weather
snow

rain
fog

sunny

prob.
0.2

0.1
0.1

0.6
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Joint probability distribution

A joint probability distribution for n random 
variables is a listing of probabilities for all 
possible combinations of the random variables.

For example:

Construction Traffic Probability
True True 0.3
True False 0.2
False True 0.1
False False 0.4
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Joint probability distribution (cont’d)

Sometimes a joint probability distribution table 
looks like the following. It has the same 
information as the one on the previous slide.

Construction ¬Construction
Traffic 0.3 0.1
¬Traffic 0.2 0.4
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Why do we need the joint probability table?

It is similar to a truth table, however, unlike in 
logic, it is usually not possible to derive the 
probability of the conjunction from the 
individual probabilities.

This is because the individual events interact in 
unknown ways. For instance, imagine that the 
probability of construction (C) is 0.7 in summer 
in Houghton, and the probability of bad traffic 
(T) is 0.05. If the “construction” that we are 
referring to in on the bridge, then a reasonable 
value for P(C ∧ T) is 0.6. If the “construction”
we are referring to is on the sidewalk of a side 
street, then a reasonable value for P(C ∧ T) is 
0.04.
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Why do we need the joint probability 
table? (cont’d)

A B

A B

A B

P(A ∧ B) = 0

P(A ∧ B) = n

P(A ∧ B) = m    m>n
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Marginal probabilities

What is the probability of traffic, P(traffic)?

P(traffic) = P(traffic ∧ construction) +
P(traffic ∧ ¬construction) 

= 0.3 + 0.1
=         0.4

Note that the table should be consistent with 
respect to the axioms of probability: the values 
in the whole table should add up to 1; for any 
event A, P(A) should be 1 - P(¬A); and so on.

Construction ¬Construction
Traffic 0.3 0.1
¬Traffic 0.2 0.4

0.5

0.6

0.4

0.5 1.0
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• Given the joint probability table, we have all the 
information we need about the domain. We can 
calculate the probability of any logical formula 

• P(traffic ∨ construction) = 0.3 + 0.1 + 0.2 = 0.6

• P( construction → traffic) 
= P ( ¬construction ∨ traffic) by logic
= 0.1 + 0.4 + 0.3
= 0.8

Construction ¬Construction
Traffic 0.3 0.1
¬Traffic 0.2 0.4

0.5

0.6

0.4

0.5 1.0

More on computing probabilities
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Dynamic probabilistic KBs

Imagine an event A. When we know nothing 
else, we refer to the probability of A in the usual 
way: P(A).

If we gather additional information, say B, the 
probability of A might change. This is referred 
to as the probability of A given B: P(A | B).

For instance, the “general” probability of bad 
traffic is P(T). If your friend comes over and 
tells you that construction has started, then the 
probability of bad traffic given construction is 
P(T | C).
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Prior probability

The prior probability; often called the 
unconditional probability, of an event is the 
probability assigned to an event in the absence 
of knowledge supporting its occurrence and 
absence, that is, the probability of the event 
prior to any evidence. 

The prior probability of an event is symbolized: 
P (event).
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Posterior probability

The posterior (after the fact) probability, often 
called the conditional probability, of an event is 
the probability of an event given some 
evidence. Posterior probability is symbolized 
P(event | evidence).

What are the values for the following?

P( heads | heads)

P( ace of spades | ace of spades)

P(traffic | construction)

P(construction | traffic) 
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Posterior probability 

Dow
Jones

Up

Stock 
Price

Up

Dow
Jones

Up

Suppose that we are 
interested in P(up), the 
probability that a 
particular stock price 
will increase

Once we know that the 
Dow Jones has risen, 
then the entire 
rectangle is no longer 
appropriate

We should restrict our 
attention to the “Dow 
Jones Up” circle
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Posterior probability  (cont’d)

• The intuitive approach leads to the conclusion 
that

P ( Stock Price Up given Dow Jones Up) =

P ( Stock Price Up and Dow Jones Up) /

P (Dow Jones Up)
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Posterior probability  (cont’d)

• Mathematically, posterior probability is 
defined as:

P(A | B) = P(A ∧ B) / P(B)

Note that P(B) ≠ 0.

• If we rearrange, it is called the product rule:

P(A ∧ B) = P(A|B) P(B)

Why does this make sense?
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Comments on posterior probability

• P(A|B) can be thought of as:

Among all the occurrences of B, in what 
proportion do A and B hold together?

• If all we know is P(A), we can use this to 
compute the probability of A, but once we learn 
B, it does not make sense to use P(A) any 
longer.
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• P(traffic | construction)
= P(traffic ∧ construction) / P(construction) 
= 0.3 / 0.5 = 0.6

• P( construction → traffic) 
= P ( ¬construction ∨ traffic) by logic
= 0.1 + 0.4 + 0.3
= 0.8

• The conditional probability is usually not equal to 
the probability of the conditional!

Construction ¬Construction
Traffic 0.3 0.1
¬Traffic 0.2 0.4

0.5

0.6

0.4

0.5 1.0

Comparing the “conditionals”
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Reasoning with probabilities

Pat goes in for a routine checkup and takes 
some tests. One test for a rare genetic disease 
comes back positive. The disease is potentially 
fatal.

She asks around and learns the following:

• rare means P(disease) = P(D) = 1/10,000

• the test is very (99%) accurate: a very small 
amount of false positives P(test = + | ¬ D) = 0.01 
and no false negatives P(test = - | D) = 0.

She has to compute the probability that she has 
the disease and act on it. Can somebody help? 
Quick!!! 
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Making sense of the numbers

P(D) = 1/10,000 

P(test = + | ¬ D) = 0.01 P(test = - | ¬ D) = 0.99 

P(test = - | D) = 0, P(test = + | D) = 1

1 will have the disease 9999 will not have the disease

1 will test positive 99.99 will test 
positive

9899.01 will test 
negative

Take 10,000 people
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Making sense of the numbers (cont’d)

P(D | test = +) 

= P (D ∧ test = +) / P(test = +)

= 1 / (1 + 100)

= 1 / 101 = 0.0099 ~ 0.01    (not 0.99!!)

Observe that, even if the disease were eradicated, 
people would test positive 1% of the time.

1 will have the disease 9999 will not have the disease

1 will test positive 99.99 will test 
positive
~ 100

9899.01 will test 
negative
~9900

Take 10,000 people
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Formalizing the reasoning 

• Bayes’ rule:

• Apply to the example: 
P(D | test= +) = P(test= + | D) P(D) / P(test= +)
= 1 * 0.0001 / P(test= +)

P(¬ D | test= +) = P(test= + | ¬ D) P(¬ D) / P(test= +)
= 0.01 * 0.9999 / P(test= +)

P(D | test=+) + P(¬D | test= +) = 1, so
P(test=+)= 0.0001 + 0.009999 = 0.010099

P (D | test= +) = 0.0001 / 0.010099 = 0.0099.

P(E)
H)|P(EP(H)E)|P(H =
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How to derive Bayes’ rule

• Recall the product rule:
P (H ∧ E) = P (H | E) P(E)

• ∧ is commutative:
P (E ∧ H) = P (E | H) P(H)

• the left hand sides are equal, so the right hand 
sides are too:

P(H | E) P(E) = P (E | H) P(H)

• rearrange:
P(H | E) = P (E | H) P(H) / P(E)
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What did commutativity buy us?

• We can now compute probabilities that we 
might not have from numbers that are relatively 
easy to obtain.

• For instance, to compute P(measles | rash), 
you use P(rash|measles) and P(measles).

• Moreover, you can recompute
P(measles| rash) if there is a measles epidemic 
and the P(measles) increases dramatically. This 
is more advantageous than storing the value for 
P(measles | rash).
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What does Bayes’ rule do?

It formalizes the analysis that we did for 
computing the probabilities:

test = +

has disease

100% of the has-disease population, i.e., those 
who are correctly identified as having the 
disease, is much smaller than 1% of the 
universe, i.e., those incorrectly tagged as 
having the disease when they don’t.

universe
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Generalize to more than one evidence

• Just a piece of notation first: we use P(A, B, C) to 
mean P(A ∧ B ∧ C).

• General form of Bayes’ rule:

P(H | E1, E2, … , En) = 
P(E1, E2, … , En | H) * P(H) / P(E1, E2, … , En )

• But knowing E1, E2, … , En  requires a joint 
probability table for n variables. You know that 
this requires 2n values.

• Can we get away with less?
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Yes.

• Independence of some events result in simpler 
calculations.
Consider calculating P(E1, E2, … , En). 
If E1, …, Ei-1 are related to weather, and Ei, …, En 
are related to measles, there must be some way 
to reason about them separately.

• Recall the coin toss example. We know that 
subsequent tosses are independent:
P( T1 | T2) = P(T1)

From the product rule we have: P(T1 ∧ T2 ) =
P(T1 | T2) x P(T2) .

This simplifies to P(T1) x P(T2) for P(T1 ∧ T2 ) .
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Independence

• The definition of independence in terms of 
probability is as follows
• Events A and B are independent if and only if

P ( A | B ) = P ( A )
• In other words, knowing whether or not B 
occurred will not help you find a probability
for A
• For example, it seems reasonable to conclude 
that
P (Dow Jones Up) = 
P ( Dow Jones Up | It is raining in Houghton)
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Independence (cont’d)

• It is important not to confuse independent 
events with mutually exclusive events

• Remember that two events are mutually 
exclusive if only one can happen at a time.

• Independent events can happen together

• It is possible for the Dow Jones to increase 
while it is raining in Houghton
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Conditional independence

• This is an extension of the idea of 
independence

• Events A and B are said to be conditionally 
independent given C, if is it is true that

P( A | B, C ) = P ( A | C )

• In other words, the presence of C makes 
additional information B irrelevant

• If A and B are conditionally independent given 
C, then learning the outcome of B adds no new 
information regarding A if the outcome of C is 
already known
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Conditional independence (cont’d)

• Alternatively conditional independence means that

P( A , B | C ) = P ( A | C) P ( B | C )
• Because

P ( A , B | C )
= P (A, B, C) / P (C) definition
= P (A | B, C) P (B, C) / P (C) product rule
= P (A | B, C) P (B | C) P (C) / P(C) product rule
= P (A | B, C) P (B |C) cancel out P(C)
= P (A | B) P (B | C) we had started

out with 
assuming
conditional
independence
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Graphically,

Cavity is the common cause of both symptoms. 
Toothache and cavity are independent, given a 
catch by a dentist with a probe:

P(catch | cavity, toothache) = P(catch | cavity),
P(toothache | cavity, catch) = P(toothache | cavity).

cavity

Tooth-
ache catch

weather
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Graphically,

The only connection between Toothache and Catch 
goes through Cavity; there is no arrow directly from 
Toothache to Catch and vice versa

Cavity

Tooth-
ache Catch

Weather
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Another example

Measles and allergy influence rash independently, 
but if rash is given, they are dependent.

allergymeasles

rash
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A chain of dependencies

A chain of causes is depicted here. 
Given measles, virus and rash are 
independent. In other words, once we 
know that the patient has measles, 
and evidence regarding contact with 
the virus is irrelevant in determining 
the probability of rash. Measles acts 
in its own way to cause the rash.

itch

virus

rash

measles
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Bayesian Belief Networks (BBNs)

• What we have just shown are Bayesian Belief
Networks or BBNs. Explicitly coding the 
dependencies causes efficient storage and 
efficient reasoning with probabilities.

• Only probabilities of the events in terms of 
their parents need to be given.

• Some probabilities can be read off directly, 
some will have to be computed. Nevertheless, 
the full joint probability distribution table can be 
calculated.

• Next, we will define BBNs and then we will 
look at patterns of inference using BBNs.
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A belief network is a graph for which the 
following holds (Russell & Norvig, 2003)

1. A set of random variables makes up the 
nodes of the network. Variables may be discrete 
or continuous. Each node is annotated with 
quantitative probability information.

2. A set of directed links or arrows connects 
pairs of nodes. If there is an arrow from node X 
to node Y, X is said to be a parent of Y.

3. Each node Xi has a conditional probability 
distribution P(Xi | Parents (Xi)) that quantifies 
the effect of the parents on the node.

4. The graph has no directed cycles (and hence 
is a directed, acyclic graph, or DAG).



52

More on BBNs

The intuitive meaning of an arrow from X to Y in 
a properly constructed network is usually that X 
has a direct influence on Y. BBNs are 
sometimes called causal networks.

It is usually easy for a domain expert to specify 
what direct influences exist in the domain---
much easier, in fact, than actually specifying 
the probabilities themselves.

A Bayesian network provides a complete 
description of the domain.
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A battery powered robot (Nilsson, 1998)

B: the battery is charged
L: the block is liftable
M: the robot arm moves
G: the gauge indicates that 

the battery is charged
(All the variables are Boolean.)

B L

G M

P(B) = 0.95 P(L) = 0.7

P(G|B)   = 0.95
P(G|¬B) = 0.1

Only prior probabilities
are needed for the nodes 
with no parents. 
These are the root nodes. 

P(M | B,L)        = 0.9
P(M | B, ¬L)    = 0.05
P(M | ¬B,L)     = 0.0
P(M | ¬B, ¬ L) = 0.0

For each leaf or 
intermediate node,
a conditional probability
table (CPT) for all the
possible combinations
of the parents must be
given. 
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Comments on the probabilities needed

This network has 4 variables. For the full joint 
probability, we would have to specify 24=16 
probabilities (15 would be sufficient because 
they have to add up to 1).

In the network from, we had to specify only 8 
probabilities. It does not seem like much here, 
but the savings are huge when n is large. The 
reduction can make otherwise intractable 
problems feasible.

B L

G M

P(B) = 0.95 P(L) = 0.7

P(G|B)   = 0.95
P(G|¬B) = 0.1

P(M | B,L)        = 0.9
P(M | B, ¬L)    = 0.05
P(M | ¬B,L)     = 0.0
P(M | ¬B, ¬ L) = 0.0
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Some useful rules before we proceed

• Recall the product rule:
P (A ∧ B ) = P(A|B) P(B)

• We can use this to derive the chain rule:

P(A, B, C, D) = P(A | B, C, D) P(B, C, D)
= P(A | B, C, D) P(B | C, D) P(C,D)
= P(A | B, C, D) P(B | C, D) P(C | D) P(D)

One can express a joint probability in terms of a 
chain of conditional probabilities:

P(A, B, C, D) = P(A | B, C, D) P(B | C, D) P(C | D) P(D)
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Some useful rules before we proceed (cont’d)

• How to switch variables around the conditional:

P (A, B | C) = P(A, B, C) / P(C) 

= P(A | B, C) P(B | C) P(C) / P(C)       by the chain rule
= P(A | B, C) P(B | C)                          delete P(C)

So, P (A, B | C) = P(A | B, C)  P(B | C) 
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Total probability of an event

• A convenient way to calculate P(A) is with the 
following formula

P(A) = P (A and B) + P ( A and ¬B)
= P (A | B) P(B) + P ( A | ¬B) P (¬B)

• Because event A is composed of those occasions 
when A and B occur and when A and ¬B occur. 
Because events “A and B” and  “A and ¬B” are 
mutually exclusive, the probability of A must be the 
sum of these two probabilities

A B
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Calculating joint probabilities

What is P(G,B,M,L)?

= P(G,M,B,L)                order so that lower
nodes are first

= P(G|M,B,L) P(M|B,L) P(B|L) P(L) by the chain rule
= P(G|B) P(M|B,L) P(B) P(L) nodes need to be

conditioned only on
their parents

= 0.95 x 0.9 x 0.95 x 0.7 = 0.57 read values from the BBN

B L

G M

P(B) = 0.95 P(L) = 0.7

P(G|B)   = 0.95
P(G|¬B) = 0.1

P(M | B,L)        = 0.9
P(M | B, ¬L)    = 0.05
P(M | ¬B,L)     = 0.0
P(M | ¬B, ¬ L) = 0.0
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Calculating joint probabilities

What is P(G,B,¬M,L)?

= P(G, ¬ M,B,L)                order so that lower
nodes are first

= P(G| ¬ M,B,L) P(¬ M|B,L) P(B|L)P(L) by the chain rule
= P(G|B) P(¬ M|B,L) P(B) P(L) nodes need to be

conditioned only on
their parents

= 0.95 x 0.1 x 0.95 x 0.7 = 0.06 0.1 is 1 - 0.9

B L

G M

P(B) = 0.95 P(L) = 0.7

P(G|B)   = 0.95
P(G|¬B) = 0.1

P(M | B,L)        = 0.9
P(M | B, ¬L)    = 0.05
P(M | ¬B,L)     = 0.0
P(M | ¬B, ¬ L) = 0.0
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Causal or top-down inference

What is P(M | L)?

= P(M,B | L) + P(M, ¬B | L) we want to mention the 
other parent too 

= P(M | B,L) P(B | L) + switch around the 
P(M | ¬B,L) P(¬B | L) conditional

= P(M | B,L) P(B) + from the structure of the
P(M | ¬B,L) P(¬B) network

= 0.9 x 0.95 + 0 x 0.05 = 0.855

B L

G M

P(B) = 0.95 P(L) = 0.7

P(G|B)   = 0.95
P(G|¬B) = 0.1

P(M | B,L)        = 0.9
P(M | B, ¬L)    = 0.05
P(M | ¬B,L)     = 0.0
P(M | ¬B, ¬ L) = 0.0
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Procedure for causal inference

• Rewrite the desired conditional probability of 
the query node, V, given the evidence, in terms 
of the joint probability of V and all of its parents 
(that are not evidence), given the evidence.

• Reexpress this joint probability back to the 
probability of V conditioned on all of the 
parents.
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Diagnostic or bottom-up inference

What is P(¬ L | ¬ M)?

= P(¬ M | ¬ L) P(¬ L) / P(¬ M) by Bayes’ rule 
= 0.9525 x P(¬ L) / P(¬ M) by causal inference (*)
= 0.9525 x 0.3 / P(¬M) read from the table
= 0.9525 x 0.3 / 0.38725 = 0.7379 We calculate P(¬M) by

noticing that
P(¬ L | ¬ M)  + P( L | ¬ M)
= 1. 0 (***) (**)

For (*), (**), and (***) see the following slides.

B L

G M

P(B) = 0.95 P(L) = 0.7

P(G|B)   = 0.95
P(G|¬B) = 0.1

P(M | B,L)        = 0.9
P(M | B, ¬L)    = 0.05
P(M | ¬B,L)     = 0.0
P(M | ¬B, ¬ L) = 0.0
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Diagnostic or bottom-up inference 
(calculations needed)

• (*) P(¬ M | ¬ L) use causal inference
= P(¬M, B | ¬L ) + P(¬M, ¬B | L)
= P(¬M|B, ¬L) P(B | ¬L) + P(¬M| ¬ B, ¬L) P(¬ B | ¬L) 
= P(¬M|B, ¬L) P(B ) + P(¬M| ¬ B, ¬L) P(¬ B )
= (1 - 0.05) x 0.95 + 1 * 0.05
= 0.95 * 0.95 + 0.05 = 0.9525

• (**) P(L | ¬ M ) use Bayes’ rule
= P(¬ M | L) P(L) / P(¬ M )
= (1 - P(M |L)) P(L) / P(¬ M ) P(M|L) was calculated before
= (1 - 0.855) x 0.7 / P(¬ M )
= 0.145 x 0.7 / P(¬ M )
= 0.1015 / P(¬ M )
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Diagnostic or bottom-up inference 
(calculations needed)

• (***) P(¬ L | ¬ M ) + P(L | ¬ M ) = 1 
0.9525 x 0.3 / P(¬M) + 0.145 x 0.7 / P(¬ M ) = 1
0.28575 / P(¬M)  + 0.1015 / P(¬M) = 1

P(¬M) = 0.38725 
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Explaining away

What is P(¬ L | ¬ B, ¬ M)?

= P(¬ M, ¬ B| ¬ L) P(¬ L) / P(¬ B,¬ M) by Bayes’ rule 
= P(¬ M | ¬ B, ¬ L) P(¬ B | ¬ L) P(¬ L)/ switch around

P(¬ B,¬ M) the conditional
= P(¬ M | ¬ B, ¬ L) P(¬ B) P(¬ L)/ structure of 

P(¬ B,¬ M) the BBN
= 0.30 Note that this is smaller than

P(¬ L | ¬ M) =  0.7379 calculated before.
The additional ¬B “explained ¬L away.”

B L

G M

P(B) = 0.95 P(L) = 0.7

P(G|B)   = 0.95
P(G|¬B) = 0.1

P(M | B,L)        = 0.9
P(M | B, ¬L)    = 0.05
P(M | ¬B,L)     = 0.0
P(M | ¬B, ¬ L) = 0.0
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Explaining away (calculations needed)

• P(¬M | ¬B, ¬L) P(¬B | ¬L) P(¬L) /  P(¬B,¬M) 
= 1 x 0.05 x 0.3 / P(¬B,¬M) 
= 0.015 / P(¬B,¬M) 

• Notice that P(¬L | ¬B, ¬M) + P(L | ¬B, ¬M)
must be 1.

• P(L | ¬B, ¬M) 
= P(¬M | ¬B, L) P(¬B | L) P(L) /  P(¬B,¬M) 
= 1 * 0.05 * 0.7 / P(¬B,¬M) 
= 0.035 / P(¬B,¬M) 

• Solve for P(¬B,¬M). 
P(¬B,¬M) = 0.015 + 0.035 = 0.50.
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Concluding remarks

• Probability theory enables the use of varying 
degrees of belief to represent uncertainty
• A probability distribution completely 
describes a random variable
• A joint probability distribution completely 
describes a set of random variables
• Conditional probabilities let us have 
probabilities relative to other things that we 
know
• Bayes’ rule is helpful in relating conditional 
probabilities and priors
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Concluding remarks (cont’d)

• Independence assumptions let us make intractable 
problems tractable

• Belief networks are now the technology for expert 
systems with lots of success stories 
(e.g., Windows is shipped with a diagnostic belief 
network)

• Domain experts generally report it is not to hard to 
interpret the links and fill in the requisite probabilities

• Some (e.g., Pathfinder IV) seem to be outperforming 
the experts consulted for their creation, some of 
whom are the best in the world
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• Jean-Claude Latombe’s CS121 slides: 
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Analysis, Duxbury Press, Belmont, CA, 1990. (Chapter 7: 
Probability Basics)

• Nils J. Nilsson
Artificial Intelligence: A New Synthesis.
Morgan Kaufman Publishers, San Francisco, CA, 1998.

• Stuart J.Russell and Peter Norvig
Artificial Intelligence: A Modern Approach, 2nd edition.
Prentice Hall Publishers, Englewood Cliffs, NJ, 2003.


