5.0
5.1
5.2
5.3

Introduction

Recursion-Based Search
Pattern-directed Search

Production Systems

5.4

9.5

5.6

Control and Implementation of

The Blackboard
Architecture for Problem
Solving

Epilogue and
References

Exercises

Chapter Objectives

« Compare the recursive and iterative
implementations of the depth-first search
algorithm

* Learn about pattern-directed search as a basis
for production systems

* Learn the basics of production systems

 The agent model: Has a problem, searches for
a solution, has different ways to model the
search

Summary of previous chapters

 Representation of a problem solution as a
path from a start state to a goal

« Systematic search of alternative paths
« Backtracking from failures

» Explicit records of states under consideration

e open list: untried states
e closed lists: to implement loop detection

» open list is a stack for DFS, a queue for BFS

Function depthsearch algorithm

function depthsearch; % open & closed global

begin
if open is empty
then return FAIL;
current_state := the first element of open;
if current_state is a goal state
then return SUCCESS
else
begin
open := the tail of open;
closed := closed with current_state added;
for each child of current_state
if not on closed or open % build stack
then add the child to the front of open
end;
depthsearch % recur

end.
4

Use recursion

o for clarity, compactness, and simplicity
e call the algorithm recursively for each child

* the open list is not needed anymore, activation
records take care of this

o still use the closed list for loop detection

Function depthsearch (current_state)

algorithm

function depthsearch (current_state);

begin
if current_state is a goal
then return SUCCESS;
add current_state to closed:
while current_state has unexamined children
begin
child := next unexamined child;
if child not member of closed
then if depthsearch(child) = SUCCESS
then return SUCCESS
end;
return FAIL
end

% closed is global

% search exhausted

Pattern-directed search

 use modus ponens on rules such as
q(X) — p(X)

o if p(a) is the original goal, after unification on
the above rule, the new subgoal is q(a)

function pattern_search (current_goal);

begin
if current_goal is a member of closed % test for loops
then return FAIL
else add current_goal to closed;
while there remain in data base unifying facts or rules do
begin
case
current_goal unifies with a fact:
return SUCCESS;
current_goal is a conjunction (p A ...):
begin
for each conjunct do
call pattern_search on conjunct;
if pattern_search succeeds for all conjuncts
then return SUCCESS
else return FAIL
end;
current_goal unifies with rule conclusion (p in g — p):
begin
apply goal unifying substitutions to premise (q);
call pattern_search on premise;
if pattern_search succeeds
then return SUCCESS
else return FAIL
end;
end; % end case
end;
return FAIL
end.

A chess knight’s tour problem

Legal moves of

a knight

Move rules

move(1,8
move(1,6

move(2,9

)
)
)
move(2,7)
move(3,4)
move(3,8)
move(4,9)

)

move(4,3

&

&

move(6,1)
move(6,7)
move(7,2)
move(7,6)
move(8,3)
move(8,1)
move(9,2)

move(9,4)

Examples

* Is there a move from 1 to 8?
Pattern_search(move(1,8)) success

 Where can the knight move from 2?
Pattern_search(move(2,X)) {7/X}, {9/X}

e Can the knight move from 2 to 3?
Pattern_search(move(2,3)) fail

 Where can the knight move from 57
Pattern_search(move(5,X)) fail

10

2 step moves

« VX,Y [path2(X,Y) <3Z [move(X,Z) A move(Z,Y)]]
. path2(1,3)?
. path2(2,Y)?

11

3 step moves

o VXY [path3(X,Y) —3Z,W [move(X,Z) A move(Z,W)
A move(W,Y]]

e path3(1,2)?
e path3(1,X)?
e path3(X,Y)?

12

General recursive rules

« VXY [path(X,Y) <3Z [move(X,Z) A path(Z,Y)]]
o VX path(X,X)

13

Generalized pattern_search

o if the current goal is negated
call pattern_search with the goal and return
success if the call returns failure

o if the current goal is a conjunction
call pattern_search for all the conjuncts

« if the current goal is a disjunction
call pattern_search for all the disjuncts until
one returns success

14

A production system is defined by:

* A set of production rules (aka productions):
condition-action pairs.

\Working memory: the current state of the world

*The recognize-act cycle: the control structure
for a production system
Initialize working memory
Match patterns to get the conflict set
(enabled rules)
Select a rule from the conflict set
(conflict resolution)
Fire the rule

15

A production system

Working
Memory
Pattern

A

Cq1—= Ay
C2%A2

Pattern — Action

Cp— A,

16

Trace of a simple production system

Production set:
1. ba — ab

2. ca — ac
3.cb — bc

Iteration # Working memory Conflict set Rule fired

0 cbaca 1,2,3 1
| eabea | > | >
2 | acbca | 23 | >
T acbac | e | o1
e | acabe | > | >
I aacbc | s | s
Y agboc | o | hHat

17

The 8-puzzle as a production system

Startstate: | o | g | 3 Goal state: | { | 2| 3
1|64 8 . 4
7 . 5 716|5

Production set:

Condition Action

goal state in working memory — halt

blank is not on the left edge — move the blank left
blank is not on the top edge — move the blank up
blank is not on the right edge = — move the blank right
blank is not on the bottomedge — move the blank down

Working memory is the present board state and goal state.

Control regime:

1. Try each production in order.
2. Do not allow loops.
3. Stop when goal is found.

18

tem search with loop

detection & depth bound 5 (Nilsson, 1971)

Production sys

8
6|4

| =t |w
w w

o |~

19

3

6

1

5|6

1

47154

3

2
8|4

(6

6

5 1 E
|| 7] 5] 4
AAE BRABBRRA E

:

1

715(4(|7|5]|4]||7

6

3

114
7|6
42182832

.

2|13| 2

5(17]6|5)|7]|6]5||7|6|5|7

\ |
;

s 1]3|[2]8]3][2]8]3][1[2]3][
1142 41| 7 4117]11]4] 8 4117
716ls]le]1]5](el sl 716l5 /Il 6l5

4
6|5
3|(2]8]3

~|w

= |
— ~|w©
?. ofo|r~
= | o = |
—|we | M~
BB

2|8[3)2)8[3][2]|8]3]|8]3

=+ |0 3.5

2|8
4)|6[(8|4||6|8|4]||6[4[3||6]4]|5]l6]7]|4][6]7[4]2

(]

~ o < |~
o

0|~ N O |~
©
o

o<
o~ =
WO |~ o
| o
= | w0 M| =r|wn =+
[2-] [S— © |~ o| ©
.21 ol od|— ©of o

AR REAREAREANEANE | ARNA FBAE

A production system solution to the 3 x 3
knight’s tour problem

lteration # Working memory Conflict set | Fire rule
: (rule #'s)
Current square | Goal square

0 1 : 2 1,2 1

1 8 : 2 13, 14 13

2 3 : 2 5,6 5

3 4 i 2 7,8 7

4 9 : 2 15, 16 15

5 2 E 2 Halt

20

The recursive path algorithm: a
_production system

Halt

Recursive call to path(X,Y) causes iteration.

Match move(X,Z)

Try to unify working against.
path(X,X). Y
f Productions h
Working memory | [T TTTTTT T
———————————— move(1,8).
move(1,6).
path(X,Y) move(2,7).
move(2,9).
A
Set X equalto Z in
working memory -
(i.e., call path(Z,Y)). move (9,2).

Conflict Resolution:

Use first match that does | ™€
not lead to a loop.

Data-driven search in a production system

Production set:

pAqQ — goal
rns —p

WaArl —(

.t Au —q

Vv - s

stat — v AraqQ

ok

Space searched by execution:

Trace of execution:

Ilteration # | Working memory | Conflict set| Rule fired
0 start 6 6
1 start, v, r, q 6,5 5
2 start,v, r,q, s 6,5, 2 2
3 start,v,r,q, s, p 6,5, 2,1 1
4 start,v,r,q,s,p,goal | 6,5,2,1 halt
start
/<]>\ Direction
r q of search

goal

22

Goal-driven search in a production system

Production set:

Trace of execution:

1. pAqQ — goal
2. T AS —p) . . .
3. WAT —p Iteration # Working memory Conflict set Rule fired
4.t AU —q
T O 0 goal 1 1
6. stat — VvAraq 1 goal, p, q 1,2,38,4 2
2 goal, p,q,r,s 1,2,3,4,5 3
3 goal,p,q,r, s, w 1,2,3,4,5 4
4 goal,p,q,r,s,w,t u 1,2,3,4,5 5
5 goal,p,q,r,s,w,t,u, v 1,2,3,4,5,6 6
6 goal,p,q,r,s,w,t u,v,start| 1,2,3,4,5,6 halt
Space searched by execution:
goal
P q
AN Direction
W or s\ t u of search
v
NV

23

Bidirectional search misses in both
directions: excessive search

o

Vi

‘\ forward search

°
States examined by

Goal backward search 24

Bidirectional search meets in the middle
ttttt

y
"" l&’\Q

rrrrrrrrrr
aaaaaaaaaaaaaa

Advantages of production systems

Separation of knowledge and control

A natural mapping onto state space search
Modularity of production rules
Pattern-directed control

Opportunities for heuristic control of search
Tracing and explanation

Language independence

A plausible model of human problem solving

26

Comparing search models

Given a start state and a goal state

» State space search keeps the “current state”
in a “node”. Children of a node are all the
possible ways an operator can be applied to a
node

Pattern-directed search keeps the all the states
(start, goal, and current) as logic expressions.
Children of a node are all the possible ways of
using modus ponens.

* Production systems keep the “current state”
in “working memory.” Children of the current
state are the results of all applicable
productions.

27

Variations on a search theme

* Bidirectional search: Start from both ends,
check for intersection (Sec. 5.3.3).

* Depth-first with iterative deepening:
implement depth first search using a depth-
bound. lteratively increase this bound (Sec.
3.2.4).

« Beam search: keep only the “best” states in
OPEN in an attempt to control the space
requirements (Sec. 4.4).

 Branch and bound search: Generate paths one
at a time, use the best cost as a “bound” on
future paths, i.e., do not pursue a path if its cost
exceeds the best cost so far (Sec. 3.1.2).

28

