
1

Control and Implementation of
State Space Search5

5.0 Introduction

5.1 Recursion-Based Search

5.2 Pattern-directed Search

5.3 Production Systems

5.4 The Blackboard
Architecture for Problem
Solving

5.5 Epilogue and
References

5.6 Exercises

2

Chapter Objectives

• Compare the recursive and iterative
implementations of the depth-first search
algorithm

• Learn about pattern-directed search as a basis
for production systems

• Learn the basics of production systems

• The agent model: Has a problem, searches for
a solution, has different ways to model the
search

3

Summary of previous chapters

• Representation of a problem solution as a
path from a start state to a goal

• Systematic search of alternative paths

• Backtracking from failures

• Explicit records of states under consideration
• open list: untried states
• closed lists: to implement loop detection

• open list is a stack for DFS, a queue for BFS

4

Function depthsearch algorithm

5

Use recursion

• for clarity, compactness, and simplicity

• call the algorithm recursively for each child

• the open list is not needed anymore, activation
records take care of this

• still use the closed list for loop detection

6

Function depthsearch (current_state)
algorithm

7

Pattern-directed search

• use modus ponens on rules such as
q(X) → p(X)

• if p(a) is the original goal, after unification on
the above rule, the new subgoal is q(a)

9

A chess knight’s tour problem

Legal moves of

a knight

Move rules

10

Examples

• Is there a move from 1 to 8?
Pattern_search(move(1,8)) success

• Where can the knight move from 2?
Pattern_search(move(2,X)) {7/X}, {9/X}

• Can the knight move from 2 to 3?
Pattern_search(move(2,3)) fail

• Where can the knight move from 5?
Pattern_search(move(5,X)) fail

11

2 step moves

• ∀X,Y [path2(X,Y) ←∃Z [move(X,Z) ∧ move(Z,Y)]]

• path2(1,3)?

• path2(2,Y)?

12

3 step moves

• ∀X,Y [path3(X,Y) ←∃Z,W [move(X,Z) ∧ move(Z,W)
∧ move(W,Y]]

• path3(1,2)?

• path3(1,X)?

• path3(X,Y)?

13

General recursive rules

• ∀X,Y [path(X,Y) ←∃Z [move(X,Z) ∧ path(Z,Y)]]

• ∀X path(X,X)

14

Generalized pattern_search

• if the current goal is negated
call pattern_search with the goal and return
success if the call returns failure

• if the current goal is a conjunction
call pattern_search for all the conjuncts

• if the current goal is a disjunction
call pattern_search for all the disjuncts until
one returns success

15

A production system is defined by:

• A set of production rules (aka productions):
condition-action pairs.

•Working memory: the current state of the world

•The recognize-act cycle: the control structure
for a production system

Initialize working memory
Match patterns to get the conflict set
(enabled rules)

Select a rule from the conflict set
(conflict resolution)

Fire the rule

16

A production system

17

Trace of a simple production system

18

The 8-puzzle as a production system

19

Production system search with loop
detection & depth bound 5 (Nilsson, 1971)

20

A production system solution to the 3 × 3
knight’s tour problem

21

The recursive path algorithm: a
production system

22

Data-driven search in a production system

23

Goal-driven search in a production system

24

Bidirectional search misses in both
directions: excessive search

25

Bidirectional search meets in the middle

26

Separation of knowledge and control

A natural mapping onto state space search

Modularity of production rules

Pattern-directed control

Opportunities for heuristic control of search

Tracing and explanation

Language independence

A plausible model of human problem solving

Advantages of production systems

27

Comparing search models

Given a start state and a goal state

• State space search keeps the “current state”
in a “node”. Children of a node are all the
possible ways an operator can be applied to a
node

•Pattern-directed search keeps the all the states
(start, goal, and current) as logic expressions.
Children of a node are all the possible ways of
using modus ponens.

• Production systems keep the “current state”
in “working memory.” Children of the current
state are the results of all applicable
productions.

28

Variations on a search theme

• Bidirectional search: Start from both ends,
check for intersection (Sec. 5.3.3).

• Depth-first with iterative deepening:
implement depth first search using a depth-
bound. Iteratively increase this bound (Sec.
3.2.4).

• Beam search: keep only the “best” states in
OPEN in an attempt to control the space
requirements (Sec. 4.4).

• Branch and bound search: Generate paths one
at a time, use the best cost as a “bound” on
future paths, i.e., do not pursue a path if its cost
exceeds the best cost so far (Sec. 3.1.2).

