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• A planner is a system that finds a sequence of 
actions to accomplish a specific task

• A planner synthesizes a plan

What is planning?

planner
planning 
problem plan
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• The main components of a planning problem are:
• a description of the starting situation (the initial state),
• a description of the desired situation (the goal state),
• the actions available to the executing agent 

(operator library, a.k.a. domain theory).

• Formally, a (classical) planning problem is a 
triple: <I, G, D> 

where, I is the initial state,
G is the goal state, and 
D is the domain theory.

What is planning? (cont’d)
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Characteristics of classical planners

• They need a mechanism to reason about 
actions and the changes they inflict on the 
world

• Important assumptions:
• the agent is the only source of change in the world, 

otherwise the environment is static
• all the actions are deterministic
• the agent is omniscient: knows everything it needs to 

know about start state and effects of actions
• the goals are categorical, the plan is considered 

successful iff all the goals are achieved
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The blocks world
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Represent this world using predicates

ontable(a)
ontable(c)
ontable(d)
on(b,a)
on(e,d)
clear(b)
clear(c)
clear(e)
gripping()
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Declarative (or procedural) rules

If a block is clear, then there are no blocks on 
top of it (declarative)

OR

To make sure that a block is clear, make sure to 
remove all the blocks on top of it (procedural)

1. (∀X) ( clear(X)  ↔ ¬ (∃Y) ( on(Y, X) ))

Another example:
In order to fly to San Francisco, you need to 
have a ticket
vs.
In order to fly to San Francisco, make sure you 
that you have (bought) a ticket
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Declarative (or procedural) rules

If a block is on the table, it is not on another 
block.

2. (∀Y)(∀X)  ¬ on(Y, X) ↔ ontable(Y)

If the gripper is holding nothing, it is not 
holding anything

3. (∀Y)  gripping()  ↔ ¬ gripping(Y)
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The robot arm can perform these tasks

• pickup (W): pick up block W from its current 
location on the table and hold it

• putdown (W): place block W on the table

• stack (U, V): place block U on top of block V

• unstack (U, V): remove block U from the top of 
block V and hold it

All assume that the robot arm can precisely 
reach the block.
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Portion of the search space or the blocks 
world example
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The STRIPS representation

Special purpose representation.

An operator is defined in terms of its:

name,
parameters,
preconditions, and
results.

A planner is a special purpose algorithm, i.e., it’s
not a general purpose logic theorem prover.( We’ll 
discuss this later.)
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Four operators for the blocks world

P: gripping() ∧ clear(X) ∧ ontable(X)
pickup(X) A: gripping(X)

D: ontable(X) ∧ gripping()

P: gripping(X)
putdown(X) A: ontable(X) ∧ gripping() ∧ clear(X)

D: gripping(X)

P: gripping(X) ∧ clear(Y) 
stack(X,Y) A: on(X,Y) ∧ gripping() ∧ clear(X)

D: gripping(X) ∧ clear(Y)

P: gripping() ∧ clear(X) ∧ on(X,Y)
unstack(X,Y) A: gripping(X) ∧ clear(Y)

D: on(X,Y) ∧ gripping()
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Notice the simplification

Preconditions, add lists, and delete lists are all 
conjunctions. We don’t have the full power of 
predicate logic.

The same applies to goals. Goals are 
conjunctions of predicates.

A detail:

Why do we have two operators for picking up 
(pickup and unstack), and two for putting down 
(putdown and stack)?



14

A goal state for the blocks world
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A state space algorithm for STRIPS 
operators

Search the space of situations (or states). This 
means each node in the search tree is a state.

The root of the tree is the start state. 

Operators are the means of transition from each 
node to its children. 

The goal test involves seeing if the set of goals 
is a subset of the current situation. 
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Now, the following graph makes much 
more sense
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Problems in representation

Frame problem: List everything that does not 
change. It no more is a significant problem 
because what is not listed as changing (via the 
add and delete lists) is assumed to be not 
changing.

Qualification problem: Can we list every 
precondition for an action? For instance, in 
order for PICKUP to work, the block should not 
be glued to the table, it should not be nailed to 
the table, …

It still is a problem. A partial solution is to 
prioritize preconditions, i.e., separate out the 
preconditions that are worth achieving.
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Problems in representation (cont’d)

Ramification problem: Can we list every result 
of an action? For instance, if a block is picked 
up its shadow changes location, the weight on 
the table decreases, ... 

It still is a problem. A partial solution is to code 
rules so that inferences can be made. For 
instance, allow rules to calculate where the 
shadow would be, given the positions of the 
light source and the object. When the position 
of the object changes, its shadow changes too. 
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The gripper domain

The agent is a robot with 
two grippers (left and right)

There are two rooms 
(rooma and roomb)

There are a number of balls 
in each room

Operators:
• PICK
• DROP
• MOVE
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A “deterministic” plan

Pick ball1 rooma right

Move rooma roomb

Drop ball1 roomb right

Remember: the plans are generated “offline,”
no observability, nothing can go wrong

The gripper domain is interesting because 
parallelism is possible: can pick with both 
grippers at the same time
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How to define a planning problem

• Create a domain file: contains the domain 
behavior, simply the operators

• Create a problem file: contains the initial state 
and the goal
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(define (domain gripper-strips)
(:predicates (room ?r) (ball ?b)

(gripper ?g) (at-robby ?r)
(at ?b ?r) (free ?g)
(carry ?o ?g))

(:action move
:parameters (?from ?to)
:precondition (and (room ?from) (room ?to)

(at-robby ?from))
:effect (and (at-robby ?to) 

(not (at-robby ?from))))

The domain definition for the gripper 
domain

name of the domain

“?” indicates a variable

combined
add and delete
lists

name of the action
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The domain definition for the gripper 
domain (cont’d)

(:action pick
:parameters (?obj ?room ?gripper)
:precondition (and (ball ?obj) (room ?room)

(gripper ?gripper) (at ?obj ?room)
(at-robby ?room) (free ?gripper))

:effect (and (carry ?obj ?gripper)
(not (at ?obj ?room)) (not (free ?gripper)))) 
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The domain definition for the gripper 
domain (cont’d)

(:action drop
:parameters (?obj ?room ?gripper)
:precondition (and (ball ?obj) (room ?room)

(gripper ?gripper) (at-robby ?room)
(carrying ?obj ?gripper))

:effect (and (at ?obj ?room) (free ?gripper)
(not (carry ?obj ?gripper)))))) 
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An example problem definition for the 
gripper domain

(define (problem strips-gripper2)
(:domain gripper-strips)

(:objects rooma roomb ball1 ball2 left right)

(:init (room rooma) (room roomb)
(ball ball1) (ball ball2)
(gripper left) (gripper right)

(at-robby rooma)
(free left) (free right)
(at ball1 rooma) (at ball2 rooma) )

(:goal (at ball1 roomb)))
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Running VHPOP

Once the domain and problem definitions are in files 
gripper-domain.pddl and gripper-2.pddl respectively, 
the following command runs Vhpop:

vhpop gripper-domain.pddl gripper-2.pddl

The output will be:

;strips-gripper2
1:(pick ball1 rooma right)
2:(move rooma roomb)
3:(drop ball1 roomb right)
Time: 0 msec.

“pddl” is the planning domain definition language.
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Why is planning a hard problem?

It is due to the large branching factor and the 
overwhelming number of possibilities.

There is usually no way to separate out the relevant 
operators. Take the previous example, and imagine 
that there are 100 balls, just two rooms, and two 
grippers. Again, the goal is to take 1 ball to the other 
room.

How many PICK operators are possible in the initial 
situation?

pick
:parameters (?obj ?room ?gripper)

That is only one part of the branching factor, the 
robot could also move without picking up anything.
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Why is planning a hard problem? (cont’d)

Also, goal interactions is a major problem. In 
planning, goal-directed search seems to make much 
more sense, but unfortunately cannot address the 
exponential explosion. This time, the branching 
factor increases due to the many ways of resolving 
the interactions.

When subgoals are compatible, i.e., they do not 
interact, they are said to be linear ( or independent, 
or serializable).

Life is easier for a planner when the subgoals are 
independent because then divide-and-conquer 
works.
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How to deal with the exponential 
explosion?

Use goal-directed algorithms

Use domain-independent heuristics

Use domain-dependent heuristics (need a 
language to specify them)
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The “monkey and bananas” problem
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The “monkey and bananas” problem
(cont’d)

The problem statement: A monkey is in a 
laboratory room containing a box, a knife and a 
bunch of bananas. The bananas are hanging 
from the ceiling out of the reach of the monkey. 
How can the monkey obtain the bananas?

?
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VHPOP coding

(define (domain monkey-domain)
(:requirements :equality)
(:constants monkey box knife glass water
waterfountain)

(:predicates (on-floor) (at ?x ?y) (onbox ?x)
(hasknife) (hasbananas) (hasglass) (haswater)
(location ?x)

(:action go-to
:parameters (?x ?y)
:precondition (and (not = ?y ?x)) (on-floor) 
(at monkey ?y)

:effect (and (at monkey ?x) (not (at monkey ?y))))



33

VHPOP coding (cont’d)

(:action climb
:parameters (?x)
:precondition (and (at box ?x) (at monkey ?x))
:effect (and (onbox ?x) (not (on-floor))))

(:action push-box
:parameters (?x ?y)
:precondition (and (not (= ?y ?x)) (at box ?y)
(at monkey ?y) (on-floor))

:effect (and (at monkey ?x) (not (at monkey ?y))
(at box ?x) (not (at box ?y))))
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VHPOP coding (cont’d)

(:action getknife
:parameters (?y)
:precondition (and (at knife ?y) (at monkey ?y))
:effect (and (hasknife) (not (at knife ?y))))

(:action grabbananas
:parameters (?y)
:precondition (and (hasknife) (at bananas ?y)
(onbox ?y) )

:effect (hasbananas))
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VHPOP coding (cont’d)

(:action pickglass
:parameters (?y)
:precondition (and (at glass ?y) (at monkey ?y))
:effect (and (hasglass) (not (at glass ?y))))

(:action getwater
:parameters (?y)
:precondition (and (hasglass) (at waterfountain ?y)
(ay monkey ?y) (onbox ?y))

:effect (haswater))
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Problem 1: monkey-test1.pddl

(define (problem monkey-test1)
(:domain monkey-domain)
(:objects p1 p2 p3 p4)
(:init (location p1) (location p2)

(location p3) (location p4)
(at monkey p1) (on-floor)
(at box p2) (at bananas p3)
(at knife p4))

(:goal (hasbananas)))

go-to p4 p1
get-knife p4
go-to p2 p4
push-box p3 p2
climb p3
grab-bananas p3 time = 30 msec.
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Problem 2: monkey-test2.pddl

(define (problem monkey-test2)
(:domain monkey-domain)
(:objects p1 p2 p3 p4 p6)
(:init (location p1) (location p2)

(location p3) (location p4) (location p6)
(at monkey p1) (on-floor)
(at box p2) (at bananas p3) (at knife p4)
(at waterfountain p3) (at glass p6))

(:goal (and (hasbananas) (haswater))))

go-to p4 p1 go-to p2 p6
get-knife p4 push-box p3 p2
go-to p6 p4 climb p3
pickglass p6 getwater p3

grab-bananas p3

time = 70 msec.
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The “monkey and bananas” problem
(cont’d) (Russell & Norvig, 2003)

Suppose that the monkey wants to fool the 
scientists, who are off to tea, by grabbing the 
bananas, but leaving the box in its original 
place. Can this goal be solved by a STRIPS-
style system?
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A sampler of planning algorithms

• Forward chaining
• Work in a state space
• Start with the initial state, try to reach the goal state 

using forward progression

• Backward chaining
• Work in a state space
• Start with the goal state, try to reach the initial state 

using backward regression

• Partial order planning
• Work in a plan space
• Start with an empty plan, work from the goal to reach a 

complete plan
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Forward chaining

B D F H
A C E GInitial:

B D F H
C

E
G

AGoal :
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1st and 2nd levels of search

B D F H
A C E GInitial:

B D F H

A C E G
B D F H
AC E G

B D F H
A C EG

B D F H
A CE G

Drop on:
table
A
E
G

Drop on:
table
C
E
G

…
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Results

• A plan is:
• unstack (A, B)
• putdown (A)
• unstack (C, D)
• stack (C, A)
• unstack (E, F)
• putdown (F)

• Notice that the final locations of D, F, G, and H 
need not be specified

• Also notice that D, F, G, and H will never need 
to be moved. But there are states in the search 
space which are a result of moving these. 
Working backwards from the goal might help.
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Backward chaining

B D F H
A C E GInitial:

B D F H
C

E
G

AGoal :
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1st level of search

B D F H
C

E
G

AGoal :

B D F H
CE G
A B D F H

C

E
G

A

For E to be on the table,
the last action must be
putdown(E)

For C to be on A,
the last action must be
stack(C,A)
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2nd level of search

B D F H
CE G
A B D F H

C

E
G

A

Where was E picked up from?

B D F H
CE G
A

(Where was C picked up from?)

B D F H
C
E

G
A

…



46

Results

• The same plan can be found
• unstack (A, B)
• putdown (A)
• unstack (C, D)
• stack (C, A)
• unstack (E, F)
• putdown (F)

• Now, the final locations of D, F, G, and H need 
to be specified

• Notice that D, F, G, and H will never need to be 
moved. But observe that from the second level 
on the branching factor is still high
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Partial-order planning (POP)

• Notice that the resulting plan has two parallelizable 
threads:

unstack (A,B) unstack (E, F)
putdown (A) putdown (F)
unstack (C,D) &
stack (C,A)
• These steps can be interleaved in 3 different ways:

unstack (E, F) unstack (A,B) unstack (A,B)
putdown (F) putdown (A) putdown (A)
unstack (A,B) unstack (E, F) unstack (C,D)
putdown (A) putdown (F) stack (C,A)
unstack (C,D) unstack (C,D) unstack (E, F)
stack (C,A) stack (C,A) putdown (F)



48

Partial-order planning (cont’d)

• Idea: Do not order steps unless it is necessary

• Then a partially ordered plan represents 
several totally ordered plans

• That decreases the search space

• But still the planning problem is not solved, 
good heuristics are crucial 
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Partial-order planning (cont’d)

Start

left
sock
on

right
sock
on

left
shoe

on

Finish

right
shoe

on

Start

Left 
sock on

Left 
shoe on

Right 
sock on

Right 
shoe on

Finish

Start

Right 
sock on

Right
shoe on

Left 
sock on

Left 
shoe on

Finish

Start

Left 
sock on

Right
sock on

Left 
shoe on

Right 
shoe on

Finish

Start

Right
sock on

Left 
sock on

Right 
shoe on

Left 
shoe on

Finish

Start

Left 
sock on

Right 
sock on

Right 
shoe on

Left 
shoe on

Finish

Start

Right 
sock on

Left 
sock on

Left 
shoe on

Right 
shoe on

Finish
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POP plan generation

Start

Finish

Right 
shoe onLeft shoe on

Right shoe on

Start

Finish

Right shoe onLeft shoe on

Right sock on
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POP plan generation (cont’d)

Right 
sock on

Right sock on

Right 
shoe on

Start

Finish

Right shoe onLeft shoe on

Right 
sock on

Right sock on

Right 
shoe on

Start

Finish

Right shoe onLeft shoe on

Left 
shoe on

Right sock on
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POP plan generation (cont’d)

Right 
sock on

Right sock on

Right 
shoe on

Start

Finish

Right shoe onLeft shoe on

Left 
shoe on

Left sock on DONE!

Left 
sock on
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Comments on partial order planning

• The previous plan was generated in a 
straightforward manner but usually extensive 
search is needed

• In the previous example there was always just 
one plan in the search space, normally there 
will be many  (see the GRIPPER results)

• There is no explicit notion of a state
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Sample runs with VHPOP

• Ran increasingly larger gripper problems on 
wopr

• S+OC is the older heuristic: the estimated 
number of steps to complete the plan is
number of steps + number of open conditions

• ADD uses a plan graph to estimate the 
“distance” to a complete plan

• Both heuristics are domain independent
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Sample runs with VHPOP (cont’d)

In the examples/ directory
../vhpop –f static –h S+OC gripper-domain.pddl gripper-2.pddl
../vhpop –f static –h ADD   gripper-domain.pddl gripper-2.pddl
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Run times in milliseconds

326718---5920

17250---3312

4691---2710

1937> 10 min218

56279734156

10919394

13232

ADD
heuristic

S+OC
heuristic

Number of
Steps

Gripper 
Problem
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Could we have done this in logic?

Yes.

A block is clear if there are no blocks on top of it

1. (∀X) ( clear(X)  ↔ ¬ (∃Y) ( on(Y, X) ))

If a block is on the table, it is not on another block.

2. (∀Y)(∀X)  ¬ on(Y, X) ↔ ontable(Y)

If the gripper is holding nothing, it is not holding 
anything

3. (∀Y)  gripping()  ↔ ¬ gripping(Y)
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Rules for operations on the states

4. (∀X) pickup(X) →
(gripping(X) ← (gripping() ∧ clear(X) ∧ ontable(X)))

5. (∀X) putdown(X) →
(gripping() ∧ ontable(X) ∧ clear(X) ← (gripping(X)))

6. (∀X) stack(X,Y) →
((on (X,Y) ∧ gripping() ∧ clear(X)) ←
(clear(Y) ∧ gripping(X)) )

7. (∀X) unstack(X,Y) →
((clear(Y) ∧ gripping(X) ) ←
(on(X,Y) ∧ clear(X) ∧ gripping()) )
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The format of the rules

A → (B ← C)

where, A is the operator

B is the “result” of the operation

C is the conditions that must be 
true in order for the operator to be
executable

They tell what changes when the operator is 
executed (or applied)
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But ...

We have no explicit notion of a “state” that 
changes over time as actions are performed.

Remember that predicate logic is “timeless”, 
everything refers to the same time.

In order to work reasoning about actions into 
logic, we need a way to tell that changes are 
happening over discrete times (or situations.)
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Situation calculus

We need to add an additional parameter which 
represents the state. We’ll use s0, …, sn to 
represent states (a.k.a. situations).

Now we can say:

4. (∀X) pickup(X, s0) →
(gripping(X, s1 ) ←
(gripping( nil , s0) ∧ clear(X, s0) ∧
ontable(X, s0)))

If the pickup action was attempted in state 0, with 
the conditions listed holding, then in state 1, 
gripping will be true for X.
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Introduce “holds” and “result” and 
generalize over states

4. (∀X) (∀s) (holds (gripping( ), s) ∧
holds (clear(X), s) ∧
holds (ontable(X), s) )

→
(holds(gripping(X), result(pickup(X),s)) 

Using rules like this we can logically prove what 
happens as several actions are applied 
consecutively.

Notice that gripping, clear, …, are now functions.

Is “result” a function or a predicate?
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A small “plan”

c

b a

(result(stack(c,b),
(result( pickup(c),
(result (stack(b, a), 
(result(pickup(b),
(result(putdown(c), 
(result(unstack(c,b),s0 ))))))

b

c

a
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Our rules will still not work, because...

We are making an implicit (but big) assumption: 
we are assuming that if nothing tells us that p 
has changed, then p has not changed. 

This is important because we want to reason 
about change, as well as no-change.

For instance, block a is still clear after we move 
block c around (except on top of block a).

Things are going to start to get messier 
because we now need frame axioms.
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A frame axiom

Tells what doesn’t change when an action is 
performed.
For instance, if Y is “unstacked” from Z, 
nothing happens to X.
(∀ X) (∀Y) (∀Z) (∀s)

(holds (ontable(X), s) 
→
(holds(ontable(X), result(unstack(Y, Z), s)

For our logic system to work, we’ll have to define 
such an axiom for each action and for each 
predicate. 

This is called the frame problem . 
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Comments on planning

• It is a synthesis task

• Classical planning is based on the assumptions of 
a deterministic and static environment

• Theorem proving and situation calculus are not 
widely used nowadays for planning (see below)

• Algorithms to solve planning problems include:
• forward chaining: heuristic search in state space
• Graphplan: mutual exclusion reasoning using plan graphs
• Partial order planning (POP): goal directed search in plan space
• Satifiability based planning: convert problem into logic
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Comments on planning (cont’d)

• Non-classical planners include:
• probabilistic planners
• contingency planners (a.k.a. conditional planners)
• decision-theoretic planners
• temporal planners
• resource based planners
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Comments on planning (cont’d)

• In addition to plan generation algorithms we also 
need algorithms for

• Carrying out the plan
• Monitoring the execution

(because the plan might not work as expected; or the world 
might change)
(need to maintain the consistency between the world and the 
program’s internal model of the world)

• Recovering from plan failures
• Acting on new opportunities that arise during execution
• Learning from experience

(save and generalize good plans)
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Triangle table (execution monitoring and 
macro operators)
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Applications of planning

• Robotics
• Shakey, the robot at SRI was the initial motivator
• However, several other techniques are used for path-planning 

etc. 
• Most robotic systems are reactive

• Games
The story is a plan and a different one can be 
constructed for each game
• Web applications
Formulating query plans, using web services
• Crisis response
Oil spill, forest fire, emergency evacuation
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Applications of planning (cont’d)

• Space
Autonomous spacecraft, self-healing systems

• Device control
Elevator control, control software for modular 
devices

• Military planning 

• And many others …
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Model-based reactive configuration 
management (Williams and Nayak, 1996a)

Intelligent space probes that autonomously 
explore the solar system.

The spacecraft needs to:

• radically reconfigure its control regime in 
response to failures,

• plan around these failures during its 
remaining flight.
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Teleo-reactive planning: combines feedback-
based control and discrete actions (Klein et al., 2000)
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A schematic of the simplified Livingstone 
propulsion system (Williams and Nayak ,1996)
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A model-based configuration management 
system (Williams and Nayak, 1996)

ME: mode estimation         MR: mode reconfiguration
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The transition system model of a valve 
(Williams and Nayak, 1996a)
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Mode estimation (Williams and Nayak, 1996a)
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Mode reconfiguration (MR)
(Williams and Nayak, 1996a)
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Oil spill response planning

(Desimone & Agosto 1994)
Main goals: stabilize discharge, clean water, 
protect sensitive shore areas
The objective was to estimate the equipment 
required rather than to execute the plan

Y

Z

X
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A modern photocopier

(From a paper by Fromherz et al. 2003)
Main goal: produce the documents as 
requested by the user
Rather than writing the control software, write a 
controller that produces and executes plans
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The paper path


