
1

Machine Learning: Symbol-based10a 
10.0 Introduction

10.1 A Framework for
Symbol-based Learning

10.2 Version Space Search

10.3 The ID3 Decision Tree
Induction Algorithm

10.4 Inductive Bias and 
Learnability

10.5 Knowledge and Learning

10.6 Unsupervised Learning

10.7 Reinforcement Learning

10.8 Epilogue and 
References

10.9 Exercises

Additional references for the slides:
Jean-Claude Latombe’s CS121 slides: 
robotics.stanford.edu/~latombe/cs121



2

Chapter Objectives

• Learn about several “paradigms” of symbol-
based learning

• Learn about the issues in implementing and 
using learning algorithms

•The agent model: can learn, i.e., can use prior 
experience to perform better in the future



3

A learning agent

environmentsensors

actuators

Learning
element

KB

Critic



4

A general model of the learning process



5

A learning game with playing cards 
I would like to show what a full house is. I give you examples 
which are/are not full houses:
6♦ 6♠ 6 9♣ 9 is a full house
6♦ 6 ♠ 6 6 ♣ 9 is not a full house
3 ♣ 3 3 ♣ 6 ♦ 6 ♠ is a full house
1 ♣ 1 1 ♣ 6 ♦ 6 ♠ is a full house
Q ♣ Q Q ♣ 6 ♦ 6 ♠ is a full house
1 ♦ 2 ♠ 3 4 ♣ 5 is not a full house
1 ♦ 1 ♠ 3 4 ♣ 5 is not a full house
1 ♦ 1 ♠ 1 4 ♣ 5 is not a full house
1 ♦ 1 ♠ 1 4 ♣ 4 is a full house



6

A learning game with playing cards 
If you haven’t guessed already, a full house is three of a kind 
and a pair of another kind.
6 ♦ 6 ♠ 6 ♥ 9 ♣ 9 ♥ is a full house
6 ♦ 6 ♠ 6 ♥ 6 ♣ 9 ♥ is not a full house
3 ♣ 3 ♥ 3 ♣ 6 ♦ 6 ♠ is a full house
1 ♣ 1 ♥ 1 ♣ 6 ♦ 6 ♠ is a full house
Q ♣ Q ♥ Q ♣ 6 ♦ 6 ♠ is a full house
1 ♦ 2 ♠ 3 ♥ 4 ♣ 5 ♥ is not a full house
1 ♦ 1 ♠ 3 ♥ 4 ♣ 5 ♥ is not a full house
1 ♦ 1 ♠ 1 ♥ 4 ♣ 5 ♥ is not a full house
1 ♦ 1 ♠ 1 ♥ 4 ♣ 4 ♥ is a full house



7

Intuitively,

I’m asking you to describe a set. This set is the 
concept I want you to learn.

This is called inductive learning, i.e., learning a 
generalization from a set of examples.

Concept learning is a typical inductive learning 
problem: given examples of some concept, 
such as “cat,” “soybean disease,” or “good 
stock investment,” we attempt to infer a 
definition that will allow the learner to correctly 
recognize future instances of that concept.



8

Supervised learning

This is called supervised learning because we 
assume that there is a teacher who classified 
the training data: the learner is told whether an 
instance is a positive or negative example of a 
target concept.



9

Supervised learning – the question

This definition might seem counter intuitive. If 
the teacher knows the concept, why doesn’t 
s/he tell us directly and save us all the work?



10

Supervised learning – the answer

The teacher only knows the classification, the 
learner has to find out what the classification is. 
Imagine an online store: there is a lot of data 
concerning whether a customer returns to the 
store. The information is there in terms of 
attributes and whether they come back or not. 
However, it is up to the learning system to 
characterize the concept, e.g,

If a customer bought more than 4 books, s/he 
will return.

If a customer spent more than $50, s/he will 
return.



11

Rewarded card example

• Deck of cards, with each card designated by [r,s], 
its rank and suit, and some cards “rewarded”

• Background knowledge in the KB:
((r=1) ∨ … ∨ (r=10)) ⇔ NUM (r)
((r=J) ∨ (r=Q) ∨ (r=K)) ⇔ FACE (r)
((s=S) ∨ (s=C)) ⇔ BLACK (s)
((s=D) ∨ (s=H)) ⇔ RED (s)

• Training set:
REWARD([4,C]) ∧ REWARD([7,C]) ∧
REWARD([2,S]) ∧ ¬REWARD([5,H]) ∧
¬REWARD([J,S]) 



12

Rewarded card example

Training set:
REWARD([4,C]) ∧ REWARD([7,C]) ∧
REWARD([2,S]) ∧ ¬REWARD([5,H]) ∧
¬REWARD([J,S]) 

Card In the target set?
4 ♣ yes
7 ♣ yes
2 ♠ yes
5 no
J ♠ no 

Possible inductive hypothesis, h,:
h = (NUM (r) ∧ BLACK (s) ⇔ REWARD([r,s])



13

Learning a predicate

• Set E of objects (e.g., cards, drinking cups, 
writing instruments)

• Goal predicate CONCEPT (X), where X is an 
object in E, that takes the value True or False 
(e.g., REWARD, MUG, PENCIL, BALL)

• Observable predicates A(X), B(X), … 
(e.g., NUM, RED, HAS-HANDLE, HAS-ERASER)

• Training set: values of CONCEPT for some 
combinations of values of the observable 
predicates

• Find a representation of CONCEPT of the form
CONCEPT(X) ⇔ A(X) ∧ ( B(X)∨ C(X) )  



14

How can we do this?

• Go with the most general hypothesis possible:
“any card is a rewarded card”

This will cover all the positive examples, but will 
not be able to eliminate any negative examples.

• Go with the most specific hypothesis possible:
“the rewarded cards are 4 ♣, 7 ♣,  2 ♠”

This will correctly sort all the examples in the 
training set, but it is overly specific, will not be 
able to sort any new examples.

• But the above two are good starting points.



15

Version space algorithm

• What we want to do is start with the most 
general and specific hypotheses, and

when we see a positive example, we 
minimally generalize the most specific 
hypothesis

when we see a negative example, we 
minimally specialize the most general 
hypothesis

• When the most general hypothesis and the 
most specific hypothesis are the same, the 
algorithm has converged, this is the target 
concept



16

Pictorially

-

++

+
+

+

+

+

+

+
+

+

+

-

-

-

-
-

- -
-

-
?

?

?

? ?

?

?

?

?
?

- -

-

-

-

-
- +

++

?

?
?

+
++

+
++

- -

- -

- -

- - - -

- -

- -

boundary of S potential target concepts

boundary of G



17

Hypothesis space

• When we shrink G, or enlarge S, we are 
essentially conducting a search in the 
hypothesis space

• A hypothesis is any sentence h of the form
CONCEPT(X) ⇔ A(X) ∧ ( B(X)∨ C(X) )  

where, the right hand side is built with 
observable predicates

• The set of all hypotheses is called the 
hypothesis space, or H

• A hypothesis h agrees with an example if it 
gives the correct value of CONCEPT



18

Size of the hypothesis space

• n observable predicates

• 2^n entries in the truth table

• A hypothesis is any subset of observable 
predicates with the associated truth tables: so 
there are 2^(2^n) hypotheses to choose from: 

BIG!
• n=6 ⇒ 2 ^ 64 = 1.8 x 10 ^ 19

BIG!
• Generate-and-test won’t work.

22n



19

Simplified Representation for the card Simplified Representation for the card 
problemproblem

For simplicity, we represent a concept by rs, with:
• r = a, n, f, 1, …, 10, j, q, k
• s = a, b, r, ♣, ♠, ♦, ♥

For example:
• n♠ represents:

NUM(r) ∧ (s=♠) ⇔ REWARD([r,s])
• aa represents:

ANY-RANK(r) ∧ ANY-SUIT(s) ⇔ REWARD([r,s])



20

Extension of an hypothesis

The extension of an hypothesis h is the set of 
objects that verifies h.

For instance,

the extension of  f♠ is: {j♠, q♠, k♠}, and 

the extension of aa is the set of all cards.



21

More general/specific relation

Let h1 and h2 be two hypotheses in H

h1 is more general than h2 iff the extension of 
h1 is a proper superset of the extension of h2

For instance,

aa is more general than f♦,

f♥ is more general than q♥,

fr and nr are not comparable



22

More general/specific relation (cont’d)

The inverse of the “more general” relation is the 
“more specific” relation

The “more general” relation defines a partial 
ordering on the hypotheses in H



23

aa

na ab

nb

n♣

4♣

4b

a♣4a

A subset of the partial order for cards



24

G-Boundary / S-Boundary of V

An hypothesis in V is most general iff no 
hypothesis in V is more general

G-boundary G of V: Set of most general 
hypotheses in V

An hypothesis in V is most specific iff no 
hypothesis in V is more general

S-boundary S of V: Set of most specific 
hypotheses in V



25

aa

na ab

nb

n♣

4♣

4b

a♣4a

aa

4♣1♠ k♥… …S

G

Example: The starting hypothesis space 



26

We replace every 
hypothesis in S whose 
extension does not 
contain 4♣ by its 
generalization set

4♣ is a positive example

aa

na ab

nb

n♣

4♣

4b

a♣4aThe generalization set 
of a hypothesis h is 
the set of the 
hypotheses that are 
immediately more 
general than h

Generalization
set of 4♣

Specialization
set of aa



27

Legend:
G               S

Minimally generalize 
the most specific 
hypothesis set

7♣ is the next positive example

aa

na ab

nb

n♣

4♣

4b

a♣4a

We replace every 
hypothesis in S whose 
extension does not 
contain 7♣ by its 
generalization set



28

Minimally generalize 
the most specific 
hypothesis set

7♣ is positive(cont’d)

aa

na ab

nb

n♣

4♣

4b

a♣4a



29

Minimally generalize 
the most specific 
hypothesis set

7♣ is positive (cont’d)

aa

na ab

nb

n♣

4♣

4b

a♣4a



30

Minimally specialize 
the most general 
hypothesis set

5 is a negative example

aa

na ab

nb

n♣

4♣

4b

a♣4a

Specialization
set of aa



31

Minimally specialize 
the most general 
hypothesis set

5 is negative(cont’d)

aa

na ab

nb

n♣

4♣

4b

a♣4a



32

ab

nb

n♣

a♣

G and S, and all hypotheses in between 
form exactly the version space

1. If an hypothesis between
G and S disagreed with an 
example x, then an hypothesis 
G or S would also disagree with x, 
hence would have been removed

After 3 examples (2 positive,1 negative)



33

ab

nb

n♣

a♣

G and S, and all hypotheses in between 
form exactly the version space

After 3 examples (2 positive,1 negative)

2. If there were an hypothesis 
not in this set which agreed 
with all examples, then it would 
have to be either no more specific than any member 
of G – but then it would be in G – or no more general 
than some member of S – but then it would be in S



34

ab

nb

n♣

a♣

Do  8♣,  6♦,  j♠
satisfy CONCEPT?

Yes

No

Maybe

At this stage



35

ab

nb

n♣

a♣

2♠ is the next positive example

Minimally generalize 
the most specific 
hypothesis set



36

j♠ is the next negative example

Minimally specialize 
the most general 
hypothesis set

ab

nb



37

nb

+ 4♣ 7♣ 2♠
– 5♥ j♠

NUM(r) ∧ BLACK(s) ⇔ REWARD([r,s])

Result



38

The version space algorithm

Begin

Initialize G to be the most general concept in the space
Initialize S to the first positive training instance

For each example x

If x is positive, then
(G,S) ← POSITIVE-UPDATE(G,S,x)

else
(G,S) ← NEGATIVE-UPDATE(G,S,x)

If G = S and both are singletons, then the algorithm has found 
a single concept that is consistent with all the data and the 
algorithm halts

If G and S become empty, then there is no concept that 
covers all the positive instances and none of the negative 
instances

End



39

The version space algorithm (cont’d)

POSITIVE-UPDATE(G,S,p)

Begin

Delete all members of G that fail to match p

For every s ∈ S, if s does not match p, replace s with its most 
specific generalizations that match p;

Delete from S any hypothesis that is more general than some 
other hypothesis in S;

Delete from S any hypothesis that is neither more specific 
than nor equal to a hypothesis in G; (different than the 
textbook)

End;



40

The version space algorithm (cont’d)

NEGATIVE-UPDATE(G,S,n)

Begin

Delete all members of S that match n

For every g ∈ G, that matches n, replace g with its most 
general specializations that do not match n;

Delete from G any hypothesis that is more specific than some 
other hypothesis in G;

Delete from G any hypothesis that is neither more general nor 
equal to hypothesis in S; (different than the textbook)

End;



41

Comments on Version Space Learning (VSL)

• It is a bi-directional search. One direction is 
specific to general and is driven by positive 
instances. The other direction is general to 
specific and is driven by negative instances.

• It is an incremental learning algorithm. The 
examples do not have to be given all at once (as 
opposed to learning decision trees.) The 
version space is meaningful even before it 
converges.

• The order of examples matters for the speed 
of convergence

• As is, cannot tolerate noise (misclassified 
examples), the version space might collapse



42

Examples and near misses for the 
concept “arch”



43

More on generalization operators

• Replacing constants with variables. For example,

color (ball,red)
generalizes to

color (X,red)

• Dropping conditions from a conjunctive 
expression. For example,

shape (X, round) ∧ size (X, small) ∧ color (X, red)
generalizes to

shape (X, round) ∧ color (X, red)



44

More on generalization operators (cont’d)

• Adding a disjunct to an expression. For example,

shape (X, round) ∧ size (X, small) ∧ color (X, red)
generalizes to

shape (X, round) ∧ size (X, small) ∧
( color (X, red) ∨ (color (X, blue) )

• Replacing a property with its parent in a class 
hierarchy. If we know that primary_color is a 
superclass of red, then 

color (X, red)
generalizes to

color (X, primary_color)



45

Another example

• sizes = {large, small}

• colors = {red, white, blue}

• shapes = {sphere, brick, cube}

• object (size, color, shape)

• If the target concept is a “red ball,” then size 
should not matter, color should be red, and 
shape should be sphere

• If the target concept is “ball,” then size or 
color should not matter, shape should be 
sphere.



46

A portion of the concept space



47

Learning the concept of a “red ball”

G : { obj (X, Y, Z)}
S : { }

positive: obj (small, red, sphere)

G: { obj (X, Y, Z)}
S : { obj (small, red, sphere) }

negative: obj (small, blue, sphere)

G: { obj (large, Y, Z), obj (X, red, Z), obj (X, white, Z)
obj (X,Y, brick), obj (X, Y, cube) }

S: { obj (small, red, sphere) }
delete from G every hypothesis that is neither more 

general than nor equal to a hypothesis in S

G: {obj (X, red, Z) }
S: { obj (small, red, sphere) }



48

Learning the concept of a “red ball” 
(cont’d)

G: { obj (X, red, Z) }
S: { obj (small, red, sphere) }

positive: obj (large, red, sphere)

G: { obj (X, red, Z)}
S : { obj (X, red, sphere) }

negative: obj (large, red, cube)

G: { obj (small, red, Z), obj (X, red, sphere), 
obj (X, red, brick)}

S: { obj (X, red, sphere) }
delete from G every hypothesis that is neither more general 
than nor equal to a hypothesis in S

G: {obj (X, red, sphere) }
S: { obj (X, red, sphere) } converged to a single concept



49

LEX: a program that learns heuristics

• Learns heuristics for symbolic integration problems

• Typical transformations used in performing integration 
include

OP1: ∫ r f(x) dx → r ∫ f(x) dx
OP2: ∫ u dv → uv - ∫ v du
OP3: 1 * f(x) → f(x)
OP4: ∫ (f1(x) + f2(x)) dx → ∫ f1(x) dx +  ∫ f2(x) dx

• A heuristic tells when an operator is particularly useful:
If a problem state matches ∫ x transcendental(x) dx

then apply OP2 with bindings
u = x
dv = transcendental (x) dx



50

A portion of LEX’s hierarchy of symbols



51

The overall architecture

• A generalizer that uses candidate elimination 
to find heuristics

• A problem solver that produces positive and 
negative heuristics from a problem trace

• A critic that produces positive and negative 
instances from a problem traces (the credit 
assignment problem)

• A problem generator that produces new 
candidate problems



52

A version space for OP2 (Mitchell et al.,1983)



53

Comments on LEX

• The evolving heuristics are not guaranteed to 
be admissible. The solution path found by the 
problem solver may not actually be a shortest 
path solution.

• The problem generator is the least developed 
part of the program.

• Empirical studies:
before: 5 problems solved in an average 

of 200 steps
train with 12 problems
after: 5 problems solved in an average of 

20 steps



54

More comments on VSL

• Still lots of research going on

• Uses breadth-first search which might be 
inefficient: 

• might need to use beam-search to prune hypotheses 
from G and S if they grow excessively

• another alternative is to use inductive-bias and restrict 
the concept language

• How to address the noise problem? 
Maintain several G and S sets.


