
Chapter 4 Beyond Classical Search
4.1 Local search algorithms and optimization

problems

CS4811 - Artificial Intelligence

Nilufer Onder
Department of Computer Science
Michigan Technological University



Outline

Hill climbing search

Simulated annealing

Local beam search

Genetic algorithms



Iterative improvement algorithms

I In the problems we studied so far, the solution is the path. For
example, the solution to the 8-puzzle is a series of movements
for the “blank tile.” The solution to the traveling in Romania
problem is a sequence of cities to get to Bucharest.

I In many optimization problems, the path is irrelevant. The
goal itself is the solution.

I The state space is set up as a set of “complete”
configurations, the optimal configuration is one of them.

I An iterative improvement algorithm keeps a single “current”
state and tries to improve it.

I The space complexity is constant!



Example: Travelling Salesperson Problem

Start with any complete tour, perform pairwise exchanges

B C

D

A E

A C B D E

B C

D

A E

A B C D E

Variants of this approach get within 1% of optimal very quickly
with thousands of cities.



Example: n-queens

Put n queens on an n × n board with no two queens on the same
row, column, or diagonal.
Move a queen to reduce the number of conflicts (h).

Almost always solves n-queens problems almost instantaneously for
very large n, e.g., n = 1 million.



Example: n-queens (cont’d)

(a) shows the value of h for each possible successor obtained by
moving a queen within its column. The marked squares show the
best moves.
(b) shows a local minimum: the state has h = 1 but every
successor has higher cost.



Hill-climbing (or gradient ascent/descent)

function Hill-Climbing (problem)
returns a state that is a local maximum

inputs: problem, a problem
local variables:

current, a node
neighbor, a node

current ← Make-Node(problem.Initial-State)
loop do

neighbor ← a highest-valued successor of current
if neighbor.Value ≤ current.Value then return current.State
current ← neighbor



Hill-climbing (cont’d)

I “Like climbing Everest in thick fog with amnesia.”

I Problem: depending on initial state, can get stuck on local
maxima

I In continuous spaces, problems with choosing step size, slow
convergence

objective 

function global maximum

local maximum

"flat" local maximum

shoulder

state space
current state



Difficulties with ridges

The “ridge” creates a sequence of local maxima that are not
directly connected to each other. From each local maximum, all
the available actions point downhill.



Hill-climbing techniques

I stochastic: choose randomly from uphill moves

I first-choice: generate successors randomly one-by-one until
one better than the current state is found

I random-restart: restart with a randomly generated initial state



Simulated annealing

function Simulated Annealing (problem, schedule)
returns a solution state

inputs:
problem, a problem
schedule, a mapping from time to “temperature”

local variables:
current, a node
next, a node

current ← Make-Node(problem.Initial-State)
for t = 1 to ∞ do

T ← schedule(t)
if T=0 then return current
next ← a randomly selected successor of current
∆E ← next.Value - current.Value
if ∆E > 0 then current ← next
else current ← next only with probability e∆E/T



Simulated annealing (cont’d)

I Idea: escape local maxima by allowing some “bad” moves but
gradually decrease their size and frequency.

I Devised by Metropolis et al., 1953, for physical process
modelling.

I At fixed “temperature” T , state occupation probability
reaches Boltzman distribution

p(x) = αe
E(x)
kT

I When T is decreased slowly enough it always reaches the best

state x∗ because e
E(x∗)

kT /e
E(x)
kT = e

E(x∗)−E(x)
kT � 1 for small T .

(Is this necessarily an interesting guarantee?)

I Widely used in VLSI layout, airline scheduling, etc.



Local beam search

I Idea: keep k states instead of 1; choose top k of all their
successors

I Not the same as k searches run in parallel! Searches that find
good states recruit other searches to join them.

I Problem: quite often, all k states end up on same local hill.

I To improve: choose k successors randomly, biased towards
good ones.

I Observe the close analogy to natural selection!



The genetic algorithm

function Genetic Algorithm (problem, Fitness-Fn)
returns an individual

inputs:
population, a set of individuals
Fitness-Fn, a function that measures the fitness of an individual

repeat
new-population ← empty set
for i = 1 to Size(population) do

x ← Random-Selection(population, Fitness-Fn)
y ← Random-Selection(population, Fitness-Fn)
child ← Reproduce(x ,y)
if (small random probability) then child ← Mutate(child)
add child to new-population

population ← new-population
until some individual is fit enough, or enough time has elapsed
return the best individual in population, according to Fitness-Fn



The crossover function

function Reproduce (x,y)
returns an individual

inputs:
x,y , parent individuals

n← Length(x)
c ← random number from 1 to n
return Append(Substring(x , 1, c), Substring(y , c + 1, n))



Genetic algorithms (GAs)

I Idea: stochastic local beam search + generate successors from
pairs of states

I GAs require states encoded as strings.

I Crossover helps iff substrings are meaningful components.

I GAs 6= evolution.
e.g., real genes encode replication machinery.



Genetic algorithm example



The genetic algorithm with the 8-queens problem



Summary

I Hill climbing is a steady monotonous ascent to better nodes.

I Simulated annealing, local beam search, and genetic
algorithms are “random” searches with a bias towards better
nodes.

I All need very little space which is defined by the population
size.

I None guarantees to find the globally optimal solution.



Sources for the slides

I AIMA textbook (3rd edition)

I AIMA slides (http://aima.cs.berkeley.edu/)


	Hill climbing search
	Simulated annealing
	Local beam search
	Genetic algorithms

