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P E R S P E C T I V E S

P u b l i s h e d  b y  t h e  I E E E  C o m p u t e r  S o c i e t y

Artificial
Intelligence:
Hype or
Reality?

M ost definitions of artificial intelligence in the standard texts
are overly complex for a general survey of the field, so here
is a simple one that will suffice instead: Artificial intelli-
gence is the science of mimicking human mental faculties
in a computer.

Pinpointing the beginning of AI research is tricky. George Boole (1815-
1864) had plenty of ideas on the mathematical analysis of thought processes,
and the field still retains several of his ideas. However, since he had no com-
puter, my simple definition rules out Boole as AI’s founder. 

Just as historians on either side of the Atlantic have different opinions
about who built the first programmable computer, they also diverge over
AI’s origins. British historians point to Alan Turing’s 1950 article that defined
what is now known as the Turing test for determining whether a computer
displays intelligence.1 American historians prefer to point to the Dartmouth
conference of 1956, which was explicitly billed as a study of AI and is
believed to have been the source of the term “artificial intelligence.” 

A SPECTRUM OF INTELLIGENT BEHAVIOR
A difficulty with my simple definition of AI is that it leaves the notion of

intelligence rather vague. Figure 1 helps clarify the matter by showing a
spectrum of intelligent behaviors based on the level of understanding
involved. The lowest-level behaviors include instinctive reactions, such as
withdrawing a hand from a hot object or dodging a projectile. High-level
behaviors demand specialist expertise such as in the legal requirements of
company takeovers or the interpretation of mass spectrograms. 

Researchers have developed conventional computing techniques to han-
dle the low-level decision making and control needed for the low end of the
spectrum. Highly effective computer systems exist for monitoring and con-
trolling a variety of equipment. For example, Figure 2 shows the Advanced
Step in Innovative Mobility robot (http://asimo.honda.com). Developed by
Honda, Asimo has 16 flexible joints, requiring a four-processor computer
just to control its balance and movement. Owing to its rigid spine, the robot
needs slightly elongated arms to pick up objects from the floor. Asimo shows
exceptional human-like mobility, but it cannot think for itself. Despite the
addition of voice and gestures, its behavior is still firmly anchored at the
lower end of the spectrum.

AI has been a rich
branch of research for
more than 45 years.
Any sense that the field
is overhyped probably
results from a failure 
to appreciate the
incredible complexity
of everyday human
behavior. 

Adrian A. Hopgood
Nottingham Trent University



Early AI research, on the other hand, focused on
problems at the high end of the spectrum. Two
applications, for example, concerned the specialist
areas of mass spectrometry2 and bacterial blood
infections.3 These early triumphs generated great
optimism. If a computer could deal with problems
too difficult for most ordinary people, then surely
more modest human reasoning would be straight-
forward. 

Unfortunately, this is not so. Human behavior in
the middle of the spectrum, which we perform with
barely a conscious thought, has proved to be the
most difficult for computer scientists to emulate.
Although computer software such as Mathematica
can perform advanced calculus, a computer still
cannot reliably recognize objects in a visual image. 

Consider the photograph in Figure 3. Most of us
can spot the rabbit in the photograph (though only
a privileged few know that her name is Fluffy). But
this perception is a complex behavior. First, recog-
nizing the boundary between objects is difficult.
Even after an object is delineated, recognition is far
from straightforward. For instance, rabbits come
in different shapes, sizes, and colors. They can
assume different postures, and they may be par-
tially occluded, as in Figure 3. A fully sighted
human can process these perceptions in an instant,
without considering it a particular mark of intelli-
gence. But getting a computer to decipher a pho-
tograph reveals the task’s astonishing complexity. 

PRECONCEPTIONS FROM POPULAR FICTIONS
Fictional characters such as Hal in 2001: A Space

Odyssey, Robbie in The Forbidden Planet, and, more
recently, David in Stephen Spielberg’s film AI further
fuel the huge expectations that the term “artificial
intelligence” conjures up. In each case, the fictional
intelligent system interacts with its environment
through communication and action. In the latter two
examples, it also resides in an android body. 

Current technology lags behind these popular
images, making it easy to find an audience for the
idea that AI has failed to live up expectations. Yet,
we clearly cannot use these fictions as a standard
for measuring progress in the field. If AI were
named “nifty computer programs,” it would surely
be hailed an unqualified success.

TWO APPROACHES TO AI
Current technologies for AI fall into two broad

categories:

• explicit modeling with words and symbols, and
• implicit modeling with numerical techniques.

The first category includes techniques such as rule-,
model-, frame-, and case-based reasoning. In this
category, explicit rules may model the problem:

If the pressure is high and the release valve is
closed, then the release valve is stuck.
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Figure 1. A 
spectrum of 
intelligent 
behavior, 
ranging from 
reaction-based 
to specialized 
expertise.

Figure 2. Honda’s
Asimo robot
descending a 
flight of stairs.
Asimo has 16 
flexible joints with 
a four-processor
computer to control
its balance and
movement, but its
intelligence is 
limited.
(Source: Honda.
Used with
permission.)

Figure 3. Spot the
rabbit. Deciphering
a photograph is a
complex behavior
that humans 
perform instantly
but computers 
perform with
difficulty, if at all.
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More sophisticated variants attempt to take account
of uncertainty:

If the pressure is high and the release valve is
closed, then the release valve is probably stuck.

Although these techniques have succeeded in
their narrow domains, they are intrinsically lim-
ited. They handle only explicitly modeled situations
and cannot deal with the unfamiliar. 

The numerical approaches overcome these diffi-
culties to some extent by enabling the computer to
build up its own model, based on observations and

experience. Neural networks, in particular, can learn
associations from a set of examples and then apply
them in previously unseen cases. These associations
are particularly effective at classifying data patterns. 

For example, Figure 4 shows a region of the
Mississippi Delta, imaged at six different wavebands
from a satellite. Figure 5 shows a simple neural net-
work architecture, the multilayered perceptron,
which was trained to associate the six waveband
images with the corresponding land use. The image
pixels constitute the inputs, and five land-use cate-
gories constitute the outputs: water, trees, cultivated
land, rock, and swamp. The network was trained
pixel-by-pixel on just the top 1/16th of these images
and tested against the whole images. 

Figure 6 shows the results. The classification is
mostly correct, although there are some differences
between the results and the actual land use. We
could refine the neural network’s parameters to fur-
ther improve its performance, but even with the
apparent discrepancies, Figure 6 clearly demon-
strates the network’s ability to generalize from a
limited set of examples. 

Interest in neural networks surged in 1985, fol-
lowing the discovery of an effective learning algo-
rithm.4 However, neural networks also have fallen
victim to hype, perhaps because their name con-
jures up unrealistic notions of an artificial brain. 

Other techniques such as genetic algorithms, sim-
ulated annealing, artificial immune systems, and
fuzzy logic are useful.5 They all come under the gen-
eral heading of AI, but none really exhibits intelli-
gent behavior.

BLACKBOARD SYSTEMS: INTEGRATING
DIFFERENT TECHNIQUES

Blackboard approaches to building AI systems
have proved useful in a variety of applications,
regardless of whether the resultant system can be
accurately described as intelligent. 

The blackboard model is analogous to a team of
experts gathered around a blackboard, on which a
problem or some data appears. Any team member
can contribute to solving the problem or interpret-
ing the data, and a solution emerges on the black-
board. A blackboard system uses an area of shared
computer memory to replace the physical black-
board, and the experts are different software 
modules. 

Input

Output
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Figure 5. A multilayered perceptron. The three-layer network takes input data
from six wavebands and outputs images according to five categories of land use.

Figure 4. Portion of a Landsat-4 satellite image taken in six different wavebands. (Source: NASA. Used with permission.)

Figure 6. (a) Actual land use map and (b) land use map from neural network out-
puts. Key: dark blue = water; pale blue = swamp; green = trees; red = cultivated
land; yellow = soil/rock; black = unknown.

(a) (b)



The blackboard approach recognizes that dif-
ferent subtasks require different techniques. The
first published application of a blackboard system
was Hearsay-II for speech understanding in 1975.6

Further developments took place during the
1980s,7 and the blackboard model is now seen as
a key technology for the burgeoning area of multi-
agent systems.8 In the late 1980s, my colleagues
and I at the Open University developed the
Algorithmic and Rule-Based Blackboard System,
which we subsequently applied to diverse problems
including the interpretation of ultrasonic images9

and the control of plasma deposition processes.10

More recently, ARBS was redesigned as a dis-
tributed system, DARBS, in which the software
modules run in parallel, possibly on separate com-
puters connected via the Internet.11

SITUATED AI: INTERACTING 
WITH ENVIRONMENTS

Our most recent application of DARBS extends
our work on controlling plasma deposition
processes. As Figure 7 shows, the application is sit-
uated—that is, like the fictional intelligent com-
puters, it interacts with its environment through
sensors that detect the environment and actuators
that operate upon it. 

The Trilobite autonomous vacuum cleaner (http://
trilobite.electrolux.se) illustrates recent progress in
situated AI. As Figure 8a shows, the Trilobite is a
commercially available robot developed in Sweden
by Electrolux. The robot borrows the shape and
name of the prehistoric animal shown in Figure 8b
that cleaned the bottoms of the oceans 250-560 mil-
lion years ago. 

The Trilobite vacuum cleaner embodies the prin-
ciples of an AI planning system:

• it builds a model of its environment by cir-
cumnavigating the walls of a room;

• it establishes a goal—specifically, to traverse
the entire accessible floor area;

• it assembles a set of actions to achieve the goal;
and

• it replans as required to cope with changes in
the world model, such as obstacles in its path.

Figure 9 shows Kismet (http://www.ai.mit.edu/
projects/humanoid-robotics-group/kismet/), a
robot head developed at the Massachusetts Institute
of Technology. Kismet has no body or limbs, but it
can communicate through hearing, vision, speech,
facial expression, and posture. Described by its
makers as a “sociable robot,” Kismet uses nine
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Figure 7. DARBS
application. The
system interacts
with plasma 
deposition
equipment 
through sensors 
and actuators.
(Photo by 
Lars Nolle.)

(a)

(b)

Figure 8. (a) A 
Trilobite
autonomous 
vacuum cleaner
from Electrolux; 
(b) a fossil 
trilobite—
a primitive animal
that cleaned the
ocean bottom 
250-560 million
years ago.

Figure 9. MIT’s
Kismet. The 
sociable robot com-
municates through 
hearing, vision, 
speech, and facial 
expression. 
(Source: Cynthia
Breazeal, MIT 
Artificial 
Intelligence
Laboratory. Used
with permission.)
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computers for vision alone and has 21 motors for
controlling its face and neck. Investigators use
Kismet to study the social interaction between the
robot and the people it meets, especially children.12

A rtificial intelligence has made significant
advances from both ends of the intelligence
spectrum shown in Figure 1, but a gap still

exists in the “common sense” region. Building a sys-
tem that can make sensible decisions about unfa-
miliar situations in everyday, nonspecialist domains
remains difficult. 

Nevertheless, it seems likely that applications like
distributed blackboards will continue apace in spe-
cialist domains. This quiet revolution that attracts
little press attention can make a significant contri-
bution to our lives. It includes the current trend
toward embedding AI within other hardware and
software systems.

Meanwhile, we can also expect progress toward
the popular idea of AI manifested in human-like
robots. This development requires progress in sim-
ulating behaviors we tend to take for granted—
specifically vision, language, common sense, and
adaptability.

AI is not just hype, as many real working appli-
cations use AI techniques. However, AI is not 
yet a reality either, as we have yet to develop a sys-
tem that spans the full spectrum of intelligent
behavior. �
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