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We adapt a scalable layered intelligence technique from the game industry, for agent-based crowd
simulation. We extend this approach for planned movements, pursuance of assignable goals, and
avoidance of dynamically introduced obstacles/threats as well as congestions, while keeping the
system scalable with the number of agents. We demonstrate the various behaviors in hall-evacuation
scenarios, and experimentally establish the scalability of the frame rates with increasing numbers of
agents.
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1. Introduction

Crowd behavior simulation has been an active field of re-
search [1–5] because of its utility in several applications
such as emergency planning and evacuations, designing
and planning pedestrian areas, subway or rail-road sta-
tions, as well as in education, training and entertainment.
In agent-based crowd simulations, where each pedestrian
is modeled as an autonomous agent, a tradeoff is com-
monly made between the complexity of each agent and
the size of the crowd. This is because, by common wis-
dom ‘simple characters are more efficient to evaluate, but
complex characters can capture more realistic crowd be-
haviors’ [6]. The assumption underlying the above quote
is that realistic crowd behaviors are hard to achieve with
simple agent models. Although we only focus on navi-
gational behaviors in this article, we show that it is pos-
sible to model complex behaviors realistically (such as
static obstacle avoidance, separation, collision avoidance,
approaching assignable goals, and avoidance of dynami-
cally introduced obstacles/threat) with an extremely sim-
ple agent model, leading to a scalable simulation system.
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The main idea is to distribute the intelligence in the ter-
rain [7] rather than accumulating it into a complex/bulky
model that each agent must follow. Although this idea of
smart terrain is not new, to the best of our knowledge, this
is the first application of this idea to crowd simulation.
More importantly, we advance this approach to incorpo-
rate new behaviors that are specific to crowd simulation.

In this article, we focus on crowd movement on a two-
dimensional surface. We use the layered artificial intelli-
gence (AI) framework [7] to create an efficient platform
for agent movement, that is also easily expandable to in-
corporate increasingly complex behaviors at will, by sim-
ply adding more layers. We first create a flow-field for ba-
sic agent movement, avoiding static obstacles in the world,
using the Markov decision process (MDP) [8] framework.
We show that realistic behavior in this context needs a
refinement that semi-Markov decision processes (SMDPs)
offer. We also show how the combination of SMDPs and
layered AI allows us to easily handle the assignment of
different goals to different agents. This means that an
agent is not limited to approaching the nearest goal, but
an assigned goal, unlike what the SMDP framework alone
offers. We also extend the layered AI framework to han-
dle the dynamic introduction of new obstacles/threats, as
well as congestions. One limitation of our approach is the
pre-processing time needed to create the initial flow-field.
We provide a discussion that shows that this step can be
parallelized to reduce the pre-computation time. Finally,

Volume 85, Number 10 SIMULATION 621

 at J. Robert Van Pelt Library on November 3, 2009 http://sim.sagepub.comDownloaded from 

http://sim.sagepub.com


Banerjee, Abukmail, and Kraemer

Figure 1. (a) Several informational layers overlay the underlying physical grid. (b) The openness/obstacle layer. (c) The occupancy layer.
Black cells are occupied, progressively lighter cells are more easily walkable. These figures are adapted from [7] to illustrate the layered AI
approach.

we show the frame rates resulting from our implementa-
tion, which clearly establishes the efficacy of our scalable
approach in modern crowd simulation.

It should be noted that goal-directed movements that
form a major component of our approach, may not be en-
tirely suitable for emergency evacuation situations. How-
ever, several other kinds of applications require goal-
directed movements, as noted by several authors in the
past [1–3, 9, 10], and this aspect remains an important
component of crowd simulation. Other components of our
framework, such as handling dynamic obstacles and con-
gestion avoidance are relevant to simulating emergency
evacuations.

2. Layered Intelligence

We consider crowd behavior in an environment created
on a two-dimensional surface. We divide the surface into
square grids, where each cell has a sufficient area to hold
no more than one person of average size. We have used
the concept of layered AI from the game industry [7] for
crowd simulation in this environment. The basic idea is
to distribute terrain and other navigation-related informa-
tion into several layers and have an agent make simple
navigation decisions based on a combination of these lay-
ers. For instance, there could be a single layer called oc-
cupancy layer where each agent enters its current posi-
tion. When an agent makes a decision of which cell to
move to next, it will need to consult this layer and omit
any neighboring cell that is already occupied by other
agents. Once its decision is made, it will need to update
its position on this layer, to avoid other agents collid-
ing with this agent. Similarly there could be an obstacle
layer, which contains information about all static obsta-
cles in the environment. When deciding which neighbor-
ing cell to move to next, an agent must also consult this
layer to omit cells that are blocked by obstacles. Rather
than binary (blocked or available) values, the layers usu-
ally contain values from a continuous range of [0! 1] to

indicate proximity to agents/obstacles. The approach is il-
lustrated in Figure 1. Here, the layers contain values closer
to zero in darker cells (zero for black cells) indicating lo-
cations that are harder to occupy, and values closer to one
in lighter cells (one for white cells) which can be occupied
more easily.

Essentially, each type of information that is relevant
to navigation is captured in a separate layer. In games,
information such as which cells are easily visible and
hence open to enemy fire, which cells have the enemies
just searched, and are not likely to search again any-
time soon, etc., are captured in separate layers, called the
openness layer, search layer, etc. [7]. Normalized val-
ues (i.e. in the range [0! 1]) are stored for each cell in
each layer, reflecting its value from that layer’s perspec-
tive. Let layeri "x! y# be the value of cell "x! y# in layer i ,
with a total of L layers, i " 1 $ $ $ L. An agent at location
"x! y# needs to simply look up the values of all cells in the
neighborhood of "x! y#, i.e. N"x! y# " #"p! q#$"p! q# "
Neighbor"x! y#%, from all layers and pick the next-best
cell as

"p! q#best " arg max"p!q#&N"x!y#

L!
i"1

layeri "p! q# (1)

In this article, we use simple formulae to compute open-
ness/obstacle and occupancy layers (Figures 1(b) and (c)).
The obstacle layer is simply binary (zeros occupied by
walls and ones open) in contrast to Figure 1(b) which
shows a larger range of values (gray levels), while the oc-
cupancy layer is computed as (conforming to Figure 1(c))

layeroccupancy"x! y# "
"##$
##%

0 if agent at "x! y#
0$5k k " number of

agents in N"x! y#
(2)

The above formula for the occupancy layer is actually
implemented as a constant-time process per agent, and
encourages slight (just one cell deep) separation among
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agents (as shown in Figure 1(c)), unless they are pressed in
a congestion. In every new frame, an agent only needs to
update the neighborhood of its new location, and re-adjust
the neighborhood of its previous location, in addition to
the two successive locations.

The complexity of the decision-making process (Equa-
tion (1)) is O"$N $L#. Hence, with a fixed sized neighbor-
hood (say the nine cells surrounding and including "x! y#),
the decision would be constant time. With n agents in the
environment, the total time complexity for generating the
next frame of agent positions would be O"n#, which is
the best possible speed we can hope for in a distributed
simulation (since it is %"n# in sequential machines). The
layered approach to intelligent decision-making abides by
the following principle that game AI developers value for
scalability and efficiency: put the intelligence in the data,
not in the code.

3. Path Planning

In this article, we extend the layered approach to include
path planning to allow planned movements as opposed to
reactive movements. We also allow different destinations
for different agents, and build a path-plan layer for each
destination. An agent will thus consider only the path-plan
layer for its desired destination and ignore the other path-
plan layers. As an illustration consider an agent egressing
a building to approach one of four surrounding parking
lots, where they have parked. We can have a path-plan
layer for each of the four parking lots, and have many
agents approach their respective parking lots concurrently
by consulting the appropriate layers. The success of this
approach obviously depends on the number of destina-
tions being small. The advantage is open design, i.e. we
can extend and complexify the scenarios arbitrarily, sim-
ply by building extra layers.

In games, path planning is usually performed offline
(i.e. pre-computed) with a Floyd–Warshall technique, or
online with A* for dynamic path-finding. In the layered
approach, we are primarily concerned with minimizing
run-time processing! hence, we completely eliminate the
need for A* with the intent of handling dynamic changes
to the optimal path entirely within the layered framework.
Although the Floyd–Warshall technique would give us
path plans for all start–end cell pairs, the format of the
output is not quite conducive to the layered approach. We
need a path-planning technique that will produce a flow-
field that tells an agent which neighboring cell it should
move to, given its current cell location. Furthermore, these
decisions should be based on real numbers that can be
meaningfully combined (using Equation (1)) with other
layers to formulate a more informed movement decision
that is also based on occupancy, static obstacles and pos-
sibly dynamic obstacles. Another major limitation of the
Floyd–Warshall algorithm is that it only gives the opti-
mal decision from any cell, but fails to offer an alternative

Algorithm 1 The value iteration algorithm from [8]
1: Input real &
2: Initialize V "s#' 0!(s & S
3: repeat
4: '' 0
5: for each cell, s & S do
6: ( ' V "s#
7: V "s#' maxa R"s! a! T "s! a##) ) V "T "s! a##
8: '' max"'! $( * V "s#$#
9: end for

10: until ' * &

if that optimal move is impossible to make (e.g. because
another agent is currently occupying that cell). These lim-
itations force us to look beyond the Floyd–Warshall tech-
nique.

3.1 MDPs

We view movement on the two-dimensional grid as
a MDP. Formally, a MDP is given by the four-tuple+S! A! T! R,, where S is the set of environmental states
that an agent can be in at any given time, A is the set of
actions it can choose from at any state, R : S-A-S ./ 0
is the reward function, i.e. R"s! a! s 1# specifies the reward
from the environment that the agent receives for execut-
ing action a & A in state s & S leading to state s1!
T : S - A - S ./ [0! 1] is the state transition probabil-
ity function specifying the probability of the next state (s 1)
in the Markov chain consequential to the agent’s selection
of an action (a) in a state (s). A MDP solver’s goal is to
learn a policy (action decision function) + : S ./ A that
maximizes the expected sum of discounted future rewards
from any state s,

V + "s# " ET
&
R"s! +"s#! s1#) ) R"s 1! +"s 1#! s11#

) ) 2 R"s11! +"s 11#! s 111#) 2 2 2 ' (3)

where s! s 1! s 11! s 111! $ $ $ are samplings from the distribu-
tion T following the Markov chain with policy + , and
) & [0! 1# is the discount factor. In the above equation that
specifies this expected sum of discounted rewards starting
from state s, R"sk! +"sk#! s 1k# is the reward for taking ac-
tion +"sk# in state sk and transitioning to state s 1k , where
the next action is to be chosen. The discount factor ) k

associated with the kth step reward reduces the value of
future rewards relative to current rewards so that an agent
has the incentive to achieve higher rewards as early as pos-
sible.

In the context of the two-dimensional grid, S is the set
of all grid cells. The action set A is the set of nine cells that
an agent at location "x! y# can move to (including the ac-
tion of staying put in cell "x! y#). Some of these neighbor-
ing cells may be blocked by static obstacles, in which case
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the corresponding actions are unavailable, and excluded
from set A (or, equivalently, the corresponding transition
probabilities T "$! $! $# are set to zero). We use the infor-
mation from the static obstacle layer to compute the MDP
solution, so that the resulting path plans avoid them in a
realistic manner1. We use value iteration [8] algorithm to
solve the MDP induced by the two-dimensional grid with
the reward function defined simply as

R"s! a! s1# "
(

1 if s1 is a goal cell

0 otherwise

and transition function (T ) is deterministic, meaning that
an action a in state s leads to a unique next-state (s1) every
time. Therefore, for our purpose, we can redefine T as

T : S - A ./ S

i.e. T "s! a# " s 1 in accordance with the above. The value
iteration algorithm is shown in Algorithm 1. This is a dy-
namic programming approach to calculating V "s# for all
s, where step 7 is the main one-step backup operator that
estimates the new value (V ) of a state, given the best com-
bination of current reward and the discounted old value
function (V from the previous iteration) of its neighbors.
This iterative refinement continues until the largest value
modification (') is below a certain threshold (&). The re-
sult (i.e. V "s#, for all s & S) of this process can be readily
used by an agent to select an appropriate action in any
state by

+"s# " arg max
a

V "T "s! a##
If several actions have the same maximum value, then

the agent can pick one of these at random.

3.2 SMDPs

Different actions often take different amounts of time to
complete. For instance, when an agent wants to move
from cell "x! y# to cell "x ) 1! y# (or any of the four non-
diagonal neighboring cells), the distance covered (say cen-
troid to centroid) is less than if the agent wanted to move
to "x)1! y)1# (or any of the diagonal neighboring cells).
In particular, if the former distance is one unit, the latter is3

2 " 1$414 units, assuming square grid cells. Hence, the
agent would take longer to execute a diagonal step than
a Manhattan step. This discrepancy in action times can
be neatly incorporated in the MDP formalism to produce
SMDPs, where the step 7 in the algorithm in Algorithm 1
needs to be modified to

V "s#' max
a

&
R"s! a! T "s! a##) ) t "a#V "T "s! a##'

1. This means that an agent starts avoiding an obstacle before
they actually encounter it in their immediate neighborhood, simulating
vision-based avoidance, much like A*.

Figure 2. Crowd behavior (a) without and (b) with differing diago-
nal cost taken into account

where t "a# is the time taken to execute action a. This ad-
justs the backup operator to reflect that the value of the
neighboring state (T "s! a#) resulting from action a in state
s is to be discounted (relative to the immediate reward,
R"s! a! T "s! a##) to the extent of the duration of action a.
Figure 2(a) shows the result of ignoring the difference in
action execution times (i.e. t "a# " 1, for all a), while
Figure 2(b) shows the result of taking these differences
into account. In this simulation, 500 agents are placed in
a hall with six exits, in a grid world of size 137 - 137.
The four corners of the grid world are four different goals
that an agent could move to. Each agent is colored by the
goal that is randomly assigned to it. This simulation uses
four path-plan layers (one for each corner goal) and an
occupancy layer, but since we have used a binary static
obstacle layer (in contrast to Figure 1(b)), this layer can
be eliminated after the information needed to handle sta-
tic obstacles is captured in the path-plan layers (e.g. note
that the path-plan layer in Figure 3 contains binary static
obstacle information). In Figure 2(a) the agents line-up in
the direction of their respective goals (which we believe
is an unrealistic artifact), and also fail to use the middle
exits. In Figure 2(b), both of these problems have been
eliminated by using the SMDP formulation. Figure 3 il-
lustrates the difference between the flow fields produced
by the two methods.

In this figure, the map has a lower resolution (36 -
36) for the sake of clarity, and the static obstacles are all
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Figure 3. Navigation flow-field (a) produced by the algorithm in
Algorithm 1 and (b) produced with the SMDP adjustment (b), for
the path-plan layer with the goal at top-right corner

one cell deep (unlike in Figure 2), marked with zeros. The
band of zeros around the periphery serves to establish the
world’s boundary. The goal cell is shown (in green) at the
top right. It is worth noting from Figure 3 that while the
raw MDP method pushes the agents away from the right-
hand exits when in their vicinity, the SMDP adjustment
nudges them toward those exits. This is the main reason
for the agents being able to use the right-middle exit when
in its vicinity.

One important limitation in this regard is that the
agents may be unable to use the middle exits if they
are far from them, while the other exits are temporarily
congested with other agents. While the occupancy layer
(Equation (2)) enforces some separation among agents
and as a by-product may be sufficient (in some cases)
to push the agent toward such unused (or scarcely used,
hence less crowd producing, less separation force) ex-
its, we would like to solve this problem without rely-
ing on separation alone. As a first-cut approach, this sce-
nario calls for replanning which is expensive with the
layered technique. One possibility is to treat congestion
as a dynamically placed obstacle (see Section 5 for how
we handle such obstacles), but the key difference is that
while we may be told where a dynamic obstacle has been
placed, the location of a congestion must be determined
autonomously. We discuss how we use the concept of dy-
namically placed obstacles to simulate congestion avoid-
ance behavior, in Section 6.

4. Complexity Analysis and Improvement

The pre-processing step to produce the flow-field for each
goal in a separate layer (i.e. Algorithm 1 applied once for
each goal), is computationally intensive and therefore it
can benefit from improvement. The pre-processing time
can be improved quite easily via parallelization. The par-
allel algorithm can be very simple and would result in sig-
nificant improvements, especially as the size of the map
grows. The idea would be to allow for the path-plan for
each goal layer to be processed separately on a different
processor. Since we have used four goal layers, a quad-
core machine would suffice for computing the path plan
for the goal layers concurrently. The path computation for
each of the layers is independent of the others, because the
path plan for one goal is independent of the other goals.
The load can be distributed uniformly among all CPUs,
with each writing the results to its own memory segment
and would not require any synchronization. However, in
this paper we only present the results from sequential im-
plementation.

Figure 4 shows the number of seconds taken to gen-
erate the four path-plan layers, using a plain sequential
method, on varying map sizes. The maps were of the same
form as the previous figures, but the sizes of the obstacles
grew proportionately with the map size. First, Figure 4
verifies a roughly cubic trend that is expected, because
the loop 5 in Algorithm 1 is O"m2# (m being the num-
ber of cells along each dimension of the map), while the
loop 3 has an average complexity of2 O"m#. To put the
computation time into perspective, a 1!200 - 1!200 map

2. Consequently, the value iteration algorithm is no more expensive
than the Floyd–Warshall algorithm on average maps, i.e. unless the maps
are unusual involving O"m2# (or worse) path lengths among various lo-
cations.
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Figure 4. Plot of run-times for the path-plan layers for all four cor-
ner goals (Figure 2), run sequentially for various map sizes

covers approximately a quarter of a square mile accord-
ing to the proportions used in our system, which roughly
corresponds to the size of a football stadium.

As Figure 4 shows, an area one-quarter of that size (i.e.
600- 600, or one-quarter of a stadium) takes 3.5 minutes
pre-processing time which is a compelling factor in favor
of the layered approach. Sucar [11] discusses how a MDP
can be broken into subtask MDPs that can be solved in
parallel with limited communication across processors for
synchronization. We believe that this technique will sig-
nificantly improve the speed-up of a parallel version of
the algorithm, since it will be parallelizing not only the
path plans for different goals, but also the path-plan layer
for individual goals.

5. Dynamically Placed Obstacles

A second extension to the layered approach that we pro-
pose is to handle obstacles that are added dynamically. We
use the word ‘obstacle’ in a broader sense, to refer to any-
thing that an agent would want to avoid during navigation.
For instance, rubble created by an explosion, agents that
died in a stampede, a raging fire, etc., are all considered
obstacles that a user adds after a simulation starts. As men-
tioned in the previous section, we would also like to treat
a temporary congestion at a desired exit to be an obsta-
cle that agents (with that exit on their path) must avoid,
but a user will not be expected to locate it. All such ob-
stacles necessitate dynamic changes to the optimal path
plans. The layered framework enables a simple solution
to this problem, albeit in a limited way. The idea is to
create a new layer for a dynamically added obstacle, in-
stead of modifying the path-plan layer. The new layer will

create a a trough of values in and around the location of
the obstacle, so that when combined with the other layers
(Equation (1)), the agents will avoid bumping into it. In
our implementation, for the purpose of simplicity an ob-
stacle is characterized by five parameters:

4 "cx ! cy#, the coordinates of the center of the obsta-
cle!

4 ri, the inner radius, that is, the physical extent of the
obstacle! for obstacles that are arbitrarily shaped,
this is the radius of the bounding sphere.

4 ro, the outer radius (, ri), that is, the extent of the
influence of the obstacle! normally all obstacles ex-
tend their influence as far as visual distance, i.e. an
agent that can see it will repath to avoid it! how-
ever, for some obstacles the influence could extend
further! for instance, the effects of a fire or an explo-
sion can be perceived from locations that are further
away, and hence have larger ro!

4 a, the avoidance intensity, that specifies how
strongly an agent would want to avoid stepping
close to the obstacle! if a " 0, an agent can
walk right by the obstacle (without stepping on it),
whereas for higher a, an agent would want to avoid
it by a larger distance, e.g. a fire.

In this dynamic obstacle layer, the value of a cell "p! q#
is computed as

layer"p! q# "
"###$
###%

0 if d 5 ri)
d * ri

ro * ri

*a

if ri * d * ro

1 if d 6 ro

(4)

where d is the distance between "p! q# and "cx ! cy#.
Figure 5 shows two successive snapshots ((a) and (b),

roughly 2 seconds apart) from placing an obstacle at the
center of the room. We have developed this tool to allow
a user to place a circular obstacle with an adjustable ri,
at an arbitrary location with a mouse-click. All agents lo-
cated within this obstacle immediately become immobi-
lized, simulating dead agents3 from whatever hazard (ex-
plosion, fire, etc.) originated the obstacle. In this figure,
ro " 4ri and a " 1. It should be noted that larger val-
ues of a enforce ro more strongly making the agents form
a more sharply defined circular pattern of avoidance. In
contrast, a lower value (here a " 1) makes the circular
outline more diffuse which we believe is more realistic. It
is also noteworthy that Figure 5(a) is a snapshot roughly

3. This is implemented quite naturally in the layered framework,
since unless an agent within the obstacle is in the periphery, it will be
surrounded by zero-valued cells, according to Equation (4), and hence
unable to move.
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Figure 5. Two successive snapshots taken every 2 seconds after
an obstacle is placed dynamically

2 seconds (run on a Lenovo Thinkpad 2.6 GHz dual core
machine with 3 GB RAM) after the obstacle was placed,
which includes the time taken to compute the new dy-
namic obstacle layer. On the said machine, the delay from
this computation is nearly imperceptible on a 137 - 137
grid.

5.1 Discussion

A major advantage of a separate dynamic obstacle layer is
the ease of handling temporary obstacles. Recall that one
of our goals in this article is to use this technique to han-
dle temporary congestions at bottlenecks. As such, when a
temporary obstacle disappears (e.g. a fire dies down, rub-
ble is removed by emergency response personnel or a bot-
tleneck crowd dissipates), the agents must resume their
original path plans. In the layered framework, it amounts
to simply deleting the dynamic obstacle layer, since the
original path plan is never modified. However, this also
leads to a major limitation of this approach, during the
period that the obstacle exists. Since the path plan is not
modified by taking the existing static obstacles (such as
walls) into account, it is possible that even though an agent

is on the other side of a wall relative to the obstacle (and,
hence, should be unable to see it), it still diverts along
a curve if the avoidance field extends that far. In order
to avoid this undesirable effect, it is necessary to modify
Equation (4) to take the static obstacles into account. This
enhancement is detailed in Section 5.2.

A minor limitation is that when an obstacle disappears,
the (presumed dead) agents located within ri will resume
movement. This can be prevented simply by tagging all
agents immobilized within ri as dead agents. A dead-
flagged agent will never move at any future time. Another
limitation in the case of large maps is the fact that an en-
tire layer is created for an obstacle that occupies only a
small area. A simple solution is to create a sublayer for
only the area covered by the influence field of an obsta-
cle, and combine it with other layers much like applying
a filter in image processing. Another shortcoming of the
dynamic obstacle avoidance approach is that it is essen-
tially a myopic/greedy modification of path plans that has
the potential to trap agents in tight passes or corners. This
problem is hard to avoid, although in principle, it may be
feasible to determine a minimal path recomputation that
completely adjusts an existing path plan layer to a dy-
namic obstacle, along the lines of minimal replanning by
Focused Dynamic A* [12]. This is an important future di-
rection.

5.2 Influence Clipping for Dynamically Placed
Obstacles

In the research that was reported in [13], the influence of
a dynamically placed obstacle was not clipped by static
obstacles in the environment. Figure 7(a) shows the sce-
nario, where two obstacles (white circles) are placed, and
the influences, as computed by Equation (4), transgress
the walls. We have implemented a simple and efficient
technique to rectify this problem, that effectively simu-
lates a discrete version of vision suitable for discrete grid
domains, instead of the expensive continuous line-of-sight
tests frequently employed in graphical simulations.

Given ro, a square bounding box can be defined around
the center "cx ! cy# of an obstacle, such that no cell outside
this box is affected by Equation (4). Initially all cells in
this box are marked ‘unprocessed’. For each unprocessed
cell in this box, starting from the periphery and progress-
ing toward the obstacle, we perform the Bresenham line
rasterization test [14] that defines a sequence of cells that
overlap with a straight line between the selected cell and
"cx ! cy#. If this sequence includes a static obstacle cell,
then we say that this line is blocked by a static obsta-
cle. Bresenham’s line algorithm has been popular in raster
graphics, and is used to render a line on the screen pixel
by pixel. In our case, the cells in the grid act as the pixels.
An illustration of Bresenham’s method between cells A
and B (marked in red, with obstacles marked in black) is
shown in Figure 6. The rasterized line is a series of cells
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Figure 6. Illustration of Bresenham’s line rasterization

marked in blue, with the dark blue cells being those over-
lapping with the obstacle cells. Thus, this line in Figure 6
is effectively blocked.

If a selected unprocessed cell has an open line of vision
to the dynamic obstacle, then clearly all cells on the Bre-
senham line are also open. Equation (4) can be computed
for these cells immediately, and then they are marked as
‘processed’. On the flipside, if the selected cell (cell A
in Figure 6) has a blocked line to the center (cell B in
Figure 6, as discussed in the previous paragraph), then all
cells between the blocked cell and the selected cell are
blocked as well (i.e. the cells marked ! in Figure 6). This
observation allows us to immediately mark these interme-
diate cells as ‘processed’ with a value of one, while the
cells (marked " in Figure 6) between the blocked cell on
this line that is closest to the obstacle (i.e. cell R), and the
obstacle itself, are all open. Again, the values of these cells
can be computed by Equation (4) before marking them as
‘processed’. Since the Bresenham calls and Equation (4)
do not have to be invoked for processed cells, significant
savings in time are obtained by processing cells from the
periphery of the bounding box. Figure 7(b) shows the re-
sult of this method on the same map as Figure 7(a).

6. Congestion as a Dynamic Obstacle

One of the major behavioral bottlenecks for intelligent
agents in crowd simulation is the simulation of conges-
tion avoidance behavior at bottlenecks. Although, this be-
havior is available in some existing systems [15], it is not
immediately clear whether the lightweight agents in a lay-
ered approach can support such complex behavior. We
break this problem into the following three subproblems,

the first of which can be performed offline, similar to path
planning.

4 Bottleneck identification. Here we automatically lo-
cate the potential congestion points by analyzing
the map offline.

4 Congestion identification. At run-time, we check
the local crowd density at each bottleneck for the
occurrence of a congestion.

4 Congestion avoidance. If congestion is identified at
a bottleneck, an obstacle is dynamically placed at
that bottleneck.

We now discuss our solution to each of these subprob-
lems in further detail.

6.1 Bottleneck Identification

We identify bottlenecks by analyzing the path-plan layers,
as created in section 3, as another pre-processing step. For
any given goal, the path-plan layer for that goal provides
flow information that can be exploited to identify poten-
tial congestion points, even before agents are deployed on
the maps. However, depending on the relative locations
of the goal and the static obstacles, the flow may entirely
avoid some bottlenecks in the actual map, which means
that such bottlenecks cannot be identified by those flows.
For instance, in Figure 8(a), the general flow toward the
orange goal will be as shown in arrows. Note that this
flow will only uncover the bottleneck B, but will fail to
highlight the bottleneck A, since the path plan will avoid
this exit from both outside as well as inside the room. So
we need to pool together the bottlenecks identified by the
flows to different goals, and if a bottleneck is avoided by
the flows of all goals, then it is reasonable to assume that
the bottleneck will not be congested since the agents will
likely avoid it.

Our algorithm to identify whether or not a state s is a
bottleneck under policy + , is given by

bottleneck+ "s# " + true if C"s# , C"T "s! +"s###
false otherwise

(5)

where C"s# " $#p & S $ T "p! +"p## " s%$, i.e. the
number of states that transition into s under policy + . Fig-
ure 8(b) illustrates this process, with the goal somewhere
in the top right, and the policy shown for only the states
in the vicinity of the bottleneck. Note that in this figure,
s 1 " T "s! +"s##, C"s# " 3 and C"s 1# " 2. Therefore,
according to Equation (5), state s qualifies as a bottle-
neck. Similarly, state s 11 also qualifies as a bottleneck. It
is straightforward to check in Figure 8(b) that this will not
be true for the other states. In essence, Equation (5) de-
tects a ‘funnel shape’ in the flow graph in any path-plan
layer, where a state with a high in-degree transitions to a
state with a lower in-degree.
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Figure 7. (a) Naive application of Equation (4), where the influence of dynamically placed obstacles transgress walls. (b) Influence clipping
for dynamically placed obstacles. The influences approach zero toward the centers of the influence circles, while they approach one toward
the periphery of the circles.

Figure 8. (a) A policy for a given goal may fail to identify some bottlenecks in a map, marked A in this case. (b) Illustration of the bottleneck-
detecting algorithm. Black cells are the static obstacles and the top right cell is the goal.

Now, if B+ i is the set of bottlenecks identified un-
der the policy for the i th goal (+ i ), i.e. B+ i " #s &
S $ bottleneck+ i "s# " true%, then the overall set of bottle-
necks over all goals i " 1! 2! $ $ $ !G, is given by B1$$$G ",G

i"1 B+ i . In practice, however, the above method could
create several bottlenecks that are close to each other. For
instance, in Figure 8(b), both s and s 11 are identified as
bottlenecks, but since they are close to each other, it would
be useful to have just one bottleneck somewhere between
them, instead of two. We implement this as a refinement
on B1$$$G , where all bottlenecks that are within a (small)
distance - from each other are replaced by one at their
centroid.

The result of this bottleneck-finding method is shown
in the two maps in Figure 9. Note that although these
bottlenecks are not placed at exactly the centers of the
doorways, this will not be a problem. This is because
these bottlenecks will only be used to locate congestion,
the influence of which is not clipped by the Bresenham

method of Section 5.2, since such congestions are exten-
sive and span around local obstacles. As a result, even
though the centers of the congestions (the bottlenecks)
are offset from the true locations, the influence field will
roughly overlay the desired area. Figure 9 (left) also shows
three excess bottlenecks around corners, but they are un-
likely to be congested! hence, these extra bottlenecks do
not affect the congestion avoidance behavior.

6.2 Congestion Identification

Given the list of bottlenecks, each bottleneck is checked
for congestion every few frames. An area is defined
around each bottleneck, and the number of agents in this
area is recorded from the occupancy layer. If the density
of agents exceeds a threshold (THI) then a congestion is
identified at this bottleneck, and congestion avoidance be-
havior is invoked. The complexity of density computation
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Figure 9. Bottlenecks, as computed by our method, are shown as white spheres on the two maps

Figure 10. (a) Map to evaluate congestions! (b) plot of crowd size at the two exits, A and B on the map in (a)

is O"$B1$$$G $k2
m#, where the maximal area around any bot-

tleneck is chosen to be km - km cells. However, since the
density may not change significantly from one frame to
the next, it may be sensible to stagger the density compu-
tations over the set of the bottlenecks, leading to O"k2

m#
cost per frame with a reasonable number of bottlenecks.
Congestions are also monitored, and if the density falls
below a threshold TLO (THI , TLO), then the congestion is
removed, by cancelling the congestion avoidance behav-
ior (i.e. by simply deleting the congestion layer created)
at that bottleneck.

6.3 Congestion Avoidance

In order to prevent agents adding to an identified conges-
tion, we dynamically place an obstacle at a congestion,
with the following choices: the size of the congestion re-
gion is chosen as the value of ri and ro is a large multi-
ple of ri, to simulate visible distance. The value of a is
chosen to be around two to achieve non-linear decay of
the congestion’s influence from ri to ro, with a curvature

that lies between a linear (a " 1, i.e. mildest avoidance)
and a step function (very large a, gives sharpest avoidance
within any visible distance). We found that a 7 2 achieves
this effect in a visually realistic way for congestions.

Since agents within the congestion area are not to be
tagged as dead, or immobilized, we allow these agents
to continue to push through the bottleneck. Only agents
who were approaching this congestion, but are not located
within the congestion area, are repelled, thus simulating
congestion avoidance behavior.

6.4 Evaluation of Congestion Avoidance

In the map shown in Figure 10(a), the agents are initially
located behind the two exits, marked A and B. They all
have the same goal (at the bottom right), but they have
two choices on the path to their goal: the narrower exit A
that is directly en-route to their goal, and a much wider
exit B that requires a short detour. Since the path-plan
layer does not take agent densities and potential conges-
tions into account, the agents will initially prefer exit A.
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However, when the narrowness of exit A forces a conges-
tion to occur, the agents will eventually avoid this conges-
tion and utilize exit B.

One aspect that is not immediately clear is what hap-
pens when the congestion areas of different bottlenecks
overlap. Agents will be counted as contributing to the den-
sities of all such bottlenecks, which could throw the con-
gestion identification off-track, possibly identifying con-
gestions where none exist. In Figure 10(a), the exits A
and B are chosen to be close to each other, precisely to
make this happen, in order to evaluate the impact of con-
gestion area overlap on the avoidance behavior.

Figure 10(b) shows a plot of the number of agents
within the congestion area of each of exits A and B,
against time. The thresholds THI and TLO used for this ex-
periment are also shown. Although exit A becomes con-
gested periodically, we see that the exit B is congested
only once in the beginning, even though visually it is not
congested. At other times, the green curve (crowd size at
bottleneck B) is always below THI, meaning that the bot-
tleneck is wide enough to accommodate the crowd that
periodically accesses it whenever A is congested. The mi-
nor visual aberration of the crowd at B, between 120 and
330 time units in Figure 10(b), is a result of the overlap
of crowd areas between A and B, and this verifies that the
overlap can indeed have a (possibly brief) impact. Note
that this problem can be easily fixed by making THI and
TLO functions of the bottleneck size. However, automati-
cally assessing the size of a bottleneck is currently beyond
the capability of our system.

7. Evaluation of Scalability

In order to establish the scalability of the layered ap-
proach, we have run experiments on a fixed grid of size
724- 724, populated with varying numbers of agents. In
each case, the area to be populated was chosen on the same
map, and the density of the crowd was kept roughly fixed
to isolate the effect of separation dynamics on the rela-
tive frame rates. The resulting number of agents are sel-
dom round figures. Figure 11 shows the frame rates as a
function of the sizes of the crowd, run on an HP Pavilion
1.6 GHz laptop with 2 GB RAM, running Windows XP.

The frame rates in Figure 11 pertain to only the sim-
ulation, without the graphic rendering, i.e. these figures
show the number of times the position update loop com-
pletes per second, for the given number of agents, in the
domain of Figure 2. Each crowd size was used in 10 in-
dependent experiments and the averages are reported. The
standard errors are low in all cases. Figure 11 only shows
frame rates that are at least 14 frames per second. For
real-time visualization, a frame rate of 30–60 is required,
which means that the said machine can handle crowd sizes
of roughly 10,000 to 20,000 agents, producing real-time
movements. With more sophisticated hardware, it is pos-
sible to support much larger crowd sizes in our framework.

Figure 11. Plot of frame rate against the crowd size

8. Related Work

In order to face the complex challenges that crowd simula-
tion poses, primarily three approaches4 have been used tra-
ditionally. One approach assumes that the individuals are
passive entities that drift in the presence of forces: the so-
called ‘social forces’ model [1] and the associated variants
of the gaskinetic model proposed by Helbing. This model
has been extended to include further individual-level de-
tails such as familial ties and altruism [4]. The idea of so-
cial forces is similar to our use of various layers impos-
ing ‘forces’ and the compound forces guiding each agent.
However, our approach is distinctly different from ordi-
nary differential equation (ODE)-based methods, is dis-
crete, and relies on the simplicity of the process of com-
posing forces in a distributed fashion.

The other approach is an agent-based model where in-
dividuals are modeled as intelligent agents with (limited)
perception and decision-making capabilities. Some of the
earliest applications of simple agent-based behaviors were
seen in Reynolds’ flocking model: the ‘boids’ [16]. In this
and related works, each agent is endowed with a mix of
simple steering behaviors, that produce complex macro-
scopic (group-level) behaviors as emergent phenomena.
The basic idea of emergent behaviors has been extended
to rule-based systems [2, 3] that offer the added advan-
tages of efficiency and variety in behaviors. Although our
approach is also agent based, we prefer a thin client where
the intelligence emerges from the interaction of the agents
with their environment. We do observe emergent group

4. We do not discuss user-guided or scripted crowd behaviors since
we are interested in autonomous crowd movement.
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behaviors that are realistic, similar to other agent-based
approaches, but our approach is scalable with the number
of agents, in contrast to most other agent-based systems.

Thalmann et al. [17] proposed to control agents having
the same goal as a unit, for efficiency. Although we allow
agents to have the same goals, we control them in a truly
distributed way. However, the collision avoidance behav-
ior emerging from our framework (when the influence
field in the occupancy layer is limited, as in Equation (2))
is more rudimentary than many existing systems. For in-
stance, Rymill and Dodgson [10] describe a system that
exploits psychological studies in crowd behaviors relat-
ing to collision avoidance and overtaking, to simulate be-
lievable behaviors. Although overtaking at this level of
fidelity is beyond the scope of our system, more realis-
tic collision avoidance is possible by expanding the field
of influence in the occupancy layer, albeit at the cost of
decreased frame rate, owing to the greater overhead per
agent. Shao and Terzopoulos [9] have integrated motor,
perceptual, behavioral and cognitive components through
an artificial-life approach, to simulate autonomous agents
in a large urban setting. While our framework lacks the
same level of fidelity, it is able to accommodate an un-
precedented level of fidelity for the number of agents it
can support. A head-to-head comparison, shows a frame
rate of 12.3 for 500 agents for [9] while we can support
well over 25,000 agents at the same frame rate.

With respect to integrating agents within a distributed
simulation, some work has been done on multi-agent sys-
tems (MASs) using the High Level Architecture (HLA)
[18]. As for layered approaches, a layering of the social
interaction on environmental simulation was proposed to
model interaction between humans and natural environ-
ments [19]. The problem of congestion has also been ad-
dressed with respect to amusement parks by using ‘so-
cial coordination’ to reduce the time wasted in conges-
tion [20]. The issue of time management in MAS was dis-
cussed to alleviate some the problems that exist in the sim-
ulation by providing ‘semantic duration models’ to help
developers [21].

Cellular automata [5, 22] underlie the third major ap-
proach, with recent improvements [23] for pedestrian
room evacuation, similar to our evaluation domain. In con-
trast to this approach, our method does not require the
user to identify ‘exits’, and involves a much simpler agent
model, leading to computational efficiency.

9. Conclusion

We have presented an extension of the layered intelligence
technique that is popular in the game industry, for scal-
able crowd simulation. We have shown how several nav-
igation behaviors can be implemented efficiently in this
framework. The chief advantage of this framework is ex-
tendability, where new behaviors can be added by adding
separate layers, without affecting the existing layers. We

have empirically shown the frame rates to be sufficient to
handle large crowds in real-time.

We have identified several aspects where this simula-
tion system can be improved. In particular, several dy-
namic group behaviors can be simulated in this frame-
work, in addition to dynamic obstacles and the dynam-
ically modified occupancy layer. For instance, group
movements such as agents belonging to the same fam-
ily, where agents tend to remain close, can be simulated
by creating an additional filter5 for each family to create a
sink (or trough) of values sloping in toward the centroid of
the locations of the family members. This will prevent the
members of the same family from dispersing, while seek-
ing their common goal. Similarly, leader–follower behav-
ior can be addressed by creating an ellipsoid filter attached
to the leader, and sloping in toward the major axis of the
ellipsoid.

Another future direction is to extend our framework to
automatically select the maximal set of behaviors that can
be handled at a minimal frame rate, based on an assess-
ment of the available computational resources.
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