Informed Search and Exploration

Sections 3.5 and 3.6



I Outline

Best-first search

A* search

Heuristics, pattern databases
IDA* search

(Recursive Best-First Search (RBFS), MA* and
SMA* search)
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I Best-first search

Idea: use an evaluation function for each node

The evaluation function is an estimateof “desirability”
Expand the most desirable unexpanded node
The desirability function comes from domain knowledge

© o o0

Implementation:
The frontier is a queue sorted in decreasing order of desirability

°

Special cases:
# greedy best first search
# A* search
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Romania with step costs in km
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Sample straight line distances to Bucharest:
Arad: 366, Bucharest 0O, Sibiu: 253, Timisoara: 329.



I Greedy best-first search

® Evaluation function i(n) (heuristic) = estimate of cost from n to
the closest goal

® E.g., hspp(n) = straight-line distance from n to Bucharest

® Greedy best-first search expands the node that appears to be
closest to goal
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I Greedy best-first search example

>CArad



I After expanding Arad

140

253

75
118

Cimisoara> ~ Zerind_>

329 374



I After expanding Sibiu
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I After expanding Fagaras

140 75
118
329 374
140 80
99 151
Chrad >  @agaras®» COradea > C_Rimnic.
366 380 193
99 211
Cibiu___>B>CBucharesD
253 0

The goal Bucharest is found with a cost of 450. However, there is a

better solution through Pitesti (h = 417).



I Properties of greedy best-first search

®» Complete No — can get stuck in loops
For example, going from lasi to Fagaras,
lasi — Neamt — lasi — Neamt — ...
Complete in finite space with repeated-state checking

® Time O(b™), but a good heuristic can give dramatic improvement
(more later)

® Space O(b™)—keeps all nodes in memory

® Optimal No
(For example, the cost of the path found in the previous slide was
450. The path Arad, Sibiu, Rimnicu Vilcea, Pitesti, Bucharest has

a cost of 140+80+97+101 = 418.)



I A* search

® |dea: avoid expanding paths that are already expensive
® Evaluation function f(n) = g(n) + h(n)

® ¢(n) = exact cost so far to reach n

® h(n) = estimated cost to goal from n

® f(n) = estimated total cost of path through » to goal
® A* search uses an admissible heuristic

l.e., h(n) < h*(n) where h*(n) is the true cost from n.
(Also require h(n) > 0, so h(G) = 0 for any goal GG.)

® Straight line distance (hsp(n)) is an admissible heuristic
because never overestimates the actual road distance.
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I A* search.example

>Caad

366=0+366



I After expanding Arad

< Cimisoara >~ CZerind_D

393=140+253 447=118+329 449=75+374
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After expanding Sibiu

Cimisoara >~ CZerind_ D

447=118+329 449=75+374

Carad > CFagaras > COradea DB>CRimnicu V.

646=280+366 415=239+176 671=291+380 413=220+193



After expanding Rimnicu Vilcea

Cimisoara >~ CZerind_ D

447=118+329 449=75+374

Carad _DOB>CFagaras > COradea

646=280+366 415=239+176 671=291+380

526=366+160 417=317+100 553=300+253



After expanding Fagaras

447=118+329 449=75+374

Grad > @agaiasd» COradea > CRmmEH»

646=280+366 671=291+380

G > e T S T

591=338+253 450=450+0 526=366+160 417=317+100 553=300+253

Remember that the goal test is performed when a node is selected for
expansion, not when it is generated.



After expanding Pitesti

Cimisoara > CZerind >

447=118+329 449=75+374

Carad >

646=280+366 671=291+380

Gibiu > CBucharest D CCraiova__ CSbiu_>

591=338+253 450=450+0 526=366+160 553=300+253

B> Cucharest > raiova > CRimniou V>

418=418+0 615=455+160 607=414+193



I Optimality of A * for trees

Theorem: A* search is optimal.
Note that, A* search uses an admissible heuristic by definition.

Suppose some suboptimal goal G5 has been generated and is in the
gueue. Let n be an unexpanded node on a shortest path to an optimal
goal GG;.

—



I Optimality of A * for trees (cont’d)

f(n) =g(n) + h(n) by definition

f(G1) = g(Gy) because h is 0 at a goal

f(G2) = g(G2) because h is 0 at a goal

f(n) < f(Gy) because h is admissible (never overestimates)
f(G1) < f(G2) because G- is suboptimal

f(n) < f(Ge) combine the above two

—



I Progress of A with an inconsistent heuristic

Note that & is admissible, it never overestimates.

B



I Progress of A with an inconsistent heuristic

The root node was expanded. Note that f decreased from 6 to 4.

—



I Progress of A with an inconsistent heuristic

The suboptimal path is being pursued.



I Progress of A with an inconsistent heuristic

Goal found, but we cannot stop until it is selected for
expansion.

—



I Progress of A with an inconsistent heuristic

The node with f = 7 is selected for expansion.



I Progress of A with an inconsistent heuristic

The optimal path to the goal is found.



I Consistency

A heuristic is consistent if
h(n) < c¢(n,a,n’) + h(n')

If ~ IS consistent, we have c(n, a, n")

fn') = g(n’)
= g

v
=Nk
’533

l.e., f(n) is nondecreasing along any path.



I Optimality of A * for graphs

» [emma: A* expands nodes in order of increasing f value

® Gradually adds “f-contours” of nodes
(cf. breadth-first adds layers)
Contour ¢ has all nodes with f = f;, where f; < f;11

® \With uniform-cost search (A* search with h(n)=0) the bands are

“circular”.
With a more accurate heuristic, the bands will stretch toward the

goal and become more narrowly focused around the optimal
path.

—



I F-contours




I Performance of A"

® The absolute error of a heuristic is defined as

A=h*—h
® The relative error of a heuristic is defined as
_ Rh*—h

€ = P
#® Complexity with constant step costs: O(b¢)

® Problem: there can be exponentially many states with f(n) < C*
even if the absolute error is bounded by a constant

—



I Properties of A’

® Complete Yes, unless there are infinitely many nodes with
f<f(G)

® Time Exponential in
(relative error in h x length of solution)

® Space Keeps all nodes in memory
® Optimal Yes—cannot expand f; 1 until f; is finished

® A* expands all nodes with f(n) < C*
® A* expands some nodes with f(n) = C*
® A* expands no nodes with f(n) > C*

B



I Admissible heuristics

E.g., for the 8-puzzle:

hi(n) = number of misplaced tiles

ho(n) = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

4 2 4 1 2
5 6 3 4 5
8 3 1 6 7 8
Start State Goal State
hl (S) = 77
hQ(S) = 77



I Dominance

If ho(n) > hy(n) for all n (both admissible)
then ho dominates hy; and is better for search

Typical search costs:
d=14 IDS = 3,473,941 nodes
A*(h1) =539 nodes
A*(hy) = 113 nodes
d=24 IDS = 54,000,000,000 nodes
A*(h1) = 39,135 nodes
A*(hs) = 1,641 nodes



I Effect of Heuristic on Performance

The effect is characterized by the effective branching factor (b*)
® |f the total number of nodes generated by A* is N and

® the solution depthis d,
® then b is branching factor of a uniform tree, such that
N+1=1+b+(b)*+ + (b)?
A well designed heuristic has a b close to 1.

—



I Using relaxed problems to find heuristics

» Admissible heuristics can be derived from the exact solution cost
of a relaxed version of the problem

® |[f the rules of the 8-puzzle are relaxed so that a tile can move
anywhere, then hy(n) gives the shortest solution

® |[f the rules are relaxed so that a tile can move to any adjacent
square, then hy(n) gives the shortest solution

® Key point: the optimal solution cost of a relaxed problem is no
greater than the optimal solution cost of the real problem

B



I Relaxed problems (cont’'d)

Well-known example: travelling salesperson problem (TSP)
Find the shortest tour visiting all cities exactly once

Minimum spanning tree can be computed in O(n?)
and is a lower bound on the shortest (open) tour

—



I Pattern databases

® Admissible heuristics can also be generated from the solution
cost of sub- problems.

® For example, in the 8-puzzle problem a sub-problem of getting
the tiles 2, 4, 6, and 8 into position is a lower bound on solving
the complete problem.

® Pattern databases store the solution costs for all the sub-problem
Instances.

® The choice of sub-problem is flexible:
for the 8-puzzle a subproblem for 2,4,6,8 or 1,2,3,4 or 5,6,7,8, . .
. could be created.

B



I lterative Deepening A* (IDA¥)

® |dea: perform iterations of DFS. The cutoff is defined based on
the f-cost rather than the depth of a node.

® Each iteration expands all nodes inside the contour for the
current f-cost, peeping over the contour to find out where the

contour lies.

—



I lterative Deepening A* (IDA¥)

function IDA* (problem)
returns a solution sequence

Inputs: problem, a problem
local variables:
f-limit, the current f-CosT limit
root, a node

root «—— MAKE-NODE(INITIAL -STATE[problem])
f-limit < f-CosT(root)
loop do
solution, f-limit +— DFS-CoNTOUR(root, f-limit)
if solution is non-null then return solution
If f-limit = oo then return failure

—



I lterative Deepening A* (IDA¥)

function DFS-CoNTOUR (node, f-limit)
returns a solution sequence and a new f-CosT limit

iInputs: node, a node
f-limit, the current f-CosT limit
local variables:
next-f, the f-CosT limit for the next contour, initally oo

If f-Cosi{node] > f-limit then return null, f-CosTnode]
If GoAL-TESsT[problem](STATE[node]) then return node, f-limit
for eachnode s in SUCCESSOR$0de) do

solution, new-f < DFS-CONTOUR(S, f-limit)

If solution is non-null then return solution, f-limit

next-f < MIN(next-f, new-f)

return null, next-f |



How would IDA* proceed?

f=118+329=447 f=75+374=449
140 80
99 151
Crad > < Rimnicuy.
f=415 f=413
f=280+366=646 f=291+380=671
Gibiu__> CCraiova_>
f=417
f=338+253=591 f=450+0=450 f=366+160=526 f=300+253=553
f-limits:
366 (Arad), 393 (Sibiu),
413 (RV), 417 (Pitesti) B> CBucharesiD CRimnicu VD
418 (Bucharest, goal)

f=418+0=418 f=455+160=615f=414+193=607

The blue nodes are the ones A* expanded. For IDA*,
they define the new f-limit.



I Properties of IDA*

® Complete Yes, similar to A*.

# Time Depends strongly on the number of different
values that the heuristic value can take on.
8-puzzle: few values, good performance
TSP: the heuristic value is different for every state.
Each contour only includes one more state than the
previous contour. If A* expands N nodes, IDA*

expands 1 +2 + ...+ N = O(N?) nodes.

# Space It is DFS, it only requires space proportional
to the longest path it explores. If § Is the smallest
operator cost, and f* is the optimal solution cost,

then IDA* will require bf* /6 nodes.
# Optimal Yes, similar to A* |



I Recursive Best-First Search (RBFS)

# |dea: mimic the operation of standard best-first
search, but use only linear space

# Runs similar to recursive depth-first search, but
rather than continuing indefinitely down the current
path, it uses the f-limit variable to keep track of the
best alternative path available from any ancestor of
the current node.

# |[f the current node exceeds this limit, the recursion
unwinds back to the alternative path. As the
recursion unwinds, RBFS replaces the f-value of
each node along the path with the best f-value of its

children. In this way, it can decide whether it's worth
reexpanding a forgotten subtree. |



I RBFES Algorithm

function RECURSIVEBEST-FIRST-SEARCH (problem)
returns a solution or failure
return RBFS(problem, MAKE-NODE(problem.INITIAL -STATE), o)



I RBFES Algorithm (cont’d)

function RBFS(problem, node, f-limit)
returns a solution or failure and a new f-cost limit
If problem.GoAL-TEST(node.STATE) then return SoLUTION(node)
SuCCessors «— | |
for each action in problem.AcTiONS(node.STATE) do
add CHILD-NoODE(problem, node, action) into successors
If successors is empty then return failure, oo
for each s in successors do
[* update f with value from previous search, if any */
s.f « max (s.g + s.h,node.f))
loop do
best « the lowest f-value in successors
if best.f > f-limit then return failure, best.f
alternative «+— the second lowest f-value among successors

result, best.f +— RBFS (problem, best, min(f-limit,alternative))
If result = failure then return result |



Progress of RBFS

(b) After unwinding back to Sibiu
and expanding Fagaras 66

(c) After switching back to Rimnicu Vilcea
and expanding Pitesti

449



I Progress of RBFS (cont’d)

# Stage (a): The path via Rimnicu Vilcea is followed
until the current best leaf (Pitesti) has a value that is
worse than the best alternative path (Fagaras).

# Stage (b): The recursion unwinds and the best leaf
value of the forgotten subtree (417) is backed up to
Rimnicu Vilcea; then Fagaras is expanded, revealing
a best value of 450.

# Stage (c): The recursion unwinds and the best value
of the of the forgotten subtree (450) is backed up to
Fagaras; then Rimnicu Vilcea is expanded. This
time, because the best alternative path through

Timisoara costs at least 447, the expansion
continues to Bucharest. |



I Properties of RBFS

® Complete Yes, similar to A*.

# Time The time complexity is difficult to characterize:
It depends both on the accuracy of the heuristic
function and on how often the best path changes as
nodes are expanded. Each mind change
corresponds to an iteration of IDA*, and could
require many reexpansions of forgotten nodes to
recreate the best path and extend it one more node.
RBFS is somewhat more efficient than IDA*, but still

suffers from excessive node regeneration.



I Properties of RBFS (cont’'d)

# Space IDA* and RBFS suffer from using too little
memory. Between iterations, IDA* retains only a
single number: the current f-cost limit. RBFS retains
more information in memory, but only uses O(bd)
memory. Even if more memory is available, RBFS
has no way to make use of it.

# Optimal Yes, similar to A*.

—



I MA* and SMA*

# |dea: use all the available memory
IDA* remembers only the current f-cost limit

RBFS uses linear space

#® Proceeds just like A*, expanding the best leaf until
the memory is full. When the memory Iif full, drops

the worst leaf node.

—



I Summary

# The evaluation function for a node n Is:
f(n) = g(n) + h(n)
o Ifonly g(n) Is used, we get uniform-cost search
o Ifonly h(n) IS used, we get greedy best-first search
)

o If both g(n
search

and h(n) are used we get best-first

o If both g(n) and h(n) are used with an admissible
heuristic we get A* search

® A consistent heuristic is admissible but not
necessarily vice versa

—



I Summary.(cont’d)

# Admissibility is sufficient to guarantee solution
optimality for tree search

# Consistency Is required to guarantee solution
optimality for graph search

# |If an admissible but not consistent heuristic Is used

for graph search, we need to adjust path costs when
a node is rediscovered

# Heuristic search usually brings dramatic
Improvement over uninformed search

# Keep in mind that the f-contours might still contain

an exponential number of nodes |
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