Informed Search and Exploration

Sections 3.5 and 3.6

I Outline

Best-first search

A* search

Heuristics, pattern databases
IDA* search

(Recursive Best-First Search (RBFS), MA* and
SMA* search)

© o o o 0

—

I Best-first search

Idea: use an evaluation function for each node

The evaluation function is an estimateof “desirability”
Expand the most desirable unexpanded node
The desirability function comes from domain knowledge

© o o0

Implementation:
The frontier is a queue sorted in decreasing order of desirability

°

Special cases:
greedy best first search
A* search

—

Romania with step costs in km

] Oradea
Neamt
]
Zerind 87
75 151
L lasi
Arad
- 92
Sibiu 99 Fagaras
118 L] Vaslui
80
Timisoara Rimnicu Vilcea
142
111 N1 Lugol pitesti \211
]
70 98 .
. 85 u L1 Hirsova
] Mehadia 101 Urziceni
]
86
75 138 Bucharest
Dobreta [] 120
- 90 =
Craiova] Giurgiu Eforie

Sample straight line distances to Bucharest:
Arad: 366, Bucharest 0O, Sibiu: 253, Timisoara: 329.

I Greedy best-first search

® Evaluation function i(n) (heuristic) = estimate of cost from n to
the closest goal

® E.g., hspp(n) = straight-line distance from n to Bucharest

® Greedy best-first search expands the node that appears to be
closest to goal

—

I Greedy best-first search example

>CArad

I After expanding Arad

140

253

75
118

Cimisoara> ~ Zerind_>

329 374

I After expanding Sibiu

140

366 176 380 193

75
118

Cimisoara> ~ Zerind_>

329 374

I After expanding Fagaras

140 75
118
329 374
140 80
99 151
Chrad > @agaras®» COradea > C_Rimnic.
366 380 193
99 211
Cibiu___>B>CBucharesD
253 0

The goal Bucharest is found with a cost of 450. However, there is a

better solution through Pitesti (h = 417).

I Properties of greedy best-first search

®» Complete No — can get stuck in loops
For example, going from lasi to Fagaras,
lasi — Neamt — lasi — Neamt — ...
Complete in finite space with repeated-state checking

® Time O(b™), but a good heuristic can give dramatic improvement
(more later)

® Space O(b™)—keeps all nodes in memory

® Optimal No
(For example, the cost of the path found in the previous slide was
450. The path Arad, Sibiu, Rimnicu Vilcea, Pitesti, Bucharest has

a cost of 140+80+97+101 = 418.)

I A* search

® |dea: avoid expanding paths that are already expensive
® Evaluation function f(n) = g(n) + h(n)

® ¢(n) = exact cost so far to reach n

® h(n) = estimated cost to goal from n

® f(n) = estimated total cost of path through » to goal
® A* search uses an admissible heuristic

l.e., h(n) < h*(n) where h*(n) is the true cost from n.
(Also require h(n) > 0, so h(G) = 0 for any goal GG.)

® Straight line distance (hsp(n)) is an admissible heuristic
because never overestimates the actual road distance.

—

I A* search.example

>Caad

366=0+366

I After expanding Arad

< Cimisoara >~ CZerind_D

393=140+253 447=118+329 449=75+374

—

After expanding Sibiu

Cimisoara >~ CZerind_ D

447=118+329 449=75+374

Carad > CFagaras > COradea DB>CRimnicu V.

646=280+366 415=239+176 671=291+380 413=220+193

After expanding Rimnicu Vilcea

Cimisoara >~ CZerind_ D

447=118+329 449=75+374

Carad _DOB>CFagaras > COradea

646=280+366 415=239+176 671=291+380

526=366+160 417=317+100 553=300+253

After expanding Fagaras

447=118+329 449=75+374

Grad > @agaiasd» COradea > CRmmEH»

646=280+366 671=291+380

G > e T S T

591=338+253 450=450+0 526=366+160 417=317+100 553=300+253

Remember that the goal test is performed when a node is selected for
expansion, not when it is generated.

After expanding Pitesti

Cimisoara > CZerind >

447=118+329 449=75+374

Carad >

646=280+366 671=291+380

Gibiu > CBucharest D CCraiova__ CSbiu_>

591=338+253 450=450+0 526=366+160 553=300+253

B> Cucharest > raiova > CRimniou V>

418=418+0 615=455+160 607=414+193

I Optimality of A * for trees

Theorem: A* search is optimal.
Note that, A* search uses an admissible heuristic by definition.

Suppose some suboptimal goal G5 has been generated and is in the
gueue. Let n be an unexpanded node on a shortest path to an optimal
goal GG;.

—

I Optimality of A * for trees (cont’d)

f(n) =g(n) + h(n) by definition

f(G1) = g(Gy) because h is 0 at a goal

f(G2) = g(G2) because h is 0 at a goal

f(n) < f(Gy) because h is admissible (never overestimates)
f(G1) < f(G2) because G- is suboptimal

f(n) < f(Ge) combine the above two

—

I Progress of A with an inconsistent heuristic

Note that & is admissible, it never overestimates.

B

I Progress of A with an inconsistent heuristic

The root node was expanded. Note that f decreased from 6 to 4.

—

I Progress of A with an inconsistent heuristic

The suboptimal path is being pursued.

I Progress of A with an inconsistent heuristic

Goal found, but we cannot stop until it is selected for
expansion.

—

I Progress of A with an inconsistent heuristic

The node with f = 7 is selected for expansion.

I Progress of A with an inconsistent heuristic

The optimal path to the goal is found.

I Consistency

A heuristic is consistent if
h(n) < c¢(n,a,n’) + h(n')

If ~ IS consistent, we have c(n, a, n")

fn') = g(n’)
= g

v
=Nk
’533

l.e., f(n) is nondecreasing along any path.

I Optimality of A * for graphs

» [emma: A* expands nodes in order of increasing f value

® Gradually adds “f-contours” of nodes
(cf. breadth-first adds layers)
Contour ¢ has all nodes with f = f;, where f; < f;11

® \With uniform-cost search (A* search with h(n)=0) the bands are

“circular”.
With a more accurate heuristic, the bands will stretch toward the

goal and become more narrowly focused around the optimal
path.

—

I F-contours

I Performance of A"

® The absolute error of a heuristic is defined as

A=h*—h
® The relative error of a heuristic is defined as
_ Rh*—h

€ = P
#® Complexity with constant step costs: O(b¢)

® Problem: there can be exponentially many states with f(n) < C*
even if the absolute error is bounded by a constant

—

I Properties of A’

® Complete Yes, unless there are infinitely many nodes with
f<f(G)

® Time Exponential in
(relative error in h x length of solution)

® Space Keeps all nodes in memory
® Optimal Yes—cannot expand f; 1 until f; is finished

® A* expands all nodes with f(n) < C*
® A* expands some nodes with f(n) = C*
® A* expands no nodes with f(n) > C*

B

I Admissible heuristics

E.g., for the 8-puzzle:

hi(n) = number of misplaced tiles

ho(n) = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

4 2 4 1 2
5 6 3 4 5
8 3 1 6 7 8
Start State Goal State
hl (S) = 77
hQ(S) = 77

I Dominance

If ho(n) > hy(n) for all n (both admissible)
then ho dominates hy; and is better for search

Typical search costs:
d=14 IDS = 3,473,941 nodes
A*(h1) =539 nodes
A*(hy) = 113 nodes
d=24 IDS = 54,000,000,000 nodes
A*(h1) = 39,135 nodes
A*(hs) = 1,641 nodes

I Effect of Heuristic on Performance

The effect is characterized by the effective branching factor (b*)
® |f the total number of nodes generated by A* is N and

® the solution depthis d,
® then b is branching factor of a uniform tree, such that
N+1=1+b+(b)*+ + (b)?
A well designed heuristic has a b close to 1.

—

I Using relaxed problems to find heuristics

» Admissible heuristics can be derived from the exact solution cost
of a relaxed version of the problem

® |[f the rules of the 8-puzzle are relaxed so that a tile can move
anywhere, then hy(n) gives the shortest solution

® |[f the rules are relaxed so that a tile can move to any adjacent
square, then hy(n) gives the shortest solution

® Key point: the optimal solution cost of a relaxed problem is no
greater than the optimal solution cost of the real problem

B

I Relaxed problems (cont’'d)

Well-known example: travelling salesperson problem (TSP)
Find the shortest tour visiting all cities exactly once

Minimum spanning tree can be computed in O(n?)
and is a lower bound on the shortest (open) tour

—

I Pattern databases

® Admissible heuristics can also be generated from the solution
cost of sub- problems.

® For example, in the 8-puzzle problem a sub-problem of getting
the tiles 2, 4, 6, and 8 into position is a lower bound on solving
the complete problem.

® Pattern databases store the solution costs for all the sub-problem
Instances.

® The choice of sub-problem is flexible:
for the 8-puzzle a subproblem for 2,4,6,8 or 1,2,3,4 or 5,6,7,8, . .
. could be created.

B

I lterative Deepening A* (IDA¥)

® |dea: perform iterations of DFS. The cutoff is defined based on
the f-cost rather than the depth of a node.

® Each iteration expands all nodes inside the contour for the
current f-cost, peeping over the contour to find out where the

contour lies.

—

I lterative Deepening A* (IDA¥)

function IDA* (problem)
returns a solution sequence

Inputs: problem, a problem
local variables:
f-limit, the current f-CosT limit
root, a node

root «—— MAKE-NODE(INITIAL -STATE[problem])
f-limit < f-CosT(root)
loop do
solution, f-limit +— DFS-CoNTOUR(root, f-limit)
if solution is non-null then return solution
If f-limit = oo then return failure

—

I lterative Deepening A* (IDA¥)

function DFS-CoNTOUR (node, f-limit)
returns a solution sequence and a new f-CosT limit

iInputs: node, a node
f-limit, the current f-CosT limit
local variables:
next-f, the f-CosT limit for the next contour, initally oo

If f-Cosi{node] > f-limit then return null, f-CosTnode]
If GoAL-TESsT[problem](STATE[node]) then return node, f-limit
for eachnode s in SUCCESSOR$0de) do

solution, new-f < DFS-CONTOUR(S, f-limit)

If solution is non-null then return solution, f-limit

next-f < MIN(next-f, new-f)

return null, next-f |

How would IDA* proceed?

f=118+329=447 f=75+374=449
140 80
99 151
Crad > < Rimnicuy.
f=415 f=413
f=280+366=646 f=291+380=671
Gibiu__> CCraiova_>
f=417
f=338+253=591 f=450+0=450 f=366+160=526 f=300+253=553
f-limits:
366 (Arad), 393 (Sibiu),
413 (RV), 417 (Pitesti) B> CBucharesiD CRimnicu VD
418 (Bucharest, goal)

f=418+0=418 f=455+160=615f=414+193=607

The blue nodes are the ones A* expanded. For IDA*,
they define the new f-limit.

I Properties of IDA*

® Complete Yes, similar to A*.

Time Depends strongly on the number of different
values that the heuristic value can take on.
8-puzzle: few values, good performance
TSP: the heuristic value is different for every state.
Each contour only includes one more state than the
previous contour. If A* expands N nodes, IDA*

expands 1 +2 + ...+ N = O(N?) nodes.

Space It is DFS, it only requires space proportional
to the longest path it explores. If § Is the smallest
operator cost, and f* is the optimal solution cost,

then IDA* will require bf* /6 nodes.
Optimal Yes, similar to A* |

I Recursive Best-First Search (RBFS)

|dea: mimic the operation of standard best-first
search, but use only linear space

Runs similar to recursive depth-first search, but
rather than continuing indefinitely down the current
path, it uses the f-limit variable to keep track of the
best alternative path available from any ancestor of
the current node.

|[f the current node exceeds this limit, the recursion
unwinds back to the alternative path. As the
recursion unwinds, RBFS replaces the f-value of
each node along the path with the best f-value of its

children. In this way, it can decide whether it's worth
reexpanding a forgotten subtree. |

I RBFES Algorithm

function RECURSIVEBEST-FIRST-SEARCH (problem)
returns a solution or failure
return RBFS(problem, MAKE-NODE(problem.INITIAL -STATE), o)

I RBFES Algorithm (cont’d)

function RBFS(problem, node, f-limit)
returns a solution or failure and a new f-cost limit
If problem.GoAL-TEST(node.STATE) then return SoLUTION(node)
SuCCessors «— | |
for each action in problem.AcTiONS(node.STATE) do
add CHILD-NoODE(problem, node, action) into successors
If successors is empty then return failure, oo
for each s in successors do
[* update f with value from previous search, if any */
s.f « max (s.g + s.h,node.f))
loop do
best « the lowest f-value in successors
if best.f > f-limit then return failure, best.f
alternative «+— the second lowest f-value among successors

result, best.f +— RBFS (problem, best, min(f-limit,alternative))
If result = failure then return result |

Progress of RBFS

(b) After unwinding back to Sibiu
and expanding Fagaras 66

(c) After switching back to Rimnicu Vilcea
and expanding Pitesti

449

I Progress of RBFS (cont’d)

Stage (a): The path via Rimnicu Vilcea is followed
until the current best leaf (Pitesti) has a value that is
worse than the best alternative path (Fagaras).

Stage (b): The recursion unwinds and the best leaf
value of the forgotten subtree (417) is backed up to
Rimnicu Vilcea; then Fagaras is expanded, revealing
a best value of 450.

Stage (c): The recursion unwinds and the best value
of the of the forgotten subtree (450) is backed up to
Fagaras; then Rimnicu Vilcea is expanded. This
time, because the best alternative path through

Timisoara costs at least 447, the expansion
continues to Bucharest. |

I Properties of RBFS

® Complete Yes, similar to A*.

Time The time complexity is difficult to characterize:
It depends both on the accuracy of the heuristic
function and on how often the best path changes as
nodes are expanded. Each mind change
corresponds to an iteration of IDA*, and could
require many reexpansions of forgotten nodes to
recreate the best path and extend it one more node.
RBFS is somewhat more efficient than IDA*, but still

suffers from excessive node regeneration.

I Properties of RBFS (cont’'d)

Space IDA* and RBFS suffer from using too little
memory. Between iterations, IDA* retains only a
single number: the current f-cost limit. RBFS retains
more information in memory, but only uses O(bd)
memory. Even if more memory is available, RBFS
has no way to make use of it.

Optimal Yes, similar to A*.

—

I MA* and SMA*

|dea: use all the available memory
IDA* remembers only the current f-cost limit

RBFS uses linear space

#® Proceeds just like A*, expanding the best leaf until
the memory is full. When the memory Iif full, drops

the worst leaf node.

—

I Summary

The evaluation function for a node n Is:
f(n) = g(n) + h(n)
o Ifonly g(n) Is used, we get uniform-cost search
o Ifonly h(n) IS used, we get greedy best-first search
)

o If both g(n
search

and h(n) are used we get best-first

o If both g(n) and h(n) are used with an admissible
heuristic we get A* search

® A consistent heuristic is admissible but not
necessarily vice versa

—

I Summary.(cont’d)

Admissibility is sufficient to guarantee solution
optimality for tree search

Consistency Is required to guarantee solution
optimality for graph search

|If an admissible but not consistent heuristic Is used

for graph search, we need to adjust path costs when
a node is rediscovered

Heuristic search usually brings dramatic
Improvement over uninformed search

Keep in mind that the f-contours might still contain

an exponential number of nodes |

	Outline
	Best-first search
	Romania with step costs in km
	Greedy best-first search
	Greedy best-first search example
	After expanding Arad
	After expanding Sibiu
	After expanding Fagaras
	Properties of greedy best-first search
	A* search
	A* search example
	After expanding Arad
	After expanding Sibiu
	After expanding Rimnicu Vilcea
	After expanding Fagaras
	After expanding Pitesti
	Optimality of A* for trees
	Optimality of A* for trees (cont'd)
	Progress of A* with an inconsistent heuristic
	Progress of A* with an inconsistent heuristic
	Progress of A* with an inconsistent heuristic
	Progress of A* with an inconsistent heuristic
	Progress of A* with an inconsistent heuristic
	Progress of A* with an inconsistent heuristic
	Consistency
	Optimality of A* for graphs
	F-contours
	Performance of A*
	Properties of A*
	Admissible heuristics
	Dominance
	Effect of Heuristic on Performance
	Using relaxed problems to find heuristics
	Relaxed problems (cont'd)
	Pattern databases
	Iterative Deepening A* (IDA*)
	Iterative Deepening A* (IDA*)
	Iterative Deepening A* (IDA*)
	How would IDA* proceed?
	Properties of IDA*
	Recursive Best-First Search (RBFS)
	RBFS Algorithm
	RBFS Algorithm (cont'd)
	Progress of RBFS
	Progress of RBFS (cont'd)
	Properties of RBFS
	Properties of RBFS (cont'd)
	MA* and SMA*
	Summary
	Summary (cont'd)

