Planning Graphs and Graphplan

Section 10.3

Nilufer Onder
Department of Computer Science
Michigan Technological University
The planning graph
Planning graph example
The graphplan algorithm
Using planning graphs for heuristics
A planning graph

- A layered graph
- Two kinds of layers alternate
 - literal (proposition) (shown with circles)
 - action (shown with squares)
- Every two layers corresponds to a discrete time
- No variables as in action schemas
A planning graph

- The first layer is a literal layer which shows all the literals that are true in the initial layer.
- Every action has a link from each of its preconditions and a link to each of its effects.
- Straight lines between to literals at consecutive literal levels denote NoOp.
A planning graph
The red lines show *mutex relationships*

Those are the literals and actions that are mutually exclusive, i.e., cannot appear at the same time.
A planning graph
Inconsistent effects: one action negates the effect of the other.
Mutex relationships for actions

Interference: one of the effects of one action is the negation of a precondition of the other.
Mutex relationships for actions

Competing needs: one of the preconditions of one action is mutually exclusive with a precondition of another.
Mutex relationships for literals

- One is the negation of the other
- *Inconsistent support*: all ways of achieving two literals is mutually exclusive
Initial conditions: garbage, cleanhands, quiet
Goal: dinner, present, ¬garbage
Operators:
 Cook:
 pre: cleanhands
 eff: dinner
 Wrap:
 pre: quiet
 eff: present
 Carry:
 pre:
 eff: ¬garbage, ¬cleanhands
 Dolly:
 pre:
 eff: ¬garbage, ¬quiet
Example: graph expanded to level S_1
At level S_1, all the goal conditions are present, can look for a solution

There are two ways to satisfy dinner, present, \neg garbage:
{carry; cook; wrap}
{dolly; cook; wrap}

carry is mutex with cook
dolly is mutex with wrap

Solution extraction fails, need to expand the graph
Example: graph expanded to level S_2
At level S_2, all the goal conditions are still present. In fact, they do not go away once they appear.

Notice that there are fewer mutex relationships at level S_2.

There are three ways to satisfy \neggarbage:
- carry, dolly, noop

There are two ways to satisfy present:
- wrap, noop

There are two ways to satisfy dinner:
- cook, noop

So, look for at all $3 \times 2 \times 2 = 12$ combinations.
Support \(\sim \)garbage with carry, dinner with noop, and present with wrap
This is a consistent set because none are mutually exclusive

The subgoals from level \(A_1 \) are dinner (precondition of noop), quiet (precondition of wrap)
There are only two subgoals because dolly and carry do not have preconditions

Choose cook to support dinner, and noop for quiet.
These two actions are not mutex.

If there are multiple actions at a level, they can be executed in parallel.
function \textbf{GRAPHPLAN} (\textit{problem})
returns a solution, or failure

\begin{align*}
 \text{graph} & \leftarrow \text{INITIAL-PLANNING-GRAph} (\textit{problem}) \\
 \text{goals} & \leftarrow \text{CONJUNCTS}[\textit{problem}.\text{GOAL}] \\
 \text{nogoods} & \leftarrow \text{an empty hash table} \\
 \text{for } tI = 0 \text{ to } \infty \text{ do} \\
 & \quad \text{if } \text{goals all non-mutex in last level of } \text{graph then} \\
 & \quad \quad \text{solution} \leftarrow \text{EXTRACT-SOLUTION} (\text{graph, goals,} \\
 & \quad \quad \quad \text{NumLevels}(\text{graph}, \text{nogoods}) \\
 & \quad \quad \text{if } \text{solution} \neq \text{failure} \text{ then return solution} \\
 & \quad \quad \text{if } \text{graph and nogoods have both leveled off then return failure} \\
 & \quad \text{graph} \leftarrow \text{EXPAND-GRAph} (\text{graph, problem})
\end{align*}
Properties of planning graphs

- A literal that does not appear in the final level of the graph cannot be achieved by any plan.

- The *level cost* of a goal literal is the first level it appears, e.g., 0 for cleanhands and 1 for dinner.

- Level cost is an admissible heuristic but might undercount: it counts the number of levels, whereas there might be several actions at each level. → use a *serial planning graph*
Heuristics derived from planning graphs

- The **max level heuristic** takes the maximum level cost of any of the goals (admissible, not very accurate)

- The **level cost heuristic** returns the sum of the level costs of the goals (inadmissible, works well in practice)

- The **set level heuristic** finds the level at which all the literals in the conjunctive goal appear in the planning graph without any pair of them being mutually exclusive (dominates max level, works well when the subplans interact a lot)
Termination of Graphplan

The algorithm is guaranteed to terminate when there is no solution.

When both the graph and the no-goods level off, the algorithm terminates.

The graph will level off at a finite level due to the following properties:

- literals increase monotonically
- actions increase monotonically
- mutexes decrease monotonically
- no-goods decrease monotonically
Sources for the slides

- AIMA textbook (3rd edition)
- AIMA slides (http://aima.cs.berkeley.edu/)