
Boolean Satisfiability Based Planning (SATPLAN)

Section 10.4.1

—–

Nilufer Onder

Department of Computer Science

Michigan Technological University

Sec. 10.4.1 – p.1/26

Outline

Background and overview

The Satplan algorithm

Converting planning problems into Boolean formulas

Solving Booelan formulas

Sec. 10.4.1 – p.2/26

What is a satisfiability problem?

SAT: propositional satisfiability problem

given a Boolean formula in CNF, find an
interpretation that makes it true.

CNF: conjunctive normal form, conjunction of
disjunctions

interpretation: assignment of truth values to literals
(propositions)

Sec. 10.4.1 – p.3/26

SAT Example

(A ∨B) ∧ (¬A ∨ C)

Possible interpretations are:
A : T, B : T, C: T
A : T, B : F, C: T
A : F, B : T, C: T
A : F, B : T, C: F

But not one that assigns F to both A and B.

Sec. 10.4.1 – p.4/26

SAT formulas for planning

If these are the initial conditions, these are the desired
goals, which action(s) would be executed at time 0, at
time 1, and so on.
An assignment would, for example, assign F to dollying
at time 0, but T to wrapping at time 0.

Sec. 10.4.1 – p.5/26

SAT-based planning architecture

Decoder
planInitial state

Goal
Actions

Compiler Simplifier Solver
CNF CNF

Symbol table

Increment time bound
if unsatisfiable

satisfying
assignment

Sec. 10.4.1 – p.6/26

The SATPLAN algorithm

function SATPLAN (problem, Tmax)
returns a solution, or failure

inputs: problem, a planning problem
inputs: Tmax, an upper limit for plan length

for T = 0 to Tmax do
cnf, mapping← TRANSLATE-TO-SAT(problem, T)
assignment← SAT-SOLVER(cnf)
if assignment is not null then

return EXTRACT-SOLUTION(assignment,mapping)
return failure

Sec. 10.4.1 – p.7/26

Building CNF formulas for planning problems

Code the initial conditions:
garb0

∧ cleanhands0
∧ quiet0 ∧ ¬dinner0

∧ ¬present0

Guess a time when the goal conditions will be true,
and code the goal propositions:
¬garb2

∧ dinner2
∧ present2

Sec. 10.4.1 – p.8/26

Building CNF formulas for planning problems

Code the preconditions and effects for each action.
In order for the action to be executed at time t, its
preconditions must be true at time t, and the effects
will take place at time t + 1. This must be done for
every time step and for every action:
cook0

→ cleanhands0
∧ dinner1

cook1
→ cleanhands1

∧ dinner2

wrap0
→ quiet0 ∧ present1

. . .

Note that cook0
→ cleanhands0

∧ dinner1 will be
translated into CNF as
¬cook0

∨ (cleanhands0
∧ dinner1) =

(¬cook0
∨ cleanhands0) ∧ (¬cook0

∨ dinner1)

Sec. 10.4.1 – p.9/26

Building CNF formulas for planning problems

The conditions under which a proposition does not
change from time t to time t + 1 must also be
specified. Otherwise, only changed propositions can
be proven, those that don’t cannot be proven for
subsequent times. These are called frame axioms.

Full (classical) frame axioms say that if a proposition
p was true at time t, and an action that does not
affect p is executed, then p is true at time t + 1.
garbage0

∧ cook0
→ garbage1

. . .

This must be done for every time, proposition and
action that does not affect the proposition.

Sec. 10.4.1 – p.10/26

Building CNF formulas for planning problems

Explanatory frame axioms state which actions could
have caused a proposition to change:
garbage0

∧ ¬garbage1
→ dolly0

∨ carry0

. . .

Full frame axioms also require the at-least-one
axioms so ensure that an action is executed at each
time step. Otherwise, there might be times where no
action is executed and propositions cannot be
proven for subsequent time steps.
cook0

∨ wrap0
∨ dolly0

∨ carry0

cook1
∨ wrap1

∨ dolly1
∨ carry1

Sec. 10.4.1 – p.11/26

Building CNF formulas for planning problems

A→ (P ∧ E) axioms combined with full frame
axioms ensure that two actions occurring at time t

lead to an identical world state at time t + 1. They
explicitly force the propositions unaffected by an
executing action to remain unchanged. Therefore, if
is turns out that more than one action is executed at
a time step, one will be selected. As a result, actions
cannot be executed in parallel.

Sec. 10.4.1 – p.12/26

Building CNF formulas for planning problems

Explanatory frame actions allow parallel actions, so
one must make sure that conflicting actions are not
executed in parallel.
Such axioms are called conflict exclusion
constraints. Two actions are conflicting if one’s
precondition is the negation of the other’s effect. For
each such action pair α, β, add clauses of the form
¬αt
∨ ¬βt:

¬cook0
∨ ¬carry0

. . .

Sec. 10.4.1 – p.13/26

Building CNF formulas for planning problems

Sometimes complete exclusion axioms are used to
ensure that only one action occurs at each time
step, guaranteeing a totally ordered plan. Such
axioms add clauses of the form ¬αt

∨ ¬βt for each
action pair α, β.

Sec. 10.4.1 – p.14/26

Dealing with action schemas

If actions have parameters, all possible
instantiations must be written. For instance, the
action schema fly(p, a1, a2) becomes
fly − plane1− CMX −MSP t

fly − plane1−MSP − CMXt

fly − plane2− JFK − PIT t

. . .

If there are T times, A actions, O objects, and the
maximum arity of actions is P , then there are
T ×A×OP instantiations.

Notice that the number of instantiated actions is
exponential in the maximum arity of the actions.

Sec. 10.4.1 – p.15/26

Dealing with action schemas

With 12 planes and 30 airports, there are
12× 30× 30 = 10, 800 fly actions at each time step.
There are 10, 8002

− 10, 800 = 116, 629, 200 pairs for
each time step, and with 10 time steps, there are 1.2
billion clauses in the complete action exclusion
axioms.

Sec. 10.4.1 – p.16/26

Dealing with action schemas

The number of action instantiations can be
decreased by using symbol splitting. Each action
literal is split into n literals each stating a parameter
of the action. For instance, the action
fly − plane1− CMX −MSP t is represented as:
fly1 − plane1t

fly2 − CMXt

fly3 −MSP t

. . .

With symbol splitting, if there are T times, A actions,
O objects, and the maximum arity of actions is P ,
then there are T × A× P ×O instantiations.

Sec. 10.4.1 – p.17/26

Dealing with action schemas

Notice that the number of instantiated actions is no
more exponential in the maximum arity of the
actions.

If all the parameters are needed in a clause, then
the clause size does not change. But irrelevant
parameters can be left out resulting in a decrease in
the size.

Sec. 10.4.1 – p.18/26

Dealing with action schemas

The downside of symbol splitting is that parallel
actions cannot be allowed. For instance the two
parallel actions fly − plane1− CMX −MSP 0, and
fly − plane2−MSP − JFK0 would be represented
as
fly1 − plane10

∧ fly2 − CMX0
∧ fly3 −MSP 0

∧

fly1 − plane20
∧ fly2 −MSP 0

∧ fly3 − JFK0

We know plane1 and plane2 flew, but it is no longer
possible to determine the origin and destination for
each.

We need to go back to using complete action
exclusion axioms.

Sec. 10.4.1 – p.19/26

Solving SAT problems

Systematic solvers perform a backtracking search in
the space of possible assignments

Stochastic solvers perform a random search.

It is possible to simplify formulas before processing
If there are unit clauses, i.e., clauses with one
literal, the literal should be assigned true.
If there are pure literals, i.e., those can be
assigned true because such an assignment
cannot make the clause false.

Sec. 10.4.1 – p.20/26

Unit clauses and pure literals

Consider the following CNF formula
(A∨B∨¬E)∧(B∨¬C∨D)∧(¬A)∧(B∨C∨E)∧(¬D∨¬E)

It becomes
(B ∨¬E)∧ (B ∨¬C ∨D) ∧ (B ∨C ∨E)∧ (¬D ∨¬E)
after the unit clause (¬A) causes ¬A to be assigned
true.

It reduces to
(¬D ∨ ¬E)
after the pure literal B is assigned true.

The DPLL (Davis Putnam Logemann Loveland)
algorithm uses these operations to simplify formulas

Sec. 10.4.1 – p.21/26

The DPLL Algorithm

function DPLL (clauses, symbols, model)
returns true or false

inputs: clauses, the set of clauses in the CNF representation
inputs: symbols, a list of the proposition symbols in the formula
inputs: model, an assignment of truth values to the propositions

if every clause in clauses is true in model then return true
if some clause in clauses is false in model then return false
P, value← FIND-PURE-SYMBOL (symbols, clauses, model)
if P is non-null then return

DPLL(clauses, symbols - P, EXTEND (P, value, model))
P, value← FIND-UNIT-CLAUSE (clauses, model)
if P is non-null then return

DPLL(clauses, symbols - P, EXTEND (P, value, model))
P← FIRST(symbols); rest← REST(symbols)
return DPLL(clauses, rest, EXTEND (P, true, model)) or
return DPLL(clauses, rest, EXTEND (P, false, model))

Sec. 10.4.1 – p.22/26

The GSAT Algorithm

function GSAT (clauses, max-restarts, max-flips)
returns a satisying model, or failure

inputs: clauses, the set of clauses in the CNF representation
inputs: max-restarts, the number of restarts
inputs: max-flips, the number of flips allowed before giving up

for i = 1 to max-restarts do
model← a randomly generated truth assignment
for i = 1 to max-flips do

if every clause in clauses is true in model then return model
else

V← a variable whose change gives the largest increase in the
V← number of satisfied clauses; break ties randomly
model← model with the assignment of V flipped

return failure

Sec. 10.4.1 – p.23/26

The WALKSAT Algorithm

function WALK SAT (clauses, p, max-flips)
returns a satisying model, or failure

inputs: clauses, the set of clauses in the CNF representation
inputs: p, the probability of choosing to do a “random walk” move

, inputs: p, typically around 0.5
inputs: max-flips, the number of flips allowed before giving up

model← a randomly generated truth assignment
for i = 1 to max-flips do

if every clause in clauses is true in model then return model
clause← a randomly selected clause from clauses
clause← that is false in model
with probability p flip the value in model of a randomly selected

symbol from clause
elseflip whichever symbol in clause

maximizes the number of satisfied clauses
return failure

Sec. 10.4.1 – p.24/26

Comments

The Satplan approach demonstrates how a planning
problem can be transformed into a Boolean
satisfiability problem.

The choice of the SAT solver is important.
SATPLAN used CHAFF and SIEGE.

Handling negative interactions
POP: causal links
Graphplan: mutexes
Satplan: mutexes in logic

Sec. 10.4.1 – p.25/26

Sources for the slides

AIMA textbook (3rd edition)

AIMA slides (http://aima.cs.berkeley.edu/)

Weld, D.S. (1999). Recent advances in AI planning.
AI Magazine, 20(2), 93-122.

Sec. 10.4.1 – p.26/26

	Outline
	What is a satisfiability problem?
	SAT Example
	SAT formulas for planning
	SAT-based planning architecture
	The SATPLAN algorithm
	Building CNF formulas for planning problems
	Building CNF formulas for planning problems
	Building CNF formulas for planning problems
	Building CNF formulas for planning problems
	Building CNF formulas for planning problems
	Building CNF formulas for planning problems
	Building CNF formulas for planning problems
	Dealing with action schemas
	Dealing with action schemas
	Dealing with action schemas
	Dealing with action schemas
	Dealing with action schemas
	Solving SAT problems
	Unit clauses and pure literals
	The DPLL Algorithm
	The GSAT Algorithm
	The WALKSAT Algorithm
	Comments
	Sources for the slides

