
Hierarchical Task Network (HTN) Planning

Section 11.2

Sec. 11.2 – p.1/25

Outline

Example

Primitive vs. non-primitive operators

HTN planning algorithm

Practical planners

Additional references used for the slides:

desJardins, M. (2001). CMSC 671 slides.
www.cs.umbc.edu

Sec. 11.2 – p.2/25

Hierarchical Task Network (HTN) planning

Idea: Many tasks in real life already have a built-in
hierarchical structure

For example: a computational task, a military
mission, an administrative task

It would be a waste of time to construct plans from
individual operators. Using the built-in hierarchy
help escape from exponential explosion

Running example: the activity of building a house
consists of obtaining the necessary permits, finding
a builder, constructing the exterior/interior, ...

HTN approach: use abstract operators as well as
primitive operators during plan generation.

Sec. 11.2 – p.3/25

Building a house

Obtain
Permit

Construct Pay
Builder

Hire
Builder

decomposes to

decomposes to

Build
House

Build
Foundation

Build
Frame

Build
Roof

Build
Walls

Build
Interior

Sec. 11.2 – p.4/25

Hierarchical decomposition

HTN is suitable for domains where tasks are
naturally organized in a hierarchy.

Uses abstract operators to start a plan.

Use partial-order planning techniques and action
decomposition to come up with the final plan

The final plan contains only primitive operators.

What is to be considered primitive is subjective:
what an agent considers as primitive can be another
agent’s plans.

Sec. 11.2 – p.5/25

Representing action decompositions

A plan library contains both primitive and
non-primitive actions.

Non-primitive actions have external preconditions,
as well as external effects.

Sometimes useful to distinguish between primary
effects and secondary effects.

Sec. 11.2 – p.6/25

Building a house with causal links

Pay
Builder

Obtain
Permit

Construct

Hire
Builder

decomposes to

Build
House

Land House

Land

Money

House

~ Money

Start Finish

Sec. 11.2 – p.7/25

Another way of building a house

Construct

Obtain
Permit

Get
Friend

decomposes to

Build
House

Land House

Land

House

BadBack

Start Finish

Cut logs

GoodFriend

Sec. 11.2 – p.8/25

Example action descriptions

Action(BuyLand, PRECOND:Money, EFFECT: Land ∧¬ Money)
Action(GetLoan, PRECOND:GoodCredit, EFFECT: Money ∧ Mortgage)
Action(BuildHouse, PRECOND:Land, EFFECT: House)

Action(GetPermit, PRECOND:Land, EFFECT: Permit)
Action(HireBuilder, EFFECT: Contract)
Action(Construct, PRECOND:Permit ∧ Contract,

EFFECT: HouseBuilt ∧¬ Permit)
Action(PayBuilder, PRECOND:Money ∧ HouseBuilt,

EFFECT: ¬ Money ∧ House ∧¬ Contract)

Sec. 11.2 – p.9/25

Example action descriptions

Decompose(BuildHouse,
Plan(STEPS:{S1: GetPermit, S2: HireBuilder,
Plan(STEPS:{ S3: Construction, S4: PayBuilder,}
Plan(ORDERINGS: { Start ≺ S1 ≺ S2 ≺ S3 ≺ S4 ≺ Finish,
Plan(ORDERINGS: { Start ≺ S2 ≺ S3 },
Plan(L INKS: { Start Land

−−−→
S1, Start Money

−−−−→
S4,

Plan(L INKS: { S1 Permit
−−−−−→

S3, S2 Contract
−−−−−−→

S3, S3 HouseBuilt
−−−−−−−−→

S4,

Plan(L INKS: { S4 House
−−−−→

Finish, S4 ¬Money
−−−−−−→

Finish}))

Sec. 11.2 – p.10/25

Correctness

A decomposition should be a correct
implementation of the action.

A plan d implements an action a correctly if d is a
complete and consistent partial-order plan for the
problem of achieving the effects of a given the
preconditions of a (result of a sound POP).

The plan library contains several decompositions for
any high-level action.

Each decomposition might have different
preconditions and effects. The preconditions of the
high-level action should be the intersection of the
preconditions of the decompositions (similarly for
the external effects.)

Sec. 11.2 – p.11/25

Information hiding

The high-level description hides all the internal
effects of decompositions (e.g., Permit and
Contract).

It also hides the duration the internal preconditions
and effects hold.

Advantage: reduces complexity by hiding details

Disadvantage: conflicts are hidden too

Sec. 11.2 – p.12/25

Example

Start

Pay
Builder

Finish

FinishBuy Land

Get
Permit

Construct

Hire
Builder

decomposes to

Build
House

House

House

~ Money

Start

Land

Buy Land

GetLoan

Money

GoodCredit

Land

Money

Money

~ Money

Sec. 11.2 – p.13/25

For each decomposition d of an action a

Remove the high level action, and insert/reuse
actions for each action in d.
reuse → subtask sharing

Merge the ordering constraints (If there is an
ordering constraint of the form B ≺ a, should every
step of d come after B?)

Merge the causal links

Sec. 11.2 – p.14/25

Action ordering

Start

Give
Chain

Start

~ Watch
Comb
Happy(She)

Finish Start

Give
Comb

Finish

Watch
Hair

Watch
Hair Happy(He)

Chain

Give Comb
on credit

Deliver
Watch

Start

Deliver
Hair

Give Chain
on credit

Watch
Hair

Hair

Watch

comb

chain
owe(hair)
happy(He)

watch

hair
~hair
~owe(hair)

happy(she)
owe(watch)

~owe(hair)
~watch

~Hair

Hair
Watch

Happy(She)
Happy(He)

Sec. 11.2 – p.15/25

HTN planners

Most industrial strength planners are HTN based.

O-PLAN combines HTN planning with scheduling to
develop production plans for Hitachi.

SIPE-2 is an HTN planner with many advanced
features

SHOP is an HTN planner developed at the University
of Maryland. It can deal with action durations.

Sec. 11.2 – p.16/25

The features of SIPE-2

Plan critics

Resource reasoning

Constraint reasoning (complex numerical or
symbolic variable and state constraints)

Interleaved planning and execution

Interactive plan development

Sophisticated truth criterion

Conditional effects

Parallel interactions in partially ordered plans

Replanning if failures occur during execution

Sec. 11.2 – p.17/25

An operator with constraints

OPERATOR decompose
PURPOSE: Construction
CONSTRAINTS:

Length (Frame) <= Length (Foundation),
Strength (Foundation) > Wt(Frame) + Wt(Roof)

+ Wt(Walls) + Wt(Interior) + Wt(Contents)
PLOT: Build (Foundation)

Build (Frame)
PARALLEL

Build (Roof)
Build (Walls)

END PARALLEL
Build (Interior)

Sec. 11.2 – p.18/25

More on SIPE-2

Russell & Norvig explicitly represent causal links;
these can also be computed dynamically by using a
model of preconditions and effects (this is what
SIPE-2 does)

Dynamically computing causal links means that
actions from one operator can safely be interleaved
with other operators, and subactions can safely be
removed or replaced during plan repair

Russell & Norvig’s representation only includes
variable bindings, but more generally we can
introduce a wide array of variable constraints

Sec. 11.2 – p.19/25

Truth Criterion

Determining whether a formula is true at a particular
point in a partially ordered plan is, in the general
case, NP-hard

Intuition: there are exponentially many ways to
linearize a partially ordered plan

In the worst case, if there are N actions unordered
with respect to each other, there are N!
linearizations

Sec. 11.2 – p.20/25

Truth Criterion

Ensuring soundness of the truth criterion requires
checking the formula under all possible
linearizations

Use heuristic methods instead to make planning
feasible

Check later to be sure no constraints have been
violated

Sec. 11.2 – p.21/25

Truth Criterion in Sipe-2

Heuristic: prove that there is one possible ordering
of the actions that makes the formula true, but don’t
insert ordering links to enforce that order

Such a proof is efficient
Suppose you have an action A1 with a
precondition P
Find an action A2 that achieves P (A2 could be
initial world state)
Make sure there is no action necessarily
between A2 and A1 that negates P

Applying this heuristic for all preconditions in the
plan can result in infeasible plans

Sec. 11.2 – p.22/25

Comments on HTN planning

The major idea is to gain efficiency by using the
library of preconstructed plans.

When there is recursion, it is undecidable even if the
underlying state space is finite.

recursion can be ruled out
the length of solutions can be bound
can use a hybrid POP and HTN approach

Sec. 11.2 – p.23/25

Comments on HTN planning (cont’d)

Subtask sharing is nice, but it takes time/resources
to notice the opportunities

Would interprocedural optimization be a possibility?
Consider tan(x) − sin(x). Both have Taylor series
approximations:
tan(x) ≈ x + x3

3 + 2x5

15 + 17x7

315

sin(x) ≈ x −
x3

6 + x5

120 −
x7

5040

It would be nice to share terms but a compiler can
only optimize within the code because it does not
have the source; and if it did interprocedural
optimization tan and sin would always have to be
changed together.

Sec. 11.2 – p.24/25

Comments on HTN planning (cont’d)

Suppose that we want to construct a plan with n

actions
Forward state space planning takes O(bn) with b

allowable actions at each state.
HTN planning can construct d

(n−1)/(k−1)

decomposition trees with d possible
decompositions with k actions each
→ keeping d small and k large can result in huge
savings (long macros usable across a wide
range of problems)
HTN-based planners do not address uncertainty

Sec. 11.2 – p.25/25

	Outline
	Hierarchical Task Network (HTN) planning
	Building a house
	Hierarchical decomposition
	Representing action decompositions
	Building a house with causal links
	Another way of building a house
	Example action descriptions
	Example action descriptions
	Correctness
	Information hiding
	Example
	For each decomposition d of an action a
	Action ordering
	HTN planners
	The features of SIPE-2
	An operator with constraints
	More on SIPE-2
	Truth Criterion
	Truth Criterion
	Truth Criterion in Sipe-2
	Comments on HTN planning
	Comments on HTN planning (cont'd)
	Comments on HTN planning (cont'd)

