Previous class

- Designing heuristic functions: \(h(n) \)
 - dominance
 - consistency

- Iterative deepening A* search
 (it is really an iterative depth-first search
 with \(f(n) \) as a limit rather than depth)
 \[f(n) = g(n) + h(n) \]

Today

- Constraint satisfaction problems

 \[f^*(G) \] G: optimal goal

 \[\text{here if admissible} \]

CASTING SUDOKU AS A SEARCH PROBLEM

state:
actions:
goal test: all cells are filled with valid values
values that satisfy the constraints

\[\text{SAT}: \left(\bigwedge_{i=1}^{n} a_i \right) \text{ s.t. } \left(\bigwedge_{i=1}^{n} \bigwedge_{j=1}^{m} (v_{ij} \mid \text{valid}) \right) \]

1 2 3
4 5 6
7 8 9
CSP: \(v_1, v_2, \ldots, v_n \)

\(\{1, 2, 3, \ldots, 9\} \)

<table>
<thead>
<tr>
<th>assigned</th>
<th>non-assigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>(v_1, \ldots, v_n)</td>
<td></td>
</tr>
</tbody>
</table>

pick a variable \(v_i \)

\(v_1 = 1, v_2, \ldots, v_n \)

\(v_2 = v_2, \ldots \)

which one \(\text{DFS} \) why?

better space complexity unless there is a

\(\text{BFS} \)

notion of optimality

level \(n \)

What is the depth of the solution? \(d = n \)

The solution will be there