The Wumpus World: Derivation of the Probability Formula

Define $unknown = frontier \cup other$

 $\mathbb{P}(b|P_{1,3}, known, unknown) = \mathbb{P}(b|P_{1,3}, known, frontier, other) = \mathbb{P}(b|P_{1,3}, known, frontier)$

We want to manipulate the query into a form where we can use the above conditional independence.

This is what we would like to compute: $\mathbb{P}(P_{1,3}|known, b)$

Use the definition of conditional probability: = $\mathbb{P}(P_{1,3}, known, b)/P(known, b)$

The denominators of the two instantiations of $P_{1,3}$ will be the same. Thus, we can use the normalizing constant α , which will be 1/P(known, b): = $\alpha \mathbb{P}(P_{1,3}, known, b)$

Sum over the hidden variables: = $\alpha \sum_{unknown} \mathbb{P}(P_{1,3}, known, b, unknown)$

Pits cause a breeze at the adjacent cells. Use the chain rule so that the causes are the evidence. = $\alpha \sum_{unknown} \mathbb{P}(b|P_{1,3}, known, unknown) \mathbb{P}(P_{1,3}, known, unknown)$

Write unknown as frontier \cup other: = $\alpha \sum_{frontier} \sum_{other} \mathbb{P}(b|P_{1,3}, known, frontier, other) \mathbb{P}(P_{1,3}, known, frontier, other)$

Use the conditional independence of b and other given frontier: = $\alpha \sum_{frontier} \sum_{other} \mathbb{P}(b|P_{1,3}, known, frontier) \mathbb{P}(P_{1,3}, known, frontier, other)$

 $\begin{array}{l} \text{Move } \sum_{other} \text{ inward:} \\ = \alpha \sum_{frontier} \mathbb{P}(b|P_{1,3}, known, frontier) \sum_{other} \mathbb{P}(P_{1,3}, known, frontier, other) \end{array}$

The probability of a pit at a cell is independent of the others $(P_{i,j} = 0.2 \text{ for all } i \text{ and } j)$: = $\alpha \sum_{frontier} \mathbb{P}(b|P_{1,3}, known, frontier) \sum_{other} \mathbb{P}(P_{1,3})P(known)P(frontier)P(other)$

Move P(known) and $\mathbb{P}(P_{1,3})$ outside of the summations: = $\alpha P(known)\mathbb{P}(P_{1,3}) \sum_{frontier} \mathbb{P}(b|P_{1,3}, known, frontier) \sum_{other} P(frontier)P(other)$

Fold P(known) into the normalizing constant α : = $\alpha' \mathbb{P}(P_{1,3}) \sum_{frontier} \mathbb{P}(b|P_{1,3}, known, frontier) \sum_{other} P(frontier)P(other)$

Move \sum_{other} inward again: = $\alpha' \mathbb{P}(P_{1,3}) \sum_{frontier} \mathbb{P}(b|P_{1,3}, known, frontier) P(frontier) \sum_{other} P(other)$

Consider $\sum_{other} P(other)$. Summation over all possibilities of other, P(other) is 1: = $\alpha' \mathbb{P}(P_{1,3}) \sum_{frontier} \mathbb{P}(b|P_{1,3}, known, frontier) P(frontier)$