Reminder	C55811
IAAI presentations next week	Nov. 2,2020
(attendance required)	Monday
(participation required)	
Previous class	
BBNs: approximate inference	
· rejection sampling	
likelihood weighting	
MCMC (Markov Chan Monte Carlo)	similation
no history non deformation	i ti e
[t t] t f -)
Will use Markor blocket	
	7
(m - m	
	/ 1 \
P	(x e)
0 0 w	
	_ ()


```
P(c/mb(c))= xP(c)) x
                     prents
               P(s|C) x P(r|C)
  d < 0.5 x 0.1 x 0.8, 0.5 x 0.5 x 0.2 >
                       C= L
        C=t
                    J x 5x2x10-3
      5x8x10-3
                       50 × 10-3
        0.04
   x 20.04, 0.05>
we find the probability distribution to sample Ctrom 20.04,0.05>

( t t t t
  cet's my we get C=f on new
    sample vill be
            P(R)mb(R))
```

CS5811 handout - Markov Chain Monte Carlo (MCMC) sampling The procedure to obtain the sampling distributions

The probability of a variable given its Markov blanket is proportional to the probability of the variable given its parents times the probability of each child given its respective parents:

$$P(x_i|mb(X_i)) = \alpha P(x_i|parents(X_i) \times \prod_{Y_j \in children(X_i)} P(y_j|parents(Y_j))$$

Consider the query $\mathbb{P}(R|S=t, W=t)$.

S is true from the evidence. Suppose that R is true in the state.

We will be sampling for C.

The Markov blanket of C is its parents (\emptyset) , its children $(\{R,S\})$, and the other parents of its children (\emptyset) . We use the following distributions to sample C.

$$\begin{split} \mathbb{P}(C|mb(C)) &= \mathbb{P}(C|R=t, S=t) = \alpha \ \mathbb{P}(C) \ \mathbb{P}(S=t|C) \ \mathbb{P}(R=t|C) \\ &= \alpha < 0.5, 0.5 > < 0.1, 0.5 > < 0.8, 0.2 > \\ &= \alpha < 0.04, 0.05 > \\ &= < \frac{4}{9}, \frac{5}{9} > \end{split}$$

For the states where R is false, \mathbf{P} $(C|\neg R,S)$ is calculated similarly .

S is true from the evidence. Suppose that C is true in the state. We will be sampling for R.

The Markov blanket of R is its parents ($\{C\}$), its children ($\{W\}$), and the other parents of its children ($\{S\}$). We use the following distributions to sample R.

$$\begin{split} \mathbb{P}(R|mb(R)) &= \mathbb{P}(R|C=t, S=t, W=t) = \alpha \ \mathbb{P}(R|C=t) \ \mathbb{P}(W=t|R, S=t) \\ &= \alpha < 0.8, 0.2 > < 0.99, 0.90 > \\ &= \alpha < 0.792, 0.18 > \\ &= \alpha < \frac{0.792}{0.972}, \frac{0.18}{0.972} > < \frac{22}{27}, \frac{5}{27} > \end{split}$$

 $\mathbb{P}(R|\neg C, S, W)$ is calculated similarly.

exact inference P(X1, --- Kn) = P(Xn | X1--- Xn) remoc X
P(an-1 | X1 -- . Xn-2) non prosts rend the $p(x_2|x_i)$ cpt's $P(x_i)$ P(X/e)= 2(X/e,h) left with k veribles exponential -> 2k Solution: approximate inference rejection semplify my disard too many samples - likelihood weighting sumples with very very small resplits - MCMC Gibbs