Chapter 3 Solving Problems by Searching
3.5 =3.6 Informed (heuristic) search strategies

(CS4811 - Artificial Intelligence

Nilufer Onder
Department of Computer Science
Michigan Technological University

Outline

Best-first search
Greedy search
A* search

Heuristics

(Iterative deepening A* search)

Best-first search

v

Remember that the frontier contains the unexpanded nodes

Idea: use an evaluation function for each node
(the evaluation function is an estimate of “desirability”)

v

v

Expand the most desirable unexpanded node

v

Implementation:
Frontier is a queue sorted in decreasing order of desirability

v

Special cases:

» Greedy search
» A* search

Romania with step costs in km

[] Hirsova

Eforie

Stralght-line distance

to Bucharest
Arad
Bucharest
Craiova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
Tasi

Lugoj
Mehadia
Neamt
Oradea
Pitesti
Rimnicu Vilcea
Sibiu
Timisoara
Urziceni
Vaslui
Zerind

366
]

160
242
161
178

77
151
226
244
241
234
380

98
193
253
329

80
199
374

Greedy search

» Evaluation function
h(n) = estimate of cost from n to the closest goal
h is the heuristic function

» E.g., hsi.p(n) = straight-line distance from n to Bucharest

» Greedy search expands the node that appears to be closest to
the goal

Greedy search example

After expanding Arad

B Gibin___>

imisoara > Zerind__D

329 374

After expanding Sibiu

After expanding Fagaras

Properties of greedy search

v

Complete: No — can get stuck in loops, e.g.,
lasi — Neamt — lasi — Neamt —
Complete in finite space with repeated-state checking

v

Time: O(b™), but a good heuristic can give dramatic
improvement

v

Space: O(b™) (keeps every node in memory)
Optimal: No

v

A* search

» ldea: avoid expanding paths that are already expensive
» Evaluation function f(n) = g(n) + h(n)

» g(n) = cost so far to reach n
» h(n) = estimated cost to goal from n
» f(n) = estimated total cost of path through n to goal

» A* search uses an admissible heuristic

» if h is an admissible heuristic then
h(n) < h*(n) where h*(n) is the true cost from n.

» Also require h(n) > 0, so h(G) = 0 for any goal G.

» An admissible heuristic is allowed to underestimate, but can
never overestimate cost.

» E.g., hsrp(n) never overestimates the actual road distance.

A* search example

366=0+366

After expanding Arad

ibin__ Timisoara >~ Zerind_D

393=140+253 447=118+329 449=75+374

After expanding Sibiu

447=118+329 449=75+374

646=280+366 415=239+176 671=291+380 413=220+193

After expanding Rimnicu Vilcea

447=118+329 449=75+374

646=280+366 415=239+176 671=291+380

526=366+160 417=317+100 553=300+253

After expanding Fagaras

447=118+329

449=75+374

646=280+366 671=291+380

591=338+253 450=450+0 526=366+160 417=317+100 553=300+253

After expanding Pitesti

Timisoara

447=118+329 449=75+374

646=280+366

591=338+253 450=450+0 526=366+160 553=300+253

418=418+0 615=455+160 607=414+193

Optimality of A*

Theorem: A* search is optimal.

Suppose some suboptimal goal G, has been generated and is in the
queue. Let n be an unexpanded node on a shortest path to an
optimal goal Gi.

Proof for the optimality of A*

O start
,,,,,,,,, P N

f(G) = g(G) since h(Gp) =0
> g(G) since Gy is suboptimal
> f(n) since h is admissible

Since f(Gy) > f(n), A* will never select G, for expansion

Properties of A*

v

Complete: Yes, unless there are infinitely many nodes with
f <f(G)

Time: Exponential in

(relative error in h x length of solution)

v

v

Space: Keeps all nodes in memory

v

Optimal: Yes—cannot expand fi+1 until f; is finished
» A* expands all nodes with f(n) < C*
» A* expands some nodes with f(n) = C*
» A* expands no nodes with f(n) > C*

Admissible heuristics

E.g., for the 8-puzzle:

hi(n) = number of “misplaced tiles"

ha(n) = total “Manhattan distance”

(i.e., no. of squares from desired location of each tile)

7 2 4 | 2
5 i) 3 4 5
8 3 | H 7 8
Start State Goal State
h(S) = 77
ho(S) = 77

Admissible heuristics

E.g., for the 8-puzzle:

hi(n) = number of “misplaced tiles"

ha(n) = total “Manhattan distance”

(i.e., no. of squares from desired location of each tile)

710 2 ||| 4 1] 2
5 6 3 ([4 ||| 5
8 ([3 ||| 1 6 || 7 [I| 8
Start State Goal State
hi(S) = 8

ho(S) = 3+1+42+2+43+2+2+3 = 18

Dominance

A “better” heuristic is one that minimizes the effective branching
factor, b*.

If ha(n) > hy(n) for all n (both admissible)
then hy dominates h; and is better for search

Typical search costs:

d =12 IDS = 3,644,035 nodes b* =278
A*(h1) = 539 nodes b* =1.42
A*(h2) = 113 nodes b* =1.24
d =24 IDS = 54,000,000,000 nodes
A*(h1) = 39,135 nodes b* =1.48

A*(hp) = 1,641 nodes b* =1.26

Relaxed problems

» Admissible heuristics can be derived from the exact solution
cost of a relaxed version of the problem

» If the rules of the 8-puzzle are relaxed so that a tile can move
“anywhere”, then hy(n) gives the shortest solution

» If the rules are relaxed so that a tile can move to “any
adjacent square”, then hy(n) gives the shortest solution

» Key point: the optimal solution cost of a relaxed problem is
no greater than the optimal solution cost of the real problem

lterative Deepening A* (IDA¥)

» Idea: perform iterations of DFS. The cutoff is defined based
on the f-cost rather than the depth of a node.

» Each iteration expands all nodes inside the contour for the
current f-cost, peeping over the contour to find out where the
contour lies.

Summary

» Heuristic search algorithms

» Finding good heuristics for a specific problem is an area of
research

» Think about the time to compute the heuristic

Sources for the slides

> AIMA textbook (3™ edition)
» AIMA slides (http://aima.cs.berkeley.edu/)

	Best-first search
	Greedy search
	A* search

	Heuristics
	(Iterative deepening A* search)

