Chapter 3 Solving Problems by Searching 3.5 –3.6 Informed (heuristic) search strategies

CS4811 - Artificial Intelligence

Nilufer Onder Department of Computer Science Michigan Technological University

Outline

Best-first search
Greedy search
A* search

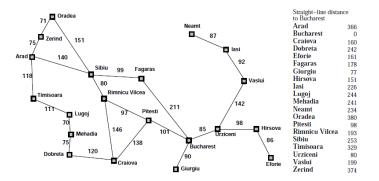
Heuristics

(Iterative deepening A* search)

Best-first search

- ▶ Remember that the *frontier* contains the unexpanded nodes
- Idea: use an evaluation function for each node (the evaluation function is an estimate of "desirability")
- Expand the most desirable unexpanded node
- Implementation:
 Frontier is a queue sorted in decreasing order of desirability
- Special cases:
 - Greedy search
 - ► A* search

Romania with step costs in km

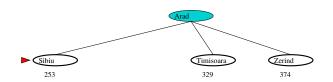


Greedy search

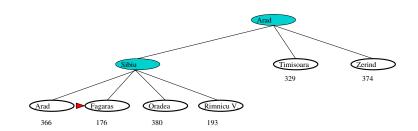
- Evaluation function h(n) = estimate of cost from n to the closest goal h is the heuristic function
- ▶ E.g., $h_{SLD}(n) = \text{straight-line distance from } n \text{ to Bucharest}$
- Greedy search expands the node that appears to be closest to the goal

Greedy search example

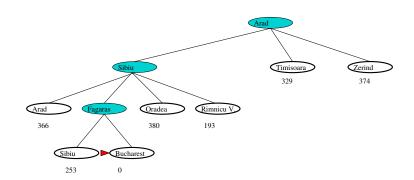
After expanding Arad



After expanding Sibiu



After expanding Fagaras



Properties of greedy search

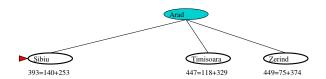
- ► Complete: No can get stuck in loops, e.g., lasi → Neamt → lasi → Neamt → Complete in finite space with repeated-state checking
- ► Time: $O(b^m)$, but a good heuristic can give dramatic improvement
- ▶ *Space:* $O(b^m)$ (keeps every node in memory)
- ► *Optimal:* No

A* search

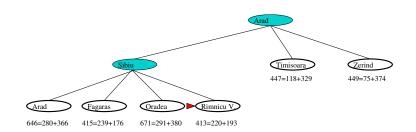
- Idea: avoid expanding paths that are already expensive
- ► Evaluation function f(n) = g(n) + h(n)
 - $g(n) = \cos t$ so far to reach n
 - h(n) =estimated cost to goal from n
 - f(n) =estimated total cost of path through n to goal
- ► A* search uses an *admissible* heuristic
 - ▶ if h is an admissible heuristic then $h(n) \le h^*(n)$ where $h^*(n)$ is the true cost from n.
 - ▶ Also require $h(n) \ge 0$, so h(G) = 0 for any goal G.
 - ► An admissible heuristic is allowed to underestimate, but can never overestimate cost.
 - ▶ E.g., $h_{SLD}(n)$ never overestimates the actual road distance.

A* search example

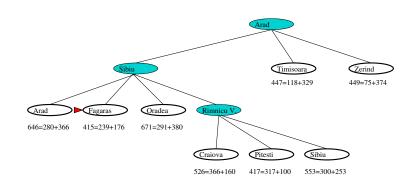
After expanding Arad



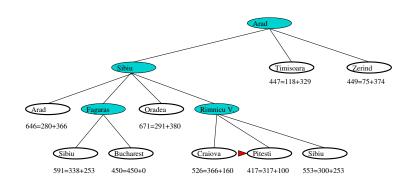
After expanding Sibiu



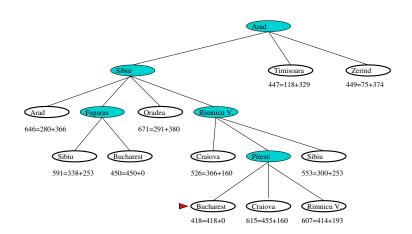
After expanding Rimnicu Vilcea



After expanding Fagaras



After expanding Pitesti

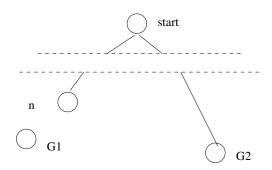


Optimality of A*

Theorem: A* search is optimal.

Suppose some suboptimal goal G_2 has been generated and is in the queue. Let n be an unexpanded node on a shortest path to an optimal goal G_1 .

Proof for the optimality of A*



$$f(G_2) = g(G_2)$$
 since $h(G_2) = 0$
> $g(G_1)$ since G_2 is suboptimal
 $\geq f(n)$ since h is admissible

Since $f(G_2) > f(n)$, A* will never select G_2 for expansion

Properties of A*

- ► *Complete:* Yes, unless there are infinitely many nodes with $f \le f(G)$
- ► Time: Exponential in (relative error in h × length of solution)
- Space: Keeps all nodes in memory
- ▶ *Optimal*: Yes—cannot expand f_{i+1} until f_i is finished
 - ▶ A* expands all nodes with $f(n) < C^*$
 - A* expands some nodes with $f(n) = C^*$
 - A* expands no nodes with $f(n) > C^*$

Admissible heuristics

E.g., for the 8-puzzle:

 $h_1(n) = \text{number of "misplaced tiles"}$

 $h_2(n) = \text{total "Manhattan distance"}$

(i.e., no. of squares from desired location of each tile)

7	2	4
5		6
8	3	1

 1
 2

 3
 4
 5

 6
 7
 8

Start State

Goal State

$$h_1(S) = ??$$

$$h_2(S) = ??$$

Admissible heuristics

E.g., for the 8-puzzle:

 $h_1(n) = \text{number of "misplaced tiles"}$

 $h_2(n) = \text{total "Manhattan distance"}$

(i.e., no. of squares from desired location of each tile)

5	6
8 3	1

 1
 2

 3
 4
 5

 6
 7
 8

Start State

Goal State

$$h_1(S) = 8$$

 $h_2(S) = 3+1+2+2+3+2+2+3 = 18$

Dominance

A "better" heuristic is one that minimizes the *effective branching* factor, b^* .

If $h_2(n) \ge h_1(n)$ for all n (both admissible) then h_2 dominates h_1 and is better for search

Typical search costs:

$$d=12$$
 IDS = 3,644,035 nodes $b^*=2.78$
 $A^*(h_1)=539$ nodes $b^*=1.42$
 $A^*(h_2)=113$ nodes $b^*=1.24$
 $d=24$ IDS $\approx 54,000,000,000$ nodes $A^*(h_1)=39,135$ nodes $b^*=1.48$
 $A^*(h_2)=1,641$ nodes $b^*=1.26$

Relaxed problems

- Admissible heuristics can be derived from the exact solution cost of a *relaxed* version of the problem
- ▶ If the rules of the 8-puzzle are relaxed so that a tile can move "anywhere", then $h_1(n)$ gives the shortest solution
- ▶ If the rules are relaxed so that a tile can move to "any adjacent square", then $h_2(n)$ gives the shortest solution
- ▶ Key point: the optimal solution cost of a relaxed problem is no greater than the optimal solution cost of the real problem

Iterative Deepening A* (IDA*)

- ▶ Idea: perform iterations of DFS. The cutoff is defined based on the *f*-cost rather than the depth of a node.
- ▶ Each iteration expands all nodes inside the contour for the current *f*-cost, peeping over the contour to find out where the contour lies.

Summary

- Heuristic search algorithms
- Finding good heuristics for a specific problem is an area of research
- ▶ Think about the time to compute the heuristic

Sources for the slides

- ► AIMA textbook (3rd edition)
- AIMA slides (http://aima.cs.berkeley.edu/)