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Motivation

Uncertainty is everywhere. Consider the following proposition.

At : Leaving t minutes before the flight will get me to the
airport.

Problems:

1. partial observability (road state, other drivers’ plans, etc.)

2. noisy sensors (traffic reports, etc.)

3. uncertainty in action outcomes (flat tire, etc.)

4. immense complexity of modelling and predicting traffic



Knowledge representation

Language Main elements Assignments

Propositional logic facts T, F, unknown
First-order logic facts, objects, relations T, F, unknown
Temporal logic facts, objects, relations, times T, F, unknown
Temporal CSPs time points time intervals

Fuzzy logic set membership degree of truth
Probability theory facts degree of belief

The first three do not represent uncertainty, while the last three do.



Probability

Probabilistic assertions summarize effects of
laziness: failure to enumerate exceptions, qualifications, etc.
ignorance: lack of relevant facts, initial conditions, etc.

Probabilities relate propositions to one’s own state of knowledge.
They might be learned from past experience of similar situations.

e.g., P (A25) = 0.05

Probabilities of propositions change with new evidence:
e.g., P (A25| no reported accidents) = 0.06
e.g., P (A25| no reported accidents, 5am) = 0.15



Probability basics

Begin with a set Ω called the sample space
A sample space is a set of possible outcomes

Each ω ∈ Ω is a sample point (possible world, atomic event)
e.g., 6 possible rolls of a die:{1, 2, 3, 4, 5, 6}

Probability space or probability model:
Take a sample space Ω, and
assign a number P(ω) (the probability of ω)
to every atomic event ω ∈ Ω



Probability basics (cont’d)

A probability space must satisfy the following properties:
0 ≤ P(ω) ≤ 1 for every ω ∈ Ω∑

ω∈Ω P(ω) = 1

e.g., for rolling the die,
P (1) = P (2) = P (3) = P (4) = P (5) = P (6) = 1/6.

An event A is any subset of Ω
The probability of an event is defined as follows:

P(A) =
∑
{ω∈A} P(ω)

e.g., P(die roll < 4) =
P(1) + P(2) + P(3) = 1/6 + 1/6 + 1/6 = 1/2



Random variables

A random variable is a function from sample points to some range
such as integers or Booleans.
We’ll use capitalized words for random variables.

e.g., rolling the die:

Odd(ω) =

{
true if ω is odd,
false otherwise

A probability distribution gives a probability for every possible
value.

If X is a random variable, then
P(X = xi ) =

∑
{P(ω) : X (ω) = xi}

e.g., P (Odd = true) = P (1) + P (3) + P (5) =
1/6 + 1/6 + 1/6 = 1/2
Note that we don’t write Odd’s argument ω here.



Propositions

Odd is a Boolean or propositional random variable:
its range is {true, false}

We’ll use the corresponding lower-case word (in this case odd) for
the event that a propositional random variable is true

e.g., P(odd) = P(Odd = true) = 3/6
P(¬odd) = P(Odd = false) = 3/6

Boolean formula = disjunction of the sample points in which it is
true

e.g., (a ∨ b) ≡ (¬a ∧ b) ∨ (a ∧ ¬b) ∨ (a ∧ b)
⇒ P(a ∨ b) = P(¬a ∧ b) + P(a ∧ ¬b) + P(a ∧ b)



Syntax for propositions

Propositional or Boolean random variables
e.g., Cavity (do I have a cavity in one of my teeth?)
Cavity = true is a proposition, also written cavity

Discrete random variables (finite or infinite)
e.g., Weather is one of < sunny , rain, cloudy , snow >
Weather = rain is a proposition
Values must be exhaustive and mutually exclusive

Continuous random variables (bounded or unbounded)
e.g., Temp = 21.6; Temp < 22.0

Arbitrary Boolean combinations of basic propositions
e.g., ¬cavity means Cavity = false

Probabilities of propositions
e.g., P(cavity) = 0.1 and P(Weather = sunny) = 0.72



Syntax for probability distributions

Represent a discrete probability distribution as a vector of
probability values:

P(Weather) =< 0.72, 0.1, 0.08, 0.1 >

The above is an ordered list representing the probabilities of
sunny , rain, cloudy , and snow .
Probabilities of sunny , rain, cloudy , and snow must sum to 1 when
the vector is normalized

If B is a Boolean random variable, then P(B) =< P(b),P(¬b) >
e.g., if P(cavity) = 0.1 then
P(Cavity = true) = 0.1 and P(Cavity) =< 0.1, 0.9 >

When the entries in the vector do not add up to 1, but represent
the true ratios, the vector is preceded by a normalizing constant, α,
e.g. P(Cavity) = α < 0.01, 0.09 > where α is 10



Syntax for joint probability distributions

A joint probability distribution for a set of n random variables gives
the probability of every atomic event on those variables,
i.e., every sample point

Represent it as an n-dimensional matrix,
e.g., P(Weather ,Cavity) is a 4× 2 matrix.
The entries contain propabilities for all possible combinations of
Weather (4), and Cavity (2).

Weather =
sunny rain cloudy snow

Cavity = true 0.144 0.02 0.016 0.02
Cavity = false 0.576 0.08 0.064 0.08

Every question about a domain can be answered by the joint
distribution because every event is a sum of sample points



Conditional probability

Prior (unconditional) probabilities refer to degrees of belief in the
absence of any other information.

Posterior (conditional) probabilites refer to degrees of belief when
we have some information, called evidence.

Consider drawing straws from a set of 1 long and 4 short straws,
long refers to drawing a long straw, and short refers to drawing a
short straw.

P(long) = 0.2
P(long |short) = 0.25
P(long |long) = 0.0
P(long |short, short) = 1

3
P(long |rain) = 0.2



Conditional probability (cont’d)

P(cavity |toothache) = 0.8 means
the probability of cavity given that toothache is all we know
It does not mean “if toothache then 80% chance of cavity

Suppose we get more evidence, e.g., cavity is also given. Then
P(cavity |toothache, cavity) = 1

Note: the less specific belief remains valid, but is not always useful

New evidence may be irrelevant, allowing simplification, e.g.,
P(cavity |toothache, 49ersWin) = P(cavity |toothache) =0.8

Conditional distibutions are shown as vectors for all possible
combinations of the evidence and query.

P(Cavity |Toothache) is a 2-element vector of 2-element vectors

< < 0.12, 0.08 >︸ ︷︷ ︸
toothache

, < 0.08, 0.72 >︸ ︷︷ ︸
¬toothache

>



Conditional probability definitions

Definition of conditional probability:

P(a|b) =
P(a ∧ b)

P(b)

Product rule gives an alternative formulation and holds even if
P(b) = 0

P(a ∧ b) = P(a|b)P(b) = P(b|a)P(a)

A general version holds for an entire probability distribution, e.g.,

P(Weather ,Cavity) = P(Weather |Cavity)P(Cavity)

This is not matrix multiplication, it’s a set of 4× 2 equations:

P(sunny, cavity) = P(sunny|cavity)P(cavity) P(sunny,¬cavity) = P(sunny|¬cavity)P(¬cavity)
P(rain, cavity) = P(rain|cavity)P(cavity) P(rain,¬cavity) = P(rain|¬cavity)P(¬cavity)
P(cloudy, cavity) = P(cloudy|cavity)P(cavity) P(cloudy,¬cavity) = P(cloudy|¬cavity)P(¬cavity)
P(snow, cavity) = P(snow|cavity)P(cavity) P(snow,¬cavity) = P(snow|¬cavity)P(¬cavity)



Chain rule

Chain rule is derived by successive applications of the product rule:

P(X1, . . . ,Xn)
= P(Xn|X1, . . . ,Xn−1)P(X1, . . . ,Xn−1)
= P(Xn|X1, . . . ,Xn−1)P(Xn−1|X1, . . . ,Xn−2)P(X1, . . . ,Xn−2)
= . . .
=
∏n

i=1 P(Xi |X1, . . . ,Xi−1)

For example,

P(X1,X2,X3,X4)
= P(X1)P(X2|X1)P(X3|X1,X2)P(X4|X1,X2,X3)

= P(X4|X3,X2,X1)P(X3|X2,X1)P(X2|X1)P(X1)



Inference by enumeration

The Dentist Domain:
What is the probability of a cavity given a toothache?
What is the probability of a cavity given the probe catches?

We start with the joint distribution:

toothache ~toothache

~catch

cavity

~cavity

catch catch ~catch

.108 .012

.064

.072 .008

.144 .576.016

For any proposition q, add up the atomic events where it is true:

P(q) =
∑

w :w |=q

P(w)



Computing the probability of a proposition

toothache ~toothache

~catch

cavity

~cavity

catch catch ~catch

.108 .012

.064.016

.072 .008

.144 .576

For any proposition q, add up the atomic events where it is true:

P(q) =
∑

w :w |=q

P(w)

Red shows “the world” given what we know so far.
Green shows the (atomic) event we are interested in.

P(toothache)= P(toothache, catch, cavity) + P(toothache,¬catch, cavity)+
P(toothache, catch,¬cavity) + P(toothache,¬catch,¬cavity)

= 0.108 + 0.012 + 0.016 + 0.064 = 0.2



Computing the probability of a logical sentence

toothache ~toothache

~catch

cavity

~cavity

catch catch ~catch

.108 .012

.064.016

.072 .008

.144 .576

P(cavity ∨ toothache)
= 0.108 + 0.012 + 0.072 + 0.008 + 0.016 + 0.064
= 0.28



Computing a conditional probability

toothache ~toothache

~catch

cavity

~cavity

catch catch ~catch

.108 .012

.064.016

.072 .008

.144 .576

Once toothache comes as evidence the world is restricted to those
cells where Toothache is true as shown in red.

General idea:
Compute the distribution on the query variable (Cavity) (Cavity)
by fixing the evidence variables (Toothache) and
summing over all possible values of hidden variables (Catch,Cavity)

P(¬cavity |toothache) = P(¬cavity∧toothache)
P(toothache)

= 0.016 + 0.064
0.108 + 0.012 + 0.016 + 0.064 = 0.4



Computing a conditional probability (cont’d)

toothache ~toothache

~catch

cavity

~cavity

catch catch ~catch

.108 .012

.064.016

.072 .008

.144 .576

General idea: Fix the evidence variable (Toothache) and
sum over all possible values of hidden variables
(Catch for the numerator, Cavity and Catch for the denominator)

P(Y = y |E = e) = P(Y=y ,E=e)
P(E=e) =

∑
h P(Y=y ,E=e,H=h)∑

h P(E=e,H=h)

P(¬cav |tth) = P(¬cav ,tth)
P(tth) =

∑
h P(¬cav ,tth,H=h)∑

h P(tth,H=h)

= P(¬cav ,tth,cat)+P(¬cav ,tth,¬cat)
P(tth,cav ,cat)+P(tth,cav ,¬cat)+P(tth,¬cav ,cat)+P(tth,¬cav ,¬cat)

= 0.016+0.064
0.108+0.012+0.016+0.064



Normalization

toothache ~toothache

~catch

cavity

~cavity

catch catch ~catch

.108 .012

.016

.072 .008

.144 .576.064

Recall that events are lower case, random variables are Capitalized
General idea: The denominator can be viewed as a normalization constant α

We take the probability distribution over the values of the hidden variables.

P(Cavity |toothache) = αP(Cavity , toothache)
= α[P(Cavity , toothache, catch) + P(Cavity , toothache,¬catch)]
= α[< P(cavity , toothache, catch),P(¬cavity , toothache, catch) > +
< P(cavity , toothache,¬catch),P(¬cavity , toothache,¬catch) >]
= α[< 0.108, 0.016 > + < 0.012, 0.064 >]
= α[< 0.108 + 0.012, 0.016 + 0.64 >] = α[< 0.12, 0.08 >]
=< 0.6, 0.4 > because the entries must add up to 1

Compute α from 1
0.12+0.08



Inference by enumeration, summary

Let X be the set of all variables. Typically, we are interested in
the posterior (conditional) joint distribution of the query variables Y

given specific values e from the evidence variables E

Let the hidden variables be H = X − Y − E

Then the required summation of joint entries is done by summing
out the hidden variables:

P(Y |E = e) = αP(Y ,E = e) = α
∑
h

P(Y ,E = e,H = h)

i.e., sum over every possible combination of values
h =< h1, . . . , hn > of the hidden variables H =< H1, . . . ,Hn >

The terms in the summation are joint entries because Y , E , and H
together exhaust the set of random variables



Inference by enumeration, issues

Consider that number of random variables is n, and
d is the largest arity

I Worst case time complexity is O(dn)

I Space complexity of O(dn), to store the entire joint
distribution

I How to find the numbers for the O(dn) entries?



Independence

Random variables A and B are independent iff
P(A|B) = P(A) or P(B|A) = P(B) or P(A,B) = P(A)P(B)

Cavity

Toothache Catch

Weather

Cavity

Toothache Catch

Weather

decomposes into

P(Toothache,Catch,Cavity ,Weather)
= P(Toothache,Catch,Cavity)P(Weather)

2 × 2 × 2 × 4 = 32 entries reduced to (2 × 2 × 2) + 4 = 12 entries

For n independent biased coins, 2n entries reduced to n

Absolute independence powerful but rare
E.g., dentistry is a large field with hundreds of variables,

none of which are independent. What to do?



Conditional independence

Consider P(Toothache,Cavity ,Catch)

If I have a cavity, the probability that the probe catches in it
doesn’t depend on whether I have a toothache:

P(catch|toothache, cavity) = P(catch|cavity)

The same independence holds if I haven’t got a cavity:
P(catch|toothache,¬cavity) = P(catch|¬cavity)

Thus Catch is conditionally independent of Toothache given
Cavity :

P(Catch|Toothache,Cavity) = P(Catch|Cavity)

Or equivalently:
P(Toothache|Catch,Cavity) = P(Toothache|Cavity)
P(Toothache,Catch|Cavity) =

P(Toothache|Cavity)P(Catch|Cavity)



Conditional independence (cont’d)

Write out full joint distribution using chain rule:

P(Toothache,Catch,Cavity)
= P(Toothache|Catch,Cavity)P(Catch,Cavity)
= P(Toothache|Catch,Cavity)P(Catch|Cavity)P(Cavity)
= P(Toothache|Cavity)P(Catch|Cavity)P(Cavity)

In most cases, the use of conditional independence reduces the size
of the representation of the joint distribution from exponential in n
to linear in n.

Conditional independence is our most basic and robust from of
knowledge about uncertain environments.



Bayes’ rule

Product rule: P(a ∧ b) = P(a|b)P(b) = P(b|a)P(a)

Bayes’ rule: P(a|b) = P(b|a)P(a)
P(b)

or in probability distribution form,

P(Y |X ) =
P(X |Y )P(Y )

P(Y )
= αP(X |Y )P(Y )

Useful for assessing diagnostic probability from causal probability:

P(Cause|Effect) =
P(Effect|Cause)P(Cause)

P(Effect)



Bayes’ rule example

Useful for assessing diagnostic probability from causal probability:

P(Cause|Effect) =
P(Effect|Cause)P(Cause)

P(Effect)

E.g., let M be meningitis, S be stiff neck:

P(m|s) =
P(s|m)P(m)

P(s)
=

0.8× 0.0001

0.1
= 0.0008

Note: posterior probability of meningitis is still very small



Bayes’ rule and conditional independence

P(Cavity |toothache ∧ catch)
= P(toothache ∧ catch|Cavity)P(Cavity)/P(toothache ∧ catch)
= αP(toothache ∧ catch|Cavity)P(Cavity)
= αP(toothache|Cavity)P(catch|Cavity)P(Cavity)

A naive Bayes model is a mathematical model that assumes the
effects are conditionally independent, given the cause
P(Cause,Effect1, . . . ,Effectn) = P(Cause)

∏
i P(Effecti |Cause)

Effect 1 Effect n

Cavity

Toothache Catch

Cause

Naive Bayes model ⇒ total number of parameters is linear in n



The wumpus world
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Figure 13.5 FILES: figures/wumpus-stuck.eps (Tue Nov 3 16:24:12 2009) figures/wumpus-
variables.eps (Tue Nov 3 16:24:13 2009).(a) After finding a breeze in both [1,2] and [2,1], the
agent is stuck—there is no safe place to explore. (b) Division of the squares intoKnown, Frontier ,
andOther , for a query about [1,3].

The agent is navigating the
wumpus world in search of
gold.

The agent can perceive a

breeze, a smell, or the gold.

Each cell has 0.2 probability of containing a pit.
Falling into a pit kills the agent.
The wumpus won’t fall into a pit.

Pi,j = true iff [i , j ] contains a pit.
∀i , j P(pi,j) = 0.2

Each pit causes a breeze in the adjacent cells.
Bi,j = true iff [i , j ] is breezy.

There is one wumpus. Being in the same cell as
the wumpus kills the agent. The cells adjacent
to where the wumpus have a stench.

After finding a breeze in both [1,2] and [2,1],
there is no safe place to explore.



Specifying the probability model for pits
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Figure 13.5 FILES: figures/wumpus-stuck.eps (Tue Nov 3 16:24:12 2009) figures/wumpus-
variables.eps (Tue Nov 3 16:24:13 2009).(a) After finding a breeze in both [1,2] and [2,1], the
agent is stuck—there is no safe place to explore. (b) Division of the squares intoKnown, Frontier ,
andOther , for a query about [1,3].

The only breezes we care about are
B1,1,B1,2,B2,1. We can ignore the others.

The full joint distribution is:
P(P1,1, . . . ,P4,4,B1,1,B1,2,B2,1)

Apply the product rule to get P(Effect|Cause):
P(B1,1,B1,2,B2,1|P1,1, . . . ,P4,4)P(P1,1, . . . ,P4,4)

First term: 1 if pits are adjacent to breezes, 0
otherwise

Second term: Pits are placed independently.
Calculate using probability 0.2 for each of the
n pits. For example:
P(p1,1, . . . , p4,4) = 0.216 × 0.80, as n = 0
P(¬p1,1, . . . , p4,4) = 0.215 × 0.81, as n = 1



Observations and query
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Figure 13.5 FILES: figures/wumpus-stuck.eps (Tue Nov 3 16:24:12 2009) figures/wumpus-
variables.eps (Tue Nov 3 16:24:13 2009).(a) After finding a breeze in both [1,2] and [2,1], the
agent is stuck—there is no safe place to explore. (b) Division of the squares intoKnown, Frontier ,
andOther , for a query about [1,3].

We know the following facts (evidence):
b = ¬b1,1 ∧ b1,2 ∧ b2,1

known = ¬p1,1 ∧ ¬p1,2 ∧ ¬p2,1

The query is P(P1,3|known, b)

We need to sum over the hidden variables, so
define Unknown = Pi,js
other than P1,3 and Known

For inference by enumeration, we have
P(P1,3|known, b) =
α
∑

unknown P(P1,3, unknown, known, b)

Exponential number of combinations based on
the number of cells in unknown



Using conditional independence

Basic insight: Given the frontier squares, b is conditionally
independent of the other hidden squares
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Figure 13.5 FILES: figures/wumpus-stuck.eps (Tue Nov 3 16:24:12 2009) figures/wumpus-
variables.eps (Tue Nov 3 16:24:13 2009).(a) After finding a breeze in both [1,2] and [2,1], the
agent is stuck—there is no safe place to explore. (b) Division of the squares intoKnown, Frontier ,
andOther , for a query about [1,3].

Define Unknown = Frontier ∪ Other

P(b|P1,3,Known,Unknown)
= P(b|P1,3,Known,Frontier ,Other)
= P(b|P1,3,Known,Frontier)

We want to manipulate the query into a form
where we can use the above conditional
independence.



Translating to use conditional independence

P(P1,3|known, b)

= P(P1,3, known, b)/P(known, b)

= αP(P1,3, known, b)

= α
∑

unknown P(P1,3, known, b, unknown)

= α
∑

unknown P(b|P1,3, known, unknown)P(P1,3, known, unknown)

= α
∑

frontier

∑
other P(b|P1,3, known, frontier , other)P(P1,3, known, frontier , other)

= α
∑

frontier

∑
other P(b|P1,3, known, frontier)P(P1,3, known, frontier , other)

= α
∑

frontier P(b|P1,3, known, frontier)
∑

other P(P1,3, known, frontier , other)

= α
∑

frontier P(b|P1,3, known, frontier)
∑

other P(P1,3)P(known)P(frontier)P(other)

= αP(known)P(P1,3)
∑

frontier P(b|P1,3, known, frontier)
∑

other P(frontier)P(other)

= α′P(P1,3)
∑

frontier P(b|P1,3, known, frontier)
∑

other P(frontier)P(other)

= α′P(P1,3)
∑

frontier P(b|P1,3, known, frontier)P(frontier)
∑

other P(other)

= α′P(P1,3)
∑

frontier P(b|P1,3, known, frontier)P(frontier)



Results using conditional independence
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Figure 13.6 FILES: figures/wumpus-fringe-models.eps (TueNov 3 16:24:09 2009).Consistent
models for the frontier variables P2,2 and P3,1, showing P (frontier) for each model: (a) three models
with P1,3 = true showing two or three pits, and (b) two models with P1,3 = false showing one or two
pits.

P(P1,3|known, b) ≈< 0.31, 0.69 >

P(P2,2|known, b) ≈< 0.86, 0.14 >



Summary

Probability is a rigorous formalism for uncertain knowledge

Joint probability distribution specifies probability of every
atomic event

Queries can be answered by inference by enumeration
(summing over atomic events)

Can reduce combinatorial explosion using independence and
conditional independence
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I AIMA textbook (3rd edition)

I Dana Nau’s CMSC421 slides. 2010.
http://www.cs.umd.edu/~nau/cmsc421/chapter13.pdf

I Mausam’s CSL333 slides. 2014. http://www.cse.iitd.ac.

in/~mausam/courses/csl333/spring2014/lectures/

15-uncertmausam-15-uncertainty.pdf

http://www.cs.umd.edu/~nau/cmsc421/chapter13.pdf
http://www.cse.iitd.ac.in/~mausam/courses/csl333/spring2014/lectures/15-uncert mausam-15-uncertainty.pdf
http://www.cse.iitd.ac.in/~mausam/courses/csl333/spring2014/lectures/15-uncert mausam-15-uncertainty.pdf
http://www.cse.iitd.ac.in/~mausam/courses/csl333/spring2014/lectures/15-uncert mausam-15-uncertainty.pdf
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