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Motivation

Consider data that classifies N=800 boys with respect to boy scout
status (B: true, false), juvenile delinquency (D: true, false), and
socioeconomic status (S: low, medium, high).

We would like to use a scheme that allows efficient representation
and reasoning of probabilistic information.

Variable
’ B | D ]| S ‘ Number

y y | 11
y y m 14
y y h 8
y n | 43
y n m 104
y n h 196
n y | 42
n y m 20
n y h 2
n n | 169
n n m 132
n n h 59

Total 800




Bayesian belief networks (BBNs)

A simple, graphical notation for conditional independence
assertions and hence for compact specification of full joint
distributions.

Syntax:

> a set of nodes
each node represents a variable

» a directed, acyclic graph
the existence of a link usually means “directly influences”

» a conditional distribution for each node given its parents

In the simplest case, the conditional distribution for a node X; is
represented as a conditional probability table (CPT) giving the
distribution over X; for each combination of parent values:

P(X;| Parents (X;))



A BBN network with three variables

Suppose that after analysis, we find that juvenile delinquency (D)
and boy scout status (B) are conditionally independent given
socioeconomic status (S). This coincides with the intuition that
socioeconomic status is the common cause for both.
We can represent this as a BBN.

PS=l)= 0.33

P(S=m) = 0.34
P(S=h)= 0.33

P(bIS=l)= 02 PIS=l)= 02
P(b|S=m)= 0.44 P(d|S=m)= 0.13
P(bIS=h)= 0.77 P(dIS=h)= 0.04



Network topology

The topology of the network encodes conditional independence

assertions.
Toothache @

Weather is independent of the other variables.
Toothache and Catch are conditionally independent given Cavity.



Burglary example

Example from Judea Pearl at UCLA:

I'm at work, neighbor John calls to say my alarm is ringing, but
neighbor Mary doesn’t call. Sometimes it's set off by minor
earthquakes. Is there a burglar?

Variables: Burglar, Earthquake, Alarm, JohnCalls, MaryCalls
Network topology reflects “causal” knowledge:

» A burglar can set the alarm off

» An earthquake can set the alarm off

» The alarm can cause Mary to call

» The alarm can cause John to call



Burglary
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Compactness

A CPT for Boolean node X; with k Boolean
parents needs 2% rows,
one for each combination of the parent values.

Each row requires one number p for X; = true.
The number for X; = false is just 1 — p.

If each variable has no more than k parents,
the complete network requires O(n x 2¥) numbers.

The size of the network grows linearly with n, the number of
variables.

In comparison, a full joint probability distribution (JPD) table
requires O(2") rows, i.e., grows exponentially with n.

For the burglary network,

the BBN requires 1 + 1+ 4 + 2 + 2 = 10 numbers,

the full JPD table requires 2° — 1 = 31 numbers.

How many numbers are needed for the boy scouts BBN and table?



In general, semantics = "what things mean.”

Here we are interested in what a Bayesian net means
We'll look at global and local semantics
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Global semantics

o
@}@\@

The global semantics defines the full joint distribution as the
product of the local conditional distributions.

If X1,...,X, are all of the random variables, then by combining
the chain rule and conditional independence, we get
P(X1,...,Xs) = [[1-1 P(Xi| Parents (X))

Eg., PUAmMAaA-bA—e)
= P(j|m,a,—b,—e)P(m|a,—~b,—e)P(a|—b,—e)P(—b|—e)P(—e)
= P(j|a)P(m|a)P(a|—b,—e)P(=b)P(—e)



Plug in the values

N
a

mme -

PJIA) PMIA)
T| 90
F| 05 F| 01

The global semantics defines the full joint distribution as the
product of the local conditional distributions
P(X —1,...,X,) =[[L; P(Xi| Parents (X;))

Eg, PUAmMAaA-bA-e)

— P(j|a)P(m| 2)P(a] ~b, ~e)P(~b)P(~e)

= 0.9 x 0.7 x 0.01 x (1 —0.001) x (1 — 0.002)
0.06224526



Local semantics: Each node is conditionally independent
of its nondescendants given its parents

Theorem: local semantics < global semantics
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Each node is conditionally independent of all others given its

Markov blanket: parents + children + children’s parents
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Constructing Bayesian networks

Need a method such that a series of locally testable assertions of
conditional independence guarantees the required global semantics
1. Choose an ordering of variables Xi,..., X,
In principle any ordering will work
2. Fori=1lton
Add X; to the network
Select parents from Xi,..., X;_1 such that
]P(X,‘ ‘ Parents (X,)) = P(X,' ’ Xl, o ,X,',l)

This choice of parents guarantees the global semantics

P(X1,..., Xi—1) = [[;21 P(Xi| X4, . .., X;—1) (chain rule)
= [T/, P(Xi| Parents (X;)) (by construction)



Suppose we choose the ordering M, J, A, B, E

P(J|M) = P(J)?
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Suppose we choose the ordering M, J, A, B, E

P(J| M) = P(J)? No
P(A|J,M)=P(A|J)?

P(A|J,M) = P(A)?
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Suppose we choose the ordering M, J, A, B, E
.}@
Comeas>

Coem D

P(J| M) = P(J)? No
P(A|J,M)=P(A|J)?
P(B|A,J,M)=P(B|A)?
P(B|A,J,M) = P(B) ?

P(A|J,M) = P(A) ? No
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Example

Suppose we choose the ordering M, J, A, B, E

Crm >
P(J| M) = P(J)? No
(A|J,M)=P(A|J)? P(A|J,M) = P(A) ? No
(B|A,J,M) = P(B|A)? Yes
(B|A,J,M) = P(B) ? No
P(E|B,A,J,M) = P(E|A)?
P(E|B,A,J,M)=P(E|A, B)?



Example

Suppose we choose the ordering M, J, A, B, E

Crm >
e
P(J| M) = P(J)? No
(A|J,M)=P(A|J)? P(A|J,M) = P(A) ? No
(B|A,J,M) = P(B|A)? Yes
(B|A,J,M) = P(B) ? No
P(E|B,A,J,M) = P(E|A)? No
P(E|B,A,J,M)=P(E|A, B)? Yes



Example
.}
\ Comen>

Burglary

Deciding conditional independence is hard in noncausal directions.
(Causal models and conditional independence seem hardwired for
humans!)

Assessing conditional probabilities is hard in noncausal directions.
Network is less compact: 1 + 2 + 4 + 2 4+ 4 = 13 numbers
needed, rather than 10.



Car diagnosis example

Initial evidence: car won't start

Green variables are “testable variables”

Orange variables are “broken, so fix it variables”

Gray variables are "hidden variables” to ensure sparse structure
and reduce parameters




Car insurance example

Estimating the expected claim costs for a policy holder:
MedicalCost, LiabilityCost, PropertyCost

Unshaded variables are the data on the application form
Gray variables are “hidden variables”




Sources for the slides

» AIMA textbook (3™ edition)

» Dana Nau's CMSC421 slides. 2010.
http://wuw.cs.und.edu/~nau/cmsc421/chapterida.pdf
» Penn State online Stat 504 — Analysis of Discrete Data

course. https://onlinecourses.science.psu.edu/
statb504/print/book/export/html/112


http://www.cs.umd.edu/~nau/cmsc421/chapter14a.pdf
https://onlinecourses.science.psu.edu/stat504/print/book/export/html/112
https://onlinecourses.science.psu.edu/stat504/print/book/export/html/112
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