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Motivation

Consider data that classifies N=800 boys with respect to boy scout
status (B: true, false), juvenile delinquency (D: true, false), and
socioeconomic status (S: low, medium, high).
We would like to use a scheme that allows efficient representation
and reasoning of probabilistic information.

Variable
B D S Number

y y l 11
y y m 14
y y h 8
y n l 43
y n m 104
y n h 196
n y l 42
n y m 20
n y h 2
n n l 169
n n m 132
n n h 59

Total 800



Bayesian belief networks (BBNs)

A simple, graphical notation for conditional independence
assertions and hence for compact specification of full joint
distributions.

Syntax:

I a set of nodes
each node represents a variable

I a directed, acyclic graph
the existence of a link usually means “directly influences”

I a conditional distribution for each node given its parents

In the simplest case, the conditional distribution for a node Xi is
represented as a conditional probability table (CPT) giving the
distribution over Xi for each combination of parent values:

P(Xi | Parents (Xi ))



A BBN network with three variables

Suppose that after analysis, we find that juvenile delinquency (D)
and boy scout status (B) are conditionally independent given
socioeconomic status (S). This coincides with the intuition that
socioeconomic status is the common cause for both.
We can represent this as a BBN.
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Network topology

The topology of the network encodes conditional independence
assertions.
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Weather is independent of the other variables.
Toothache and Catch are conditionally independent given Cavity.



Burglary example

Example from Judea Pearl at UCLA:
I’m at work, neighbor John calls to say my alarm is ringing, but
neighbor Mary doesn’t call. Sometimes it’s set off by minor
earthquakes. Is there a burglar?

Variables: Burglar, Earthquake, Alarm, JohnCalls, MaryCalls

Network topology reflects “causal” knowledge:

I A burglar can set the alarm off

I An earthquake can set the alarm off

I The alarm can cause Mary to call

I The alarm can cause John to call



BBN for the burglary example
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Compactness

A CPT for Boolean node Xi with k Boolean
parents needs 2k rows,
one for each combination of the parent values.

Each row requires one number p for Xi = true.
The number for Xi = false is just 1− p.
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If each variable has no more than k parents,
the complete network requires O(n × 2k) numbers.

The size of the network grows linearly with n, the number of
variables.

In comparison, a full joint probability distribution (JPD) table
requires O(2n) rows, i.e., grows exponentially with n.
For the burglary network,
the BBN requires 1 + 1 + 4 + 2 + 2 = 10 numbers,
the full JPD table requires 25 − 1 = 31 numbers.

How many numbers are needed for the boy scouts BBN and table?



Semantics of Bayesian nets

In general, semantics = “what things mean.”
Here we are interested in what a Bayesian net means.
We’ll look at global and local semantics� � � � �� � � �� �
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Global semantics
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The global semantics defines the full joint distribution as the
product of the local conditional distributions.
If X1, . . . ,Xn are all of the random variables, then by combining
the chain rule and conditional independence, we get
P(X1, . . . ,Xn) =

∏n
i=1 P(Xi | Parents (Xi ))

E.g., P(j ∧m ∧ a ∧ ¬b ∧ ¬e)
= P(j |m, a,¬b,¬e)P(m | a,¬b,¬e)P(a | ¬b,¬e)P(¬b | ¬e)P(¬e)
= P(j | a)P(m | a)P(a | ¬b,¬e)P(¬b)P(¬e)



Plug in the values
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The global semantics defines the full joint distribution as the
product of the local conditional distributions
P(X − 1, . . . ,Xn) =

∏n
i=1 P(Xi | Parents (Xi ))

E.g., P(j ∧m ∧ a ∧ ¬b ∧ ¬e)
= P(j | a)P(m | a)P(a | ¬b,¬e)P(¬b)P(¬e)
= 0.9× 0.7× 0.01× (1− 0.001)× (1− 0.002)
= 0.06224526



Local semantics

Local semantics: Each node is conditionally independent
of its nondescendants given its parents
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Theorem: local semantics ⇔ global semantics



Markov blanket

Each node is conditionally independent of all others given its
Markov blanket: parents + children + children’s parents
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Constructing Bayesian networks

Need a method such that a series of locally testable assertions of
conditional independence guarantees the required global semantics

1. Choose an ordering of variables X1, . . . ,Xn

In principle any ordering will work

2. For i = 1 to n
Add Xi to the network
Select parents from X1, . . . ,Xi−1 such that
P(Xi | Parents (Xi )) = P(Xi |X1, . . . ,Xi−1)

This choice of parents guarantees the global semantics

P(X1, . . . ,Xi−1) =
∏n

i=1 P(Xi |X1, . . . ,Xi−1) (chain rule)
=

∏n
i=1 P(Xi | Parents (Xi )) (by construction)



Example

Suppose we choose the ordering M, J,A,B,E

MaryCalls

JohnCalls

P(J |M) = P(J) ?
.
.
.
.
.



Example

Suppose we choose the ordering M, J,A,B,E

MaryCalls

JohnCalls

Alarm

P(J |M) = P(J) ? No
P(A | J,M) = P(A | J) ? P(A | J,M) = P(A) ?
.
.
.
.



Example

Suppose we choose the ordering M, J,A,B,E

MaryCalls

JohnCalls

Alarm

Burglary

P(J |M) = P(J) ? No
P(A | J,M) = P(A | J) ? P(A | J,M) = P(A) ? No
P(B |A, J,M) = P(B |A) ?
P(B |A, J,M) = P(B) ?
.
.



Example

Suppose we choose the ordering M, J,A,B,E

MaryCalls

JohnCalls

Alarm

Burglary

Earthquake

P(J |M) = P(J) ? No
P(A | J,M) = P(A | J) ? P(A | J,M) = P(A) ? No
P(B |A, J,M) = P(B |A) ? Yes
P(B |A, J,M) = P(B) ? No
P(E |B,A, J,M) = P(E |A) ?
P(E |B,A, J,M) = P(E |A,B) ?



Example

Suppose we choose the ordering M, J,A,B,E

MaryCalls

JohnCalls

Alarm

Burglary

Earthquake

P(J |M) = P(J) ? No
P(A | J,M) = P(A | J) ? P(A | J,M) = P(A) ? No
P(B |A, J,M) = P(B |A) ? Yes
P(B |A, J,M) = P(B) ? No
P(E |B,A, J,M) = P(E |A) ? No
P(E |B,A, J,M) = P(E |A,B) ? Yes



Example

.

MaryCalls

JohnCalls

Alarm

Burglary

Earthquake

Deciding conditional independence is hard in noncausal directions.
(Causal models and conditional independence seem hardwired for
humans!)
Assessing conditional probabilities is hard in noncausal directions.
Network is less compact: 1 + 2 + 4 + 2 + 4 = 13 numbers
needed, rather than 10.



Car diagnosis example

Initial evidence: car won’t start
Green variables are “testable variables”
Orange variables are “broken, so fix it variables”
Gray variables are “hidden variables” to ensure sparse structure
and reduce parameters

�� �� � � � � � �� � � � � � � � � �

�� � � � � � � � �� � � �� � � �� � � � � � � � �� �
� � � � � �� � � �� � � �� � � � �� � � � � � � �� �� � � � � � � � � �� � �� � � �� � � � �� � � �� �

� �� � � � � �� � � �� � � � �� � � � � � � � � � � � �� � � � �� � � �� � � �� �� � �� � �� �� � �� � �

lights

no oil no gas starter
broken

battery age alternator
  broken

fanbelt
broken

battery
  dead no charging

battery
    flat

gas gauge

fuel line
blocked

oil light

battery
 meter

car won’t
    start dipstick

��� �� ��� � �� ����� �� � ��



Car insurance example

Estimating the expected claim costs for a policy holder:
MedicalCost, LiabilityCost, PropertyCost
Unshaded variables are the data on the application form
Gray variables are “hidden variables”226 J. BINDER ET AL.

OtherCarCost
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Figure 4. A network for estimating the expected claim costs for a car insurance policyholder. Hidden nodes are
shaded and output nodes are shown with heavy lines.

of the error signal. Finally, standard feed-forward neural networks only allow inputs at the
root nodes; restructuring the network to make the input nodes into root nodes may result in
an exponential increase in the number of network parameters.

6. Extensions for generalized parameters

Our analysis above applies only to networks where there is no relation between the different
parameters (CPT entries) in the network. Clearly, this is not always the case. If we do a
particular clinical test twice, for example, the parameters associated with these two nodes
in the network should probably be the same—even though the results of the two tests can
differ.

In many situations, the causal influences on a given node are related in such a way that
it becomes possible to represent the conditional distribution of the node given its parents
using a more compact representation than an explicit table. Viewing a CPT as a function
from the parent values uik and the child value xij to the number P (Xi =xij | Ui = uik), it
is often reasonable to describe this function parametrically.

One common approach is to use a general-purpose function approximator such as a
neural network. In other contexts, we might have more information about the structure of
this function. A noisy-OR model, for example, encodes our belief that a number of diseases
all have an independent chance of causing a certain symptom. We then have a parameter
qip describing the probability that disease p in isolation fails to cause the symptom i. The



Sources for the slides

I AIMA textbook (3rd edition)

I Dana Nau’s CMSC421 slides. 2010.
http://www.cs.umd.edu/~nau/cmsc421/chapter14a.pdf

I Penn State online Stat 504 – Analysis of Discrete Data
course. https://onlinecourses.science.psu.edu/

stat504/print/book/export/html/112

http://www.cs.umd.edu/~nau/cmsc421/chapter14a.pdf
https://onlinecourses.science.psu.edu/stat504/print/book/export/html/112
https://onlinecourses.science.psu.edu/stat504/print/book/export/html/112
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