INFERENCE IN BAYESIAN NETWORKS
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Outline

> Exact inference by enumeration
> Exact inference by variable elimination
> Approximate inference by stochastic simulation

> Approximate inference by Markov chain Monte Carlo
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Inference tasks

Simple queries: compute posterior marginal P(X;|E =e)
e.g., P(NoGas|Gauge =empty, Lights = on, Starts = false)

Conjunctive queries: P(X;, X;|E=¢) = P(X;|E=¢)P(X;|X;,E=¢e)

Optimal decisions: decision networks include utility information;
probabilistic inference required for P(outcomelaction, evidence)

Value of information: which evidence to seek next?
Sensitivity analysis: which probability values are most critical?

Explanation: why do | need a new starter motor?
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Inference by enumeration

Slightly intelligent way to sum out variables from the joint without actually
constructing its explicit representation

Simple query on the burglary network:

P(B|j,m) ©

= P(B,j,m)/P(j,m) ‘\}:Aj\/@)
— @P(Bajam)

= oX.X.P(B,e,a,j,m) g ©

Rewrite full joint entries using product of CPT entries:
P(B|j,m)

= a2, 2,P(B)P(e)P(a|B, e)P(jla)P(m|a)

= aP(B)X.P(e)2,P(a| B, e)P(jla)P(m|a)

Recursive depth-first enumeration: O(n) space, O(d") time
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Enumeration algorithm

function ENUMERATION-ASK(X, e, bn) returns a distribution over X
inputs: X, the query variable
e, observed values for variables
bn, a Bayesian network with variables {X} U E U Y

Q(X) < a distribution over X, initially empty
for each value z; of X do

extend e with value z; for X

Q(z;) + ENUMERATE-ALL(VARS[bn], €)
return NORMALIZE(Q(X))

function ENUMERATE-ALL(vars, €) returns a real number
if EMPTY?(vars) then return 1.0
Y+ FIrST(vars)
if Y has value yin e
then return P(y | Pa(Y)) x ENUMERATE-ALL(REST(vars),e)
else return ©, P(y | Pa(Y)) x ENUMERATE-ALL(REST(vars), e,)
where e, is e extended with Y = y
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Evaluation tree

Enumeration is inefficient: repeated computation
e.g., computes P(j|a)P(mla) for each value of ¢

P(j[a) P(j| —a) P(j|2) P(j| —a)
.90 .05 .90 .05
O
P(m|a) P(m|—a) P(m|a) P(m|—=a)
.70 .01 .70 .01

P(alb,e)

P(—alb,e)
.05

P(alb,—€)

P(—albe)
.06

O
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Inference by variable elimination

Variable elimination: carry out summations right-to-left,
storing intermediate results (factors) to avoid recomputation

P(B|j,m)
= aP(B) 2. P(e) 2, P(a| B, e) P(jla) P(m|a)
_ aP(B)S. PSP (alB. )Pl fula)
= aP(B)x.P(e)2,P(a|B,e)f;(a)fula)
= aP(B)2.P(e)2qfa(a,b,e)fs(a)fu(a)
= aP(B)x.P(e)fi,1,(b,e) (sum out A)
= aP(B)fii71(b) (sum out F)
= a.fp(b) X frasu(b)
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Variable elimination: Basic operations

Summing out a variable from a product of factors:
move any constant factors outside the summation
add up submatrices in pointwise product of remaining factors

YpfiX e X fy=fix o X fi 2y fin X e X fro= fux o X fix fx
assuming f1,..., f; do not depend on X

Pointwise product of factors f; and fs:

filzy, ooz yn, o ye) X fa(Yt, - ooy Yky 215 - - -5 20)
— f(xh"'7xj7y17"'7yk7217"'7zl)
E.g., fi(a,b) x fa(b,c) = f(a,b,c)

AIMAZ2e Chapter 14.4-5 8



Variable elimination algorithm

function ELIMINATION-ASK(X, e, bn) returns a distribution over X
inputs: X, the query variable
e, evidence specified as an event
bn, a belief network specifying joint distribution P(X7,..., X))

factors < []; vars < REVERSE(VARS[bn])
for each var in vars do

factors < [MAKE-FACTOR(var, e)|factors]

if var is a hidden variable then factors < SumM-OuT(var, factors)
return NORMALIZE(POINTWISE-PRODUCT(factors))
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Irrelevant variables

Consider the query P(JohnCalls|Burglary = true) o
P(J|b) = aP(b) ;P(e) ZajP(a\b, e)P(J|a) %P(m\a) ﬁ
Sum over m is identically 1; M is irrelevant to the query @ @

Thm 1: Y is irrelevant unless Y € Ancestors({ X} UE)

Here, X = JohnCalls, E={Burglary}, and
Ancestors({ X } UE) = { Alarm, Farthquake}

so M is irrelevant

(Compare this to backward chaining from the query in Horn clause KBs)
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Irrelevant variables contd.

Defn: moral graph of Bayes net: marry all parents and drop arrows

Defn: A is m-separated from B by C iff separated by C in the moral graph

Thm 2: Y is irrelevant if m-separated from X by E

For P(JohnCalls|Alarm =true), both (A)
Burglary and FEarthquake are irrelevant o @
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Complexity of exact inference

Singly connected networks (or polytrees):
— any two nodes are connected by at most one (undirected) path
— time and space cost of variable elimination are O(d"n)

Multiply connected networks:
— can reduce 3SAT to exact inference = NP-hard
— equivalent to counting 3SAT models = #P-complete

0.5 0.5 0.5 0.5

1. AvBv C
2. Cv Dv A
3. Bv Cv-D

AIMA2e Chapter 14.4-5 12



Inference by stochastic simulation

Basic idea:
1) Draw N samples from a sampling distribution S A
2) Compute an approximate posterior probability P

3) Show this converges to the true probability P
Outline: @

— Sampling from an empty network

— Rejection sampling: reject samples disagreeing with evidence

— Likelihood weighting: use evidence to weight samples

— Markov chain Monte Carlo (MCMC): sample from a stochastic process
whose stationary distribution is the true posterior
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Sampling from an empty network

function PRIOR-SAMPLE(bn) returns an event sampled from bn
inputs: bn, a belief network specifying joint distribution P(X,..., X))

X <— an event with n elements
for: = 1tondo

x; < a random sample from P(X; | Parents(X;))
return x
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Example

C |P(SIC)
T| .10
F| .50

P(C)

.90

S R[P(W|S,R)
T T| .99
T F| .90
F T| .90
F F| .01

C [P(R|C)
T .80
F| .20
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Example

C |P(SIC)
T 1] .10
F| .50

P(C)

.90

C |P(R|IC)
T | .80
F| .20

S R[P(WISR)
T T| .99
T F| .90
F T| .90
F F| .01
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Sampling from an empty network contd.

Probability that PRIORSAMPLE generates a particular event
Sps(xy...x,) = II[_  P(z;|Parents(X;)) = P(z; ... x,)
I.e., the true prior probability

E.g., Sps(t, f,t,t) =0.5x0.9x 0.8 % 0.9=0.324 = P(t, f,t,1)
Let Npg(zy...x,) be the number of samples generated for event 1, ..., z,

Then we have

lim P(zy,...,z,) = lim Npg(ay,...,x,)/N

N—o0 N—o0
= Spg(:l?l, ce ,xn)
= P(zy...1zp)

That is, estimates derived from PRIORSAMPLE are consistent

Shorthand: P(z1,...,x,) ~ Pl ... x,)
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Rejection sampling

P(X|e) estimated from samples agreeing with e

function REJECTION-SAMPLING(X, e, bn, N) returns an estimate of P(X|e)
local variables: N, a vector of counts over X, initially zero

for j=1to N do
X <~ PRIOR-SAMPLE(bn)
if x is consistent with e then
NJz] <— N[2]+1 where z is the value of X in x
return NORMALIZE(N[X])

E.g., estimate P(Rain|Sprinkler =true) using 100 samples
27 samples have Sprinkler =true
Of these, 8 have Rain =true and 19 have Rain = false.

A

P(Rain|Sprinkler =true) = NORMALIZE((8,19)) = (0.296, 0.704)

Similar to a basic real-world empirical estimation procedure
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Analysis of rejection sampling

P(X|e) = aNpg(X,e) (algorithm defn.)
= Nps(X,e)/Nps(e) (normalized by Npg(e))
~P(X,e)/P(e) (property of PRIORSAMPLE)
= P(X]|e) (defn. of conditional probability)

Hence rejection sampling returns consistent posterior estimates
Problem: hopelessly expensive if P(e) is small

P(e) drops off exponentially with number of evidence variables!
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Likelihood weighting

|dea: fix evidence variables, sample only nonevidence variables,
and weight each sample by the likelihood it accords the evidence

function LIKELIHOOD-WEIGHTING(X, e, bn, N) returns an estimate of P(X|e)
local variables: W, a vector of weighted counts over X, initially zero

for j=1to N do

X, W4 WEIGHTED-SAMPLE( bn)

W z] < W{z] + w where z is the value of X in x
return NORMALIZE(W|[X])

function WEIGHTED-SAMPLE(bn, €) returns an event and a weight

X < an event with n elements; w<+1
for :=1ton do
if X; has a value z; in e
then w+ w x P(X;= z; | Parents(X;))
else z; < a random sample from P(X; | Parents(X;))
return x, w
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Likelihood weighting example

C |P(SIC)
T .10
F| .50

P(C)
50

S R

T T 99
T F 90
F T 90
F F 01

C |P(RIC)
T1| .80
F| .20
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Likelihood weighting example

P(C)
50

T C |PRIC)
1.'1"""11'.:?‘3N"-"" R
M N\ i

S R

T T 99
T F 90
F T 90
F F 01

w=1.0x0.1
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Likelihood weighting example

C |P(SIC)
T | .10
F| .50

w=1.0x0.1x0.99 =0.099

P(C)

.20

P(RIC)

.80
20

99
90
90
01
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Likelihood weighting analysis

Sampling probability for WEIGHTEDSAMPLE is
Sws(z,e) = II._, P(z]| Parents(Z;))
Note: pays attention to evidence in ancestors only
= somewhere “in between” prior and
posterior distribution

Weight for a given sample z, e is
w(z,e) = II;"  P(e;| Parents(E;))

Weighted sampling probability is
Sws(z,e)w(z,e)
= HizlP(zﬂParents(Zz-)) III"  P(e;| Parents(E;))
= P(z,e) (by standard global semantics of network)

Hence likelihood weighting returns consistent estimates
but performance still degrades with many evidence variables
because a few samples have nearly all the total weight
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Approximate inference using MCMC

“State” of network = current assignment to all variables.

Generate next state by sampling one variable given Markov blanket
Sample each variable in turn, keeping evidence fixed

function MCMC-ASK(X, e, bn, N) returns an estimate of P(X|e)
local variables: N|X], a vector of counts over X, initially zero
Z, the nonevidence variables in bn
X, the current state of the network, initially copied from e

initialize x with random values for the variables in Y
for j=1to N do
N[z] - N|z]| 4+ 1 where z is the value of X in x
for each Z; in Z do
sample the value of Z; in x from P(Z;|M B(Z;)) given the values of
MB(Z;) inx
return NORMALIZE(N[X])

Can also choose a variable to sample at random each time
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The Markov chain

= true, there are four states:

With Sprinkler =true, WetGrass

Wander about for a while, average what you see

35
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MCMC example contd.

Estimate P(Rain|Sprinkler =true, WetGrass = true)

Sample C'loudy or Rain given its Markov blanket, repeat.
Count number of times Rain is true and false in the samples.

E.g., visit 100 states
31 have Rain =true, 69 have Rain = false

AN

P(Rain|Sprinkler =true, WetGrass =true)
= NORMALIZE((31,69)) = (0.31,0.69)

Theorem: chain approaches stationary distribution:
long-run fraction of time spent in each state is exactly
proportional to its posterior probability
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Markov blanket sampling

Markov blanket of C'loudy is
Sprinkler and Rain
Markov blanket of Rain is
Cloudy, Sprinkler, and WetGrass

Probability given the Markov blanket is calculated as follows:
P(xi|M B(X;)) = P(x}|Parents(X;))llz conidren(x, P(2;] Parents(Z;))
Easily implemented in message-passing parallel systems, brains

Main computational problems:
1) Difficult to tell if convergence has been achieved
2) Can be wasteful if Markov blanket is large:
P(X;|M B(X;)) won't change much (law of large numbers)
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Summary

Exact inference by variable elimination:
— polytime on polytrees, NP-hard on general graphs
— space = time, very sensitive to topology

Approximate inference by LW, MCMC:
— LW does poorly when there is lots of (downstream) evidence
— LW, MCMC generally insensitive to topology
— Convergence can be very slow with probabilities close to 1 or 0
— Can handle arbitrary combinations of discrete and continuous variables
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