
Generating Temporally Contingent Plans

Janae N. Foss Nilufer Onder
Department of Computer Science

Michigan Technological University
1400 Townsend Drive
Houghton, MI 49931

{jnfoss,nilufer}@mtu.edu

Abstract

Uncertainty applies to many aspects of planning
problems. Much research has been done to deal
with problems where actions have uncertain effects.
In reality, many planning problems also involve ac-
tions with uncertain durations, but this type of un-
certainty has not been widely studied in planning
until the recent development of several planners
which incorporate durational uncertainty. Addi-
tionally, theoretical work has been done on charac-
terizing the level of controllability in plans involv-
ing actions with uncertain durations. We have de-
veloped an approach for finding temporally contin-
gent plans, i.e., plans with branches that are based
on the duration of an action at execution time. More
specifically, the problems we are studying satisfy
the following criteria: (1) there is more than one so-
lution plan, (2) solution plans are ranked by a met-
ric that is not fully based on makespan, (3) actions
have uncertain durations, (4) the start and/or end
times of some actions are constrained, and (5) as
actions require more time to complete, plans that
are judged highly by the metric become invalid.
We describe our approach for determining the time
points that cause an unsafe situation and for insert-
ing temporal contingency branches. Experimental
results with both sequential and parallel plans are
discussed.

1 Introduction
Uncertainty applies to many aspects of planning problems.
Much research has been done to deal with problems where ac-
tions have uncertain effects. A classification of planners that
can handle this kind of uncertainty is given in [Dearden et al.,
2003]. In reality, many planning problems also involve ac-
tions with uncertain durations, but this type of uncertainty has
not been widely studied in planning until the recent develop-
ment of several planners which incorporate durational uncer-
tainty [Younes and Simmons, 2004; Mausam and Weld, 2005;
Little et al., 2005]. Additionally, there has been theoretical
work on characterizing the level of controllability in plans in-
volving actions with uncertain durations [Vidal and Fargier,
1999]. Conservative planning (i.e., finding plans that are

likely to be safe regardless of action duration) is one way to
handle durational uncertainty. The advantage to this approach
is that the resulting plans are robust. However, conservative
planning often results in missed opportunities. To take advan-
tage of available opportunities while still having a robust plan,
we have developed an approach for finding temporally con-
tingent plans (TCPs), i.e., plans with branches that are based
on the duration of an action at execution time. Specifically,
the problems we are studying satisfy the following criteria:
(1) there is more than one solution plan, (2) solution plans
are ranked by a metric that is not fully based on makespan1,
(3) actions have uncertain durations, (4) the start and/or end
times of some actions are constrained, and (5) as actions re-
quire more time to complete, plans that are judged highly by
the metric become invalid. We take an optimistic approach
by first finding a plan that is valid when all actions complete
quickly. We then use the methods described in [Dechter et
al., 1991] to determine when the plan may fail. At time points
that cause an unsafe situation, temporal contingency branches
are inserted.

As an example, consider the problem of traveling from
home to a conference. One solution plan is to drive to the
airport, fly to the destination city, take a shuttle to the confer-
ence venue, and finally register for the conference. Another
solution plan could involve taking a taxi instead of a shuttle to
the venue. Assuming the metric is to minimize money spent,
the plan with the shuttle action would be preferred. How-
ever, the taxi may be faster than the shuttle and since there
are constraints on the time one can register for the confer-
ence, depending on how long the flight takes, there may only
be enough time for the more expensive taxi option. To always
have a safe plan, and be able to save money when possible,
our approach would generate a TCP to drive to the airport,
fly to the destination, take the shuttle if there is enough time,
otherwise take the taxi, and register for the conference. In
this way, our approach ensures enough time for the worst
case while making use of better options when time allows.
Throughout this paper our running example will be the con-
ference domain.

Our contributions are threefold: (1) we introduce the no-

1As we define it, a metric may either combine makespan with
some nontemporal measure or simply be stated as a nontemporal
measure.

tion of TCPs, (2) we provide a greedy iterative algorithm that
inserts branches based on time rather than world conditions,
(3) we show that viable plans can be generated in this frame-
work. In the remainder of this paper we first define temporal
uncertainty and explain our algorithm for creating TCPs. We
then give a theoretical framework for characterizing solution
plans. This is followed by preliminary experiments, general
remarks, and a description of future work.

2 Planning with Temporal Uncertainty
Temporal planning and reasoning activities involve actions
that have a temporal extent, such as an action duration, and
general temporal constraints, such as a deadline for when an
action must begin. Problems with temporal aspects may have
actions with uncertainty present in one of the following three
ways. First, the temporal aspects are certain while the effects
on the world are uncertain. For example, eating a meal may
take 30 minutes, but it is uncertain if hunger will be satisfied.
Second, the changes in the world are certain, but the temporal
aspects are uncertain. For example, hunger will be satisfied
after eating a meal, but the duration of the meal is uncertain.
Third, both the temporal aspects and changes in the world are
uncertain. For example, a meal will be eaten but it is uncertain
how long it will take and whether hunger will be satisfied. For
simplicity, our current work is concerned with only the first
type of uncertainty. We plan to deal the other two types of
uncertainty in future work.

In our framework, uncertainty in action duration is rep-
resented with the interval [min-d, max-d], where min-d and
max-d are minimum and maximum reasonable durations2, re-
spectively (min-d > 0 and max-d < ∞). We have extended
PDDL2.2 [Edelkamp and Hoffman, 2004] to represent inter-
val durative actions as opposed to single point durative ac-
tions. In temporal reasoning literature when an interval dura-
tion is assigned to an action, it is generally assumed that the
user can select any value from the interval. In our work we
build on the model described in [Vidal and Fargier, 1999] and
assume that some action durations will be known only at exe-
cution time and thus are uncertain. Hence we define two types
of interval durative actions. If the duration is assignable, the
executing agent (user) can choose a duration between min-d
and max-d. If the duration is uncertain the action will con-
sume some time between min-d and max-d, but the exact du-
ration is beyond the control of the agent. In the conference
domain, the duration of a flight is uncertain, but the duration
of eating a meal is assignable.

In Figure 1 our coding of the conference domain is given.
Note that the eat-meal action has an assignable duration but
the other actions have unassignable (i.e., uncertain) durations.
As defined, fly airport2 airport1 has a duration between
45 and 90 time units, starting at time 30 and conference reg-
istration has a duration between 5 and 10 time units, starting
between times 84 and 141, exclusive. These two actions show

2These durations may be determined using a probabilistic distri-
bution. The 95th percentile has been used to produce conservative
plans (e.g. [Fox and Long, 2002]) and may be a good selection for
max-d. Experimental work must be done to determine a reasonable
percentile for min-d.

the syntax we have added for associating actions with their
execution time constraints. In our framework we assume that
there is no penalty involved with waiting to begin execution of
an action. The addition of assignable and unassignable inter-
val durations is a conceptual extension to PDDL2.2, whereas
the execution-time syntax provides convenience in coding
but can be represented indirectly by the timed initial literals
of PDDL2.2 which are used to define temporal windows.

Domain description

(define (domain conference-travel)
(:requirements :fluents :equality
:interval-durative-actions :execution-times)

(:predicates (at_airport1) (at_airport2) (at_hotel)
(not_hungry) (attending_conference))

(:functions (money_spent))

(:interval-durative-action fly_airport2_airport1
:unassignable-interval-duration

(and (min ?duration 45) (max ?duration 90))
:condition (at start (at_airport1))
:effect (and (at end (at_airport2))
(at start (not (at_airport1)))
(at start (increase (money_spent) 200)))
:execution-time (start at 30))

(:interval-durative-action taxi_hotel_airport2
:unassignable-interval-duration

(and (min ?duration 15) (max ?duration 20))
:condition (at start (at_airport2))
:effect (and (at end (at_hotel))
(at start (not (at_airport2)))
(at start (increase (money_spent) 120))))

(:interval-durative-action shuttle_hotel_airport2
:unassignable-interval-duration

(and (min ?duration 30) (max ?duration 60))
:condition (at start (at_airport2))
:effect (and (at end (at_hotel))
(at start (not (at_airport2)))
(at start (increase (money_spent) 20))))

(:interval-durative-action eat_meal
:assignable-interval-duration

(and (min ?duration 20) (max ?duration 60))
:condition (at start (attending_conference))
:effect (at end (not_hungry))
(at start (increase (money_spent) 20))))

(:interval-durative-action register_for_conference
:unassignable-interval-duration

(and (min ?duration 5) (max ?duration 10))
:condition (over all (at_hotel))
:effect (at end (attending_conference))
:execution-time (and (start after 84) (start before 141))))

Problem description

(define (problem conference-travel-1)
(:domain conference-travel)
(:init (at_airport1)

(= (money-spent) 0))
(:goal (attending_conference))
(:metric minimize (money-spent)))

Figure 1: Conference travel domain and problem.

3 Creating Temporal Contingency Plans
When creating a TCP it is important to find a plan that is both
safe and ranked highly by the plan metric. Intuitively, a plan

is safe if its validity is guaranteed, even when all of its un-
certain actions require their maximum duration to complete.
One approach to building safe plans in this context is to as-
sume that all actions always require their maximum duration.
Though the result is a robust plan, in our framework this pes-
simistic assumption leads to a plan that is not ranked well
by the metric. We take an optimistic approach and assume
that actions require only their minimum duration. Since this
assumption may yield an unsafe plan, we build temporally
contingent branches into it using a general Just-In-Case style
algorithm [Drummond et al., 1994] where we generate a seed
plan, find points where it is likely to fail, and then insert con-
tingency branches at those points. Our algorithm is given in
Figure 2. To generate the seed plan, we make the optimistic

TCP Algorithm

(1.1) Generate a seed plan, P with n actions, assuming all actions require only
their minimum duration

(1.2) Construct the distance graph D of P

(1.3) TCP←MakeSafePlan(P, D)
MakeSafePlan(Plan P, DistanceGraph D)

(2.1) Create TCP with P as main branch

(2.2) For each action i = n to 1 in P

(2.3) maxAllowedDuration← shortestPathDistance(si , ei, D)

(2.4) While maxAllowedDuration < maxDuration(i)

(2.5) newMinDuration← maxAllowedDuration + 1
(2.6) TCB← GetContingencyBranch(i, newMinDuration)
(2.7) Insert TCB into TCP to be executed when i requires more time

than newMinDuration
(2.8) maxAllowedDuration← shortestPathDistance(si , ei, DB)

(2.9) Modify D so that i is constrained to start at the latest time i can
safely start

(2.10) return TCP
GetContingencyBranch(Action i, Duration newMinDuration)

(3.1) Modify domain to assume i requires newMinDuration

(3.2) Modify initial conditions of problem to reflect state of world at start of i

(3.3) earliestStartTime← -1 × shortestPathDistance(si , s0, D)

(3.4) Modify problem to constrain i to start at earliestStartTime

(3.5) Using the modified domain and problem, generate a branch B

(3.6) Construct the distance graph DB of B

(3.7) TCB←MakeSafePlan(B, DB)

(3.8) return TCB, DB

Figure 2: Algorithm for creating TCPs.

assumption, i.e., for each action assign min-d as the duration.
This yields a plan that is ranked highly by the metric (step
1.1). Next, we analyze the seed plan to find out, temporally
speaking, when it becomes unsafe (steps 1.2 and 1.3). At any
time point where the seed plan becomes unsafe, we generate
and insert a branch that is safe. This technique creates a plan
that includes a path that can be safely executed when all of
its actions require their maximum duration, but also includes
branches yielding a more desirable result that are executed
when actions require less time.

As stated above, when generating the seed plan (and sub-
sequent branches), the duration of each action is set at min-d,
removing all uncertainty at planning time. (For the remain-
der of this section, the term plan is used to refer to either a
seed plan or branch plan.) This allows expression of the prob-

lem and domain in PDDL2.2 and plans can be generated with
any planner that understands PDDL2.2. A plan P returned
by such a planner will be temporally deterministic. Our al-
gorithm factors in temporal uncertainty by converting P to a
directed, edge-weighted graph called a distance graph, thus
expressing P as a simple temporal network (STN) [Dechter et
al., 1991]. STNs are widely used in temporal reasoning and
include nodes representing time points and edges between
pairs of nodes representing temporal constraints between time
points. Figure 3 shows (a) the seed plan that would be gen-
erated for the problem in Figure 1 and (b) the corresponding
distance graph. An in-depth description of how to perform
step 1.2 of the algorithm is given next.

Execution Time Action
30 fly airport2 airport1
76 shuttle hotel airport2
107 register for conference

(a)

(b)

Figure 3: (a) A seed plan for the problem in Figure 1. Note
that the times given by the seed plan assume actions require
their minimum durations. (b) The distance graph for the seed
plan in (a), incorporating temporal uncertainty. For clarity,
only the most important edges are shown.

Since the execution times in P are based on a deterministic
temporal assumption, they are ignored during the construc-
tion of the distance graph D. Only the actions of P are con-
sidered. In construction of D, each action is dealt with indi-
vidually to allow any possible concurrency in P to be present
in D. The first step in constructing D is to add two nodes for
each action i, one for its start time si and one for its end time
ei, and a node s0 representing time 0. Edges are then added in
pairs representing temporal relations and weighted with tem-
poral distances. For each action i, a pair of edges is added
between si and ei. The edge si → ei is weighted with max-
d of i and the edge ei → si is weighted with -1 × (min-d
of i). Next, pairs of edges are added between s0 and each si
node. (Pairs of edges can also be added from s0 to each ei,
but are not necessary and add no new temporal information.)
If an action i has a constrained start time, the edge s0→ si is
weighted with the latest start time of i and the edge si → s0
is weighted with -1 × (earliest start time of i). This is shown
with the fly and register actions in Figure 3(b). When an ac-
tion does not have a constrained start time, the edge s0 → si
is weighted with ∞ and the edge si→ s0 is weighted with 0,
signifying that the start of action i comes after time 0, but

there are no other constraints. For clarity, these edges are not
included in Figure 3(b).

The final step in constructing the distance graph is to insert
edges that represent relationships between actions. Though P
contains a sequence of steps, some concurrency may be pos-
sible. To properly discover and encode this in D, causal links
and threats in P must be identified. This is done using an
algorithm similar to the one described by [R-Moreno et al.,
2002]. For every condition c of each action i, a causal link is
added to the closest action j in the plan that appears before i
and produces c as an effect. The causal link forces the pro-
ducer action to occur before the consumer. A threat link is
added between an action i and an action j when an effect of j
negates a condition of i.3 This algorithm discovers no knowl-
edge about temporal distance, so pairs of edges labeled with
0 and ∞ are added to the graph simply expressing that one ac-
tion must occur before the other. There is no concurrency in
the plan of Figure 3, so edges are added from the start of each
action to the end of the previous action, representing causal
links. There are no threats in this example.

Since D contains all temporal constraints given in the do-
main, it can be used to determine when P becomes unsafe.
This procedure is given by the MakeSafePlan function of Fig-
ure 2. In [Dechter et al., 1991] it is proved that the abso-
lute bounds on the temporal distance between any two time
points represented by nodes a and b (assuming a ≺ b) in D,
is given by the interval [-1 × (weight of shortest path from
b to a), weight of shortest path from a to b]. The shortest
path can be found using an algorithm such as the Bellman-
Ford single source shortest path algorithm with a runtime of
O(|V ||E|). In Figure 3(b) we see that the duration of the fly
action is expressed by the interval [45, 90]. However, using
the shortest path method (step 2.3 in Figure 2), it is found
that the absolute bounds on the duration of the fly action are
expressed by the interval [45, 80]. This indicates that if the
fly action takes more than 80 time units, the rest of the plan
becomes unsafe. To have a safe solution, a contingency must
be generated that can reach the goal safely when the fly ac-
tion takes more than 80 time units, so the loop in step 2.4
will be entered. Currently, the loop considers actions in re-
verse order. We plan to experiment with different orderings
in the future. This loop allows multiple contingency branches
to be generated for the same time point. The GetContingen-
cyBranch function modifies the domain and problem to re-
flect the state of the world when the branch occurs and then
generates a branch plan which is verified in the same way
as the seed plan. Hence, branches may themselves contain
branches. After a safe contingency branch has been gener-
ated, it is inserted into the seed plan (step 2.7). For the exam-
ple problem, the contingency branch that will be generated is
taxi hotel airport2, register for conference. After
leaving the loop of 2.4, it is known that action i can safely
execute, even if it requires its maximum duration. In step 2.9,
D is modified to ensure that actions occurring before i com-
plete early enough so that i has enough time to consume its

3In the future, we plan to extend this algorithm to discover threats
that may be caused by actions consuming the same resource. Cur-
rently, actions of this sort are disallowed.

maximum duration if necessary. Once all actions have been
verified, the TCP is safe. The TCP of the example problem is
given in Figure 4(a). In the next section, we formally explain
a data structure that can be used to represent TCPs.

At time 30: fly_airport2_airport1
IF (time < 85)

Before time 85: shuttle_hotel_airport2
Before time 140: register_for_conference

ELSE
Before time 120: taxi_hotel_airport2
Before time 140: register_for_conference

(a)

(b)

Figure 4: (a) A TCP for the problem in Figure 1. (b) The
TCN for the plan in (a).

4 Temporal Contingency Networks
We represent TCPs using a new data structure called a Tem-
poral Contingency Network (TCN). TCNs are an extension of
STNs and are inspired by the STPU model defined in [Vidal
and Fargier, 1999]. TCNs extend STNs in two dimensions.
First, interval durations are labeled as user assignable or not;
second, some nodes represent decisions based on observa-
tions of time. The second aspect enables the representation
of TCPs. Part (b) of Figure 4 depicts a TCN for the TCP in
part (a).

Formally, a TCN is a quadruple <T, O, E, B>. T is a set
of nodes representing start and end times of actions. A node
representing the absolute start time is also included in T. Each
node in T is referred to as a time point. Nodes in T that are not
included in all paths of execution contain a context label [Peot
and Smith, 1992] identifying the branch of execution they be-
long to. Oval nodes in the figure belong to T. The shuttle and
taxi nodes contain context labels because these actions do not
belong to all paths of execution. O is a (possibly empty) set
of observation nodes representing decisions about which sub-
sequent actions to execute. Observations of time are assumed
to be executable at any time (no preconditions) and instanta-
neous; and should be executed immediately after the preced-
ing time point. A TCN with observation nodes is safe if all the
possible paths are safe. In the figure, the diamond represents
an observation node. E is a set of interval labeled edges rep-
resenting constraints between time points. Edges in E can be
marked as uncertain, assignable, or unmarked. The non-bold

edges in the figure belong to E. Edges representing assignable
durations are marked with a and those representing uncertain
durations are marked with u. Edges with intervals represent-
ing an exact amount of time (such as Time 0 → start: fly)
are unmarked. B is a set of temporally labeled edges leaving
observation nodes. The bold edges in the figure belong to B.
As shown, these edges are given a label indicating when each
branch can safely be taken. This data structure provides a rich
context for reasoning about TCPs.

5 Experiments and Discussion
In this section we provide preliminary experimental results.
To the best of our knowledge, there are no planners that pre-
pare contingency branches based on time. We therefore de-
signed our experiments to show that our algorithm works and
to help identify the ways in which it can be improved. LPG-
TD [Gerevini et al., 2004] was the planner that we used for
generating seed plans and branches. We choose LPG-TD be-
cause it can handle the timed initial literals of PDDL2.2 and
can optimize for temporal and nontemporal metrics. All ex-
periments were performed on a machine with a 3.0GHz Pen-
tium 4 CPU and 1GB of RAM.

The domain used in the experiments is another version of
the domain in Figure 1. The experimental domain has no
meal action, but three new actions are added. First, there is
a drive action that must occur in order to arrive at airport1.
Next, actions are added to include the possibility of taking
a flight from airport1 to a new airport, airport3, and from
airport3 to airport2. The direct flight is more costly than
flying through airport3. Finally, an action is added to the
domain for taking public transportation as the least costly way
to get to the hotel from airport2. The domain was created
in this way to allow many different possible solutions when
registering for the conference is the only goal.

The first set of experiments involved plans with no possi-
ble parallelism. These experiments were done to compare the
runtime as more conditional branches were added to the seed
plan. The domain was modified for each run to force different
numbers and combinations of branches. The same seed plan
was generated every time. Table 1 shows the results of these
experiments. In the first run, the seed plan was always safe
and thus no branches were created. In successive runs, the
number of created branches ranged from 1 to 4. There were
2 different runs that each produced 3 branches. In general,
as more branches were created, the runtime increased. How-
ever, one of the runs with 3 branches took much longer than
the other, and even longer than the run with 4 branches. There
are two reasons for this. First, as is clear in the table, gener-
ation of the seed plan and branches by LPG-TD accounts for
nearly all of the runtime. Due to the conditions in this ex-
periment, LPG-TD required extra time to create one of the
branches. Second, this run contained longer branches than
the other run with 3 branches, thus requiring more time for
verification time by our algorithm.

The second set of experiments involved parallel plans. In
our algorithm, no dependencies are assumed between actions
in the plan. As described previously, dependencies are dis-
covered when the distance graph is built. In this way, our

branches created LPG-T D runtime total runtime
0 260 260.1
1 520 527.0
2 780 788.5
3 1040 1054.0
3 1290 1302.6
4 1130 1144.9

Table 1: Run times in milliseconds of experiments with prob-
lems requiring different numbers of conditional branches.

algorithm inherently allows parallel plans. To test this aspect,
three new actions were added to the domain. The first was
an action for grading exams that had to be completed before
arriving at the hotel. The other two actions were for reading
papers (one for a long paper and one for a short paper) which
had to be completed after grading the exams and before ar-
riving at the hotel. More knowledge was gained by reading
the long paper. The problem was then modified by adding
two goals to read some paper (either or both) and grade the
exams. The metric was modified to rank plans higher when
more knowledge was gained while still trying to minimize
the money spent. The sequential experiments were re-run
with the new modified domain and problem. The addition
of the parallel actions caused no significant change in run-
time among these tests. But, when the domain was modified
so that a branch had to be inserted to read the short paper
when the exams took a long time to grade, there was a spike
in runtime. The reason for this is that our algorithm does not
currently identify parallel paths of execution and treat them
separately. In the plan that LPG-TD created, grading the ex-
ams was the first action, reading the paper was the second
action, and the rest of the plan followed. In creating a branch
to insert after the grading action, our algorithm had to re-
discover the entire rest of the plan, though the grading action
only directly affected reading the paper. Our algorithm pro-
duces a valid result, but it is inefficient. We plan to research
this topic in the future.

6 Related work
The main framework of our algorithm is very close to Just-
In-Case (JIC) scheduling [Drummond et al., 1994]. The
JIC scheduler analyzes a seed schedule, finds possible fail-
ure points, and inserts contingency branches so that valuable
equipment time is not lost when an experiment fails. Our
work extends this framework to multiple planner goals, par-
allel plans, and nontemporal metrics, but does not consider
probability of failure. Presently we insert contingent branches
for every action that might not have sufficient time. We plan
to improve our algorithm by systematically evaluating and
selecting branch insertions points as in [Onder and Pollack,
1999; Dearden et al., 2003]. Dearden et al’s [2003] approach
involves generating a seed plan and adding contingent plans
based on a rich utility metric involving goal values and con-
tinuous resources.

There are a number of domain independent planners that
can handle durative actions. We used LPG-TD because it
can optimize based on a nontemporal metric. Other plan-

ners include TGP [Smith and Weld, 1999], a planner that
uses mutual exclusion reasoning in a temporal context, SAPA
[Do and Kambhampati, 2002], a heuristic forward chaining
planner; HSP [Haslum and Geffner, 2002] a heuristic planner
with time and resources; and CPT an optimal temporal POCL
planner based on constraint programming [Vidal and Geffner,
2004].

Vidal and Fargier [1999] present an analysis of three lev-
els of controllability given a plan. The plans analyzed have
actions with uncertain durations and temporal constraints but
the start times of actions and the durations of assignable in-
tervals have not been assigned yet. A control sequence is an
assignment of times to time points and durations to assignable
intervals such that all the constraints are respected regardless
of the actual durations of the uncertain intervals. A control
sequence is strong if it can be determined prior to execution.
A control sequence is weak if (parts of) it can only be de-
termined during execution right after some actual action du-
rations have been observed. Finally, a control sequence is
dynamic if the completion of an action is too late to make an
assignment of start times to the remainder of the actions but
there exists a time point t such that if an actual duration is
learned in advance at time t safe assignments can be made. In
our work we are concerned with generating plans with strong
control sequences.

Tsamardinos et al. describe an algorithm for merging ex-
isting plans with assignable durations and nontemporal con-
ditional branches [2000]. We plan to extend our algorithm
by using their plan merging framework. In particular, we
will be generating two plans, one with the minimum dura-
tion and one with the maximum duration for each uncertain
interval and merging those two plans into a conditional plan
such that common actions are executed unconditionally and
actions that differ are executed under appropriate contexts.

Tempastic [Younes and Simmons, 2004] is a planner that
models continuous time, probabilistic effects, probabilistic
exogenous events and both achievement and maintenance
goals. It uses a “generate-test-debug” algorithm that gener-
ates an initial policy and fixes the policy after analyzing the
failure paths. In producing a better plan, the objective is to
decrease the probability of failure. Nontemporal resources
are not modeled.

Mausam and Weld [2005] describe a planner that can han-
dle actions that are concurrent, durative and probabilistic.
They use novel heuristics with sampled real-time dynamic
programming in this framework to generate policies that are
highly optimal. The quality metric includes makespan but
nontemporal resources are not modeled in the planning prob-
lem.

Prottle [Little et al., 2005] is a planner that allows con-
current actions that have probabilistic effects and probabilis-
tic effect times. Prottle uses effective planning graph based
heuristics to search a probabilistic AND/OR graph consisting
of advancement and placement nodes. Prottle’s plan metric
includes probability of failure but not makespan. Prottle does
not model metric resources.

Finally, we would like to mention work from the field of
microarchitecture where the objective is to analyze a bottle-
neck situation which consists of parallel events and deter-

mine which events are worthwhile to optimize so that the total
makespan of the bottleneck decreases [Fields et al., 2003]. In
our future work we will employ techniques from this work to
identify portions of a plan that can be optimized rather than
to prepare contingent plans as a response to suboptimal exe-
cution times.

7 Conclusions and Future Work
We have presented a framework for characterizing and di-
rectly dealing with temporal uncertainty. We define temporal
uncertainty by assigning actions an interval duration, rather
than a single point duration. Our approach is to make an opti-
mistic assumption that all actions complete as quickly as pos-
sible. We then generate a plan with inexpensive actions that
may become invalid at some point when the optimistic as-
sumption proves wrong. We create more costly contingency
plans to be executed only when actions in the inexpensive
plan run long enough that an unsafe situation occurs.

Our algorithm is greedy and thus it can return locally op-
timal solutions which are not globally optimal. In the future,
we plan to develop several heuristics to help avoid this prob-
lem. One idea is to re-generate the entire plan when a tem-
porally unsafe situation is found. This new plan could be
compared to the current plan to determine whether a contin-
gency branch should be added to the current plan or if the
new plan should replace the seed plan. In addition to avoid-
ing locally optimal solutions, this approach would generate
an appropriate solution in the case that no valid contingency
branch existed. The main drawback to this approach is that re-
generating the entire plan can be very time consuming. An-
other way to avoid locally optimal solutions would be to take
an MDP based approach where every state in the world con-
tains a time stamp. The naive approach of creating a state
representing every possible time point would not be efficient,
but improvements could be gained by using states represent-
ing intervals of time.

As we continue this work, we plan to extend it in several
ways. Our algorithm improves on a strictly conservative ap-
proach, but the safe TCPs that it generates may still include
missed opportunities. We plan to develop algorithms that can
find idle time in a TCP and then insert opportunities as de-
fined by [Fox and Long, 2002]. We would also like to extend
our work to be able to handle actions with uncertain effects,
including uncertain consumption of nontemporal resources.
Finally, we will develop a test bed of problems involving not
only our conference domain, but other domains that may ben-
efit from our approach, such as the Rover and Satellite do-
mains.

Acknowledgements
We thank anonymous reviewers for their helpful comments
and discussion. Janae N. Foss’ research was supported by
the Harriett G. Jenkins Predoctoral Fellowship Program and
a grant from the Michigan Council of Women in Technology.

References
[Dearden et al., 2003] Richard Dearden, Nicolas Meuleau, Sailesh

Ramakrishnan, David Smith, and Richard Washington. Incre-

mental contingency planning. In ICAPS-03 Workshop on Plan-
ning Under Uncertainty, June 2003.

[Dechter et al., 1991] Rina Dechter, Itay Meiri, and Judea Pearl.
Temporal constraint networks. Artificial Intelligence, 49:61–95,
1991.

[Do and Kambhampati, 2002] Minh B. Do and Subbarao Kamb-
hampati. Planning graph-based heuristics for cost-sensitive tem-
poral planning. In Proc. 6th Int. Conf. on AI Planning & Schedul-
ing, 2002.

[Drummond et al., 1994] M. Drummond, J. Bresina, and K. Swan-
son. Just-incase scheduling. In Proc. 12th National Conf. on
Artificial Intelligence, pages 1098–1104, 1994.

[Edelkamp and Hoffman, 2004] Stefan Edelkamp and Jörg Hoff-
man. PDDL2.2: The language for the classical part of the 4th
international planning competition. Technical Report 195, Com-
puter Science Department, University of Freiburg, January 2004.

[Fields et al., 2003] Brian A. Fields, Rastislav Bodik, Mark D. Hill,
and Chris J. Newburn. Using interaction costs for microarchitec-
ture bottleneck analysis. In Proc. 36th international Symposium
on Microarchitecture (MICRO-36’03), 2003.

[Fox and Long, 2002] Maria Fox and Derek Long. Single-
trajectory opportunistic planning under uncertainty. In Proceed-
ings of the 21st Workshop of the UK Planning and Scheduling
Special Interest Group, November 2002.

[Gerevini et al., 2004] Alfonso Gerevini, Alessandro Saetti, Ivan
Serina, and Paolo Toninelli. Planning in PDDL2.2 domains
with LPG-TD. In International Planning Competition booklet
(ICAPS-04), 2004.

[Haslum and Geffner, 2002] Patrik Haslum and Hector Geffner.
Heuristic planning with time and resources. In Proc. 6th Eu-
ropean Conf. on Planning, 2002.

[Little et al., 2005] Iain Little, Douglas Aberdeen, and Sylvie
Thiebaux. Prottle: A probabilistic temporal planner. In Proc.
20th National Conf. on Artificial Intelligence (AAAI-05), 2005.

[Mausam and Weld, 2005] Mausam and Daniel S. Weld. Concur-
rent probabilistic temporal planning. In Proc. 15th International
Conf. on Automated Planning and Scheduling (ICAPS-05), 2005.

[Onder and Pollack, 1999] Nilufer Onder and Martha E. Pollack.
Conditional, probabilistic planning: A unifying algorithm and ef-
fective search control mechanisms. In Proc. 16th National Conf.
on Artificial Intelligence, pages 577–584, 1999.

[Peot and Smith, 1992] Mark A. Peot and David E. Smith. Con-
ditional nonlinear planning. In Proc. 1st International Conf. on
Artificial Intelligence Planning Systems, pages 189–197, 1992.

[R-Moreno et al., 2002] M Dolores R-Moreno, Angelo Oddi,
Daniel Borrajo, Amedeo Cesta, and Daniel Meziat. Integrating
hybrid reasoners for planning and scheduling. In The Twenty-
First Workshop of the UK Planning and Scheduling Special In-
terest Group, pages 179–189, 2002.

[Smith and Weld, 1999] David E. Smith and Daniel Weld. Tem-
poral planning with mutual exclusion reasoning. In Proc. 16th
International Joint Conf. on Artificial Intelligence, 1999.

[Tsamardinos et al., 2000] Ioannis Tsamardinos, Martha E. Pol-
lack, and John F. Horty. Merging plans with quantitative tem-
poral constraints, temporally extended actions, and conditional
branches. In Proc. 5th International Conf. on Artificial Intelli-
gence Planning and Scheduling, pages 264–272, 2000.

[Vidal and Fargier, 1999] Thierry Vidal and Helene Fargier. Han-
dling contingency in temporal constraint networks: from consis-
tency to controllabilities. Journal of Experimental and Theoreti-
cal Artificial Intelligence (JETAI), 11(1):23–45, 1 1999.

[Vidal and Geffner, 2004] Vincent Vidal and Hector Geffner.
Branching and pruning: An optimal temporal POCL planner
based on constraint programming. In Proc. 19th National Conf.
on Artificial Intelligence, pages 570–577, 2004.

[Younes and Simmons, 2004] Hakan L.S. Younes and Reid G. Sim-
mons. Solving generalized semi-markov decision processes us-
ing continuous phase-type distributions. In Proc. 19th National
Conf. on Artificial Intelligence (AAAI-04), 2004.

