

Generating Plans in Concurrent,
Probabilistic, Oversubscribed Domains

Li Li and Nilufer Onder
Department of Computer Science
Michigan Technological University

(Presented by: Li Li)
AAAI 08 Chicago

July 16, 2008

Outline

 Example domain
 Two usages of concurrent actions
 AO* and CPOAO* algorithms
 Heuristics used in CPOAO*
 Experiment results
 Conclusion and future work

A simple Mars rover domain

Locations A, B, C and D on Mars:

A

B

C

D

Main features

 Aspects of complex domains
 Deadlines, limited resources
 Failures
 Oversubscription
 Concurrency

 Two types of parallel actions
 Different goals (“all finish”)
 Redundant (“early finish”)

 Aborting actions
 When they succeed
 When they fail

The actions

Action Success
probability

Description

Move(L1,L2) 100% Move the rover from
Location L1 to location L2

Sample (L) 70% Collect a soil sample at
location L

Camera (L) 60% Take a picture at location L

Problem 1

 Initial state:
 The rover is at location A
 No other rewards have been achieved

 Rewards:
 r1 = 10: Get back to location A
 r2 = 2: Take a picture at location B
 r3 = 1: Collect a soil sample at location B
 r4 = 3: Take a picture at location C

Problem 1

 Time Limit:
 The rover is only allowed to operate for 3

time units
 Actions:

 Each action takes 1 time unit to finish
 Actions can be executed in parallel if they

are compatible

A solution to problem 1

 (1) Move (A, B)
 (2) Camera (B)

 Sample (B)
 (3) Move (B, A)

A

B

D

C R4=3

R1=10

R2=2
R3=1

Add redundant actions

 Actions Camera0 (60%) and
Camera1 (50%) can be executed
concurrently.

 There are two rewards:
 R1: Take a picture P1 at location A
 R2: Take a picture P2 at location A

Two ways of using concurrent actions

 All finish: Speed up the execution
Use concurrent actions to achieve different
goals.

 Early finish: Redundancy for critical tasks

Use concurrent actions to achieve the same
goal.

Example of all finish actions

 If R1=10 and R2=10,
 execute Camera0 to achieve one reward and

execute Camera1 to achieve another.
(All finish)

 The expected total rewards
 = 10*60% + 10*50%

 = 11

Example of early finish actions

 If R1=100 and R2=10,
Use both Camera0 and Camera1 to achieve
R1. (Early finish)

The expected total rewards
 = 100*50% + (100-100*50%)*60%
 = 50 + 30 = 80

The AO* algorithm

AO* searches in an and-or graph
(hypergraph)

OR

AND Hyperarcs
(compact way)

Concurrent Probabilistic Over-
subscription AO* (CPOAO*)

 Concurrent action set
 Represent parallel actions rather than individual

actions
 Use hyperarcs to represent them

 State Space
 Resource levels are part of a state
 Unfinished actions are part of a state

CPOAO* search Example

A

B

C

D

3

4

4

5

6

A Mars Rover problem

Map:

Actions:
 Move (Location, Location)

 Image_S (Target) 50%, T= 4

 Image_L (Target) 60%, T= 5

 Sample (Target) 70%, T= 6

Targets:
 I1 – Image at location B

 I2 – Image at location C

 S1 – Sample at location B

 S2 – Sample at location D

Rewards:
 Have_Picture(I1) = 3

 Have_Picture(I2) = 4

 Have_Sample(S1) = 4

 Have_Sample(S2) = 5

 At_location(A) = 10;

CPOAO* search Example

18.4

S0

A

B

C

D

3

4

4

5

6

Expected reward calculated
using the heuristics

T=10

 CPOAO* Search Example

15.2S0 T=10

{Move(A,B)
} {Move(A,C)}

Do-nothing
{Move(A,D)}

3 0
4 6

S1 S2 S3 S4
15.2 13.2 0 10

T=7 T=4T=6 T=10

A

B

C

D

3

4

4

5

6

Values of terminal nodes

Expected reward calculated
using the heuristics

Expected reward
calculated from children

Best action

CPOAO* search Example

S1 15.2

{Move(B,D)}
Do-nothing

{Move(A,B)
}

{a1,a2,a3}
4

4
0

a1: Sample(T2)

a3: Image_L(T1)

a2: Image_S(T1)

S5 S6 S7 S8
15.8 14.6 0 0
T=3 T=3 T=3 T=7
50% 50%

Sample(T2)=2 Sample(T2)=2
Image_L(T1)=1 Image_L(T1)=1

A

B

C

D

3

4

4

5

6

Values of terminal nodes

Expected reward calculated
using the heuristics

Expected reward
calculated from children

Best action

S0 15.2

CPOAO* search Example

S1 15.2

{Move(B,D)}
Do-nothing

{Move(A,B)
}

{a1,a2,a3}
4

4
0

a1: Sample(T2)

a3: Image_L(T1)

a2: Image_S(T1)

S5 S6 S7 S8
15.8 14.6 0 0
T=3 T=3 T=3 T=7
50% 50%

Sample(T2)=2 Sample(T2)=2
Image_L(T1)=1 Image_L(T1)=1

A

C

D

3

4

4

5

6

Values of terminal nodes

Expected reward calculated
using the heuristics

Expected reward
calculated from children

Best action

S0 15.2

CPOAO* search Example

S1 11.5

{Move(B,D)
}

Do-nothing

{Move(A,B)
}

{a1,a2,a3}
4

4
0

a1: Sample(T2)

a3: Image_L(T1)

a2: Image_S(T1)

S5
S6

S7 S8
13 10

0 0

T=3

T=2

T=7

50%

Sample(T2)=2
Image_L(T1)=1

S10S9 S11 S12 S13 S14 S15 S16
7 3 13 3 5.8 2.8 010
T=1 T=1 T=2T=3T=0 T=0 T=3

a4: Move(B,A)

{a1}
2 1

{a1,a2
}

a5: Do-nothing

{a4}

{a5}

{a4} {a5}
3 3 0

0

A

B

C

D

3

4

4

5

6

Values of terminal nodes

Expected reward calculated
using the heuristics

Expected reward
calculated from children

Best action

S0
13.2

S2
13.2

CPOAO* search Example

13.2S0 T=10

{Move(A,B)
} {Move(A,C)}

Do-nothing
{Move(A,D)}

3 0
4 6

S1

S2 S3 S4
11.5

13.2 0 10
T=7

T=4T=6 T=10{a1,a2,a3}

a1: Sample(T2)

a3: Image_L(T1)

a2: Image_S(T1)

a4: Move(B,A)
a5: Do-nothing

A

B

C

D

3

4

4

5

6

Values of terminal nodes

Expected reward calculated
using the heuristics

Expected reward
calculated from children

Best action

CPOAO* search Example

11.5S0 T=10

{Move(A,B)
} {Move(A,C)}

Do-nothing
{Move(A,D)}

3 0
4 6

S1 S2

S3 S4
11.5 3.2

0 10
T=7

T=4 T=10{a1,a2,a3}

T=6

S17 S18 S19 S20

T=2 T=2 T=1 T=6
4 2.4 0 0

a1: Sample(T2)

a3: Image_L(T1)

a2: Image_S(T1)

a4: Move(B,A)
a5: Do-nothing

a6: Image_S(T3)

a8: Move(C,D)

{a6,a7}
{a8} Do-nothing

04 5

50% 50%

A

B

C

D

3

4

4

5

6

Values of terminal nodes

Expected reward calculated
using the heuristics

Expected reward
calculated from children

Best action

a7: Image_L(T3)

CPOAO* search Example

S1 11.5

{Move(B,D)
}

Do-nothing

{Move(A,B)
}

{a1,a2,a3}
4

4
0

a1: Sample(T1)

a3: Image_L(T2)

a2: Image_S(T2)

S5

S6

S7 S8

13

10

0 0

T=3

T=2

T=7

50%

Sample(T2)=2
Image_L(T1)=1

S10S9 S11 S12 S13 S14 S15 S16
5 3 13 3 4.4 1.4 010
T=1 T=1 T=2T=3T=0 T=0 T=3

a4: Move(B,A)

{a1}
2 1

{a1,a2
}

a5: Do-nothing

{a4}

{a5}

{a4} {a5}
3 3 0

0

11.5
S0

A

B

C

D

3

4

4

5

6

Values of terminal nodes

Expected reward calculated
using the heuristics

Expected reward
calculated from children

Best action

T=3

CPOAO* search improvements

S1 11.5

{Move(B,D)
}

Do-nothing

{Move(A,B)
}

{a1,a2,a3}
4

4
0

S5

S6

S7 S8

13

10

0 0

T=3

T=2

T=7

50%

Sample(T2)=2
Image_L(T1)=1

S10S9 S11 S12 S13 S14 S15 S16
5 3 13 3 4.4 1.4 010
T=1 T=1 T=2T=3T=0 T=0 T=3

{a1}
2 1

{a1,a2
}{a4}

{a5}

{a4} {a5}
3 3 0

0

11.5
S0

Estimate total expected rewards

Prune branches

T=3

Plan Found:

 Move(A,B)

 Image_S(T1)

 Move(B,A)

Heuristics used in CPOAO*

 A heuristic function to estimate the total
expected reward for the newly generated
states using a reverse plan graph.

 A group of rules to prune the branches of
the concurrent action sets.

Estimating total rewards

 A three-step process using an rpgraph
1. Generate an rpgraph for each goal
2. Identify the enabled propositions
3. Compute the probability of achieving

each goal
 Compute the expected rewards based on

the probabilities
 Sum up the rewards to compute the

value of this state

Heuristics to estimate the total rewards

Have_Picture(I1)

At_Location(B)

Image_S(I1)

Move(A,B)
At_Location(A)

At_Location(D)

 Reverse plan
graph

 Start from
goals.

 Layers of
actions and
propositions

 Cost marked on
the actions

 Accumulated
cost marked on
the
propositions.

4

5

8

4

8

7

4

5 3

3

Move(A,B)Image_L(I1)

At_Location(B)

Move(D,B)
At_Location(D)

At_Location(A)

Move(D,B)
4

9

Heuristics to estimate the total rewards

 Given a specific
state …

 At_Location(A)=T

 Time= 7

 Enabled
propositions are
marked in blue.

Have_Picture(I1)

At_Location(B)

Image_S(I1)

Move(A,B)
At_Location(A)

At_Location(D)
4

5

8

4

8

7

4

5 3

3

Move(A,B)Image_L(I1)

At_Location(B)

Move(D,B)
At_Location(D)

At_Location(A)

Move(D,B)
4

9

Heuristics to estimate the total rewards

 Enable more
actions and
propositions

 Actions are
probabilistic

 Estimate the
probabilities that
propositions and
the goals being
true

 Sum up rewards on
all goals.

Have_Picture(I1)

At_Location(B)

Image_S(I1)

Move(A,B)
At_Location(A)

At_Location(D)
4

5

8

4

8

7

4

5 3

3

Move(A,B)Image_L(I1)

At_Location(B)

Move(D,B)

Move(D,B)
4

9

Rules to prune branches
(when time is the only resource)

 Include the action if it does not delete
anything

 Ex. {action-1, action-2, action-3} is better than
 {action-2,action-3} if action-1 does not delete

 anything.
 Include the action if it can be aborted later
 Ex. {action-1,action-2} is better than {action-1}
 if the duration of action2 is longer than the duration

of action-1.
 Don’t abort an action and restart it again

immediately

Experimental work

 Mars rover problem with following actions
 Move
 Collect-Soil-Sample
 Camera0
 Camera1

 3 sets of experiments - Gradually increase
complexity
 Base Algorithm
 With rules to prune branches only
 With both heuristics

Results of complexity experiments
Problem Base CPOAO* CPOAO* With Pruning Only CPOAO* With Pruning and rpgraph

Time=20 Time=20 Time=40 Time=20 Time=40

NG ET (s) NG ET (s) NG ET (s) NG ET (s) NG ET (s)

12-12-12 530 <0.1 120 <0.1 2832 1 56 <0.1 662 <0.1

12-12-23 1170 <0.1 287 <0.1 27914 23 86 <0.1 5269 2

12-21-12 501 <0.1 204 <0.1 11315 3 53 <0.1 1391 <0.1

12-21-23 1230 <0.1 380 <0.1 85203 99 116 <0.1 11833 5

15-16-14 1067 <0.1 180 <0.1 6306 2 60 <0.1 1232 1

15-16-31 1941 <0.1 417 <0.1 49954 61 93 <0.1 7946 2

15-28-14 1121 <0.1 347 <0.1 29760 18 71 <0.1 2460 <0.1

15-28-31 2345 <0.1 694 <0.1 --- --- 146 <0.1 19815 8

Problem: locations-paths-rewards; NG: The number of nodes generated;
ET: Execution time (sec.)

Ongoing and Future Work

 Ongoing
 Add typed objects and lifted actions
 Add linear resource consumptions

 Future
 Explore the possibility of using state caching
 Classify domains and develop domain-specific

heuristic functions
 Approximation techniques

Related Work

 LAO*: A Heuristic Search Algorithm that finds
solutions with loops (Hansen & Zilberstein 2001)

 CoMDP: Concurrent MDP (Mausam & Weld 2004)
 GSMDP: Generalized semi-Markov decision process

(Younes & Simmons 2004)
 mGPT: A Probabilistic Planner based on Heuristic

Search (Bonet & Geffner 2005)
 Over-subscription Planning (Smith 2004; Benton, Do,

& Kambhampati 2005)
 HAO*: Planning with Continuous Resources in

Stochastic Domains (Mausam, Benazera, Brafman,
Meuleau & Hansen 2005)

Related Work

 CPTP:Concurrent Probabilistic Temporal Planning
(Mausam & Weld 2005)

 Paragraph/Prottle: Concurrent Probabilistic Planning
in the Graphplan Framework (Little & Thiebaux 2006)

 FPG: Factored Policy Gradient Planner (Buffet &
Aberdeen 2006)

 Probabilistic Temporal Planning with Uncertain
Durations (Mausam & Weld 2006)

 HYBPLAN:A Hybridized Planner for Stochastic
Domains (Mausam, Bertoli and Weld 2007)

Conclusion

 An AO* based modular framework
 Use redundant actions to increase

robustness
 Abort running actions when needed
 Heuristic function using reverse plan graph
 Rules to prune branches

	Generating Plans in Concurrent, Probabilistic, Oversubscribed Domains
	Outline
	A simple Mars rover domain
	Main features
	The actions
	Problem 1
	Slide 7
	A solution to problem 1
	Add redundant actions
	Two ways of using concurrent actions
	Example of all finish actions
	Example of early finish actions
	The AO* algorithm
	Concurrent Probabilistic Over-subscription AO* (CPOAO*)
	CPOAO* search Example
	Slide 16
	 CPOAO* Search Example
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	CPOAO* search improvements
	Heuristics used in CPOAO*
	Estimating total rewards
	Heuristics to estimate the total rewards
	Slide 28
	Slide 29
	Rules to prune branches (when time is the only resource)
	Experimental work
	Results of complexity experiments
	Ongoing and Future Work
	Related Work
	Slide 35
	Conclusion

