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Abstract This review article serves to summarize the

many advances in time-parallel computations since the

excellent review article by Gander, “50 years of Time

Parallel Integration” [41]. We focus, when possible, on

applications of time parallelism and the observed speedup

and efficiency, highlighting the challenges and benefits

of parallel time computations. The applications covered

range from numerous PDE-based simulations (both hy-

perbolic and parabolic), to PDE-constrained optimiza-

tion, powergrid simulations, and machine learning. The

time-parallel methods covered range from various iter-

ative schemes (multigrid, waveform, multiple shooting,

domain decomposition) to direct time-parallel methods.
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1 Introduction

Numerical simulations are increasingly important in the

study of complex systems in engineering, life sciences,

medicine, chemistry, physics, and even non-traditional

fields such as social sciences. Computer models and sim-

ulations, often referred to as the “third pillar of science”

[110], allow us to leverage modern supercomputers as
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virtual laboratories and experimental facilities. How-

ever, a brief glance at technological advancements in

microprocessors (Figure 1) shows that future speedup

for computational simulations will come through us-

ing increasing numbers of cores and not through faster

clock speeds. Thus as spatial parallelism techniques sat-

urate, parallelization in the time direction offers a promis-

ing avenue for leveraging modern supercomputers as

they can work in tandem with existing spatial paral-

lelism to provide a multiplicative increase in concur-

rency [41]. The need for time-parallel integration is be-

ing driven by this massively parallel nature of modern

computer architectures.
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Fig. 1 Technological advances in micro-processors: Increased
parallelism is expected in exascale systems, while clock fre-
quencies are expected to remain stagnant.
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Parallelization in the time direction is special be-

cause of the causality principle: solutions later in time

are determined by solutions earlier in time. Algorithms

trying to use the time direction for parallelization must

account for this causality principle. Research on parallel-

in-time integration started at least 50 years ago with the

work of Nievergelt [102]. Since then, various approaches

have been explored, with the review articles [41,54] and

book [14] providing excellent introductions.

In this manuscript, we focus on applications of time

parallelism, with an emphasis on recent articles pub-

lished after Gander’s review article [41]. The manuscript

and discussion is organized loosely using the following

four categories introduced by Gander [41]:

1. Section 2 focuses on methods based on multiple shoot-

ing;

2. Section 3 focuses on methods based on waveform

relaxation and domain decomposition;

3. Section 4 focuses on methods based on multigrid;

and

4. Section 5 focuses on direct time-parallel methods.

Each section begins with a brief overview of the cat-

egory before an exposition of recent applications us-

ing the respective methods. Hybrid methods that span

multiple categories are discussed after the appropriate

background has been introduced. The reader should

bear in mind that the classification of a parallel-in-

time method into one of the above four categories is

somewhat artificial in the sense that a parallel-in-time

method can often be derived using the underlying math-

ematical tenets of a different category. For example, we

discuss in section 4.3.1 that in some settings, a multi-

grid approach can be viewed as a method based on

multiple-shooting.

2 Methods Based On Multiple Shooting
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Fig. 2 Methods based on multiple shooting typically decom-
pose a space-time domain by splitting the time domain into
subintervals, solving related PDEs on the space-time blocks
iteratively.

A first historical step that focuses entirely on paral-

lelization in the time direction was by Nievergelt [102].

His revolutionary ideas were difficult to apply to higher

dimensional problems, and a further essential ingredi-

ent was introduced in [16]. Consider an initial value

problem (IVP) of the form

∂tu(t) = f(t, u(t)), t ∈ (0, T ], u(0) = u0. (1)

One introduces intermediate targets: the time domain

is split into subintervals (Tn−1, Tn], n = 1, . . . , N with

0 = T0 < T1 < · · · < TN = T (fig. 2), and the original

IVP (1) is solved on subintervals

∂tun(t) = f(t, un(t)), t ∈ (Tn, Tn+1],

un(Tn) = Un, n = 0, 1, . . . N − 1.

Observe that the system is consistent if

U0 = u0(0) = u0, (2)

U1 = u0(T1) = u0(T1, U0),

...

UN = uN−1(TN ) = uN−1(TN , UN−1).

Here, the parameters Un = u(Tn) are called the shoot-

ing parameters. System (2) can be posed as a root-

finding problem for the shooting parameters,

F (U) =


U0 − u0

U1 − u0(T1, U0)
...

UN − uN−1(TN , UN−1))

 = 0.

Newton’s method can be applied to solve this root find-

ing problem, giving rise to the recurrence relation,

Uk+1
n+1 = un(tn+1, U

k
n) +

∂un
∂Un

(tn+1, U
k
n)(Uk+1

n − Ukn).

In [16], the authors showed that the algorithm con-

verges locally quadratically, and global convergence is

proved for dissipative systems. A more contemporary

algorithm that has been widely studied is the parareal

algorithm [91], which is based on an approximation of

the derivative in the shooting method above. The idea

is to (i) generate a rough approximation for the shoot-

ing parameters using a coarse (inaccurate) propagator,

(ii) generate more accurate approximations given the

approximate shooting parameters and a fine (accurate)

propagator, and then (iii) iteratively apply the correc-

tion iteration. Specifically, let

1. G(tn, tn−1, un−1) be a rough approximation to u(tn)

with initial condition u(tn−1) = un−1,
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2. F (tn, tn−1, un−1) be a more accurate approximation

to the solution u(tn) with initial condition u(tn−1) =

un−1,

Starting with a coarse approximation U0
n at the time

points t1, t2, . . . , tN , the parareal algorithm performs

the correction at iteration k

Uk+1
n+1 =F (tn+1, tn, U

k
n) +G(tn+1, tn, U

k+1
n )

−G(tn+1, tn, U
k
n)), for k = 0, 1, 2, . . .

The parareal algorithm has been widely applied to

solve a broad range of problems with varying success.

Domain knowledge significantly influences the choice of

the coarse and fine propagator. Generally, some speedup

can be observed if few parareal iterations are required

for convergence. We use the term convergence lightly

in the following discussion, adopting the respective au-

thors definition of when parareal can be terminated –

the tolerance, and indeed the metric for convergence,

may vary based on the application.1 In earlier work

which employed coarse and fine time grids, Bal and Ma-

day [2] applied the parareal idea to solve the Black Sc-

holes equation using a first-order time-splitting method.

A speedup of 6× was observed when 50 processing cores

were used. Later, Kaber and Maday [83] observed con-

vergence of the parareal algorithm in 3 iterations for

the Korteveg-deVries-Burgers equations. In their work,

the coarse propagator solves a simplified equation that

tracks the evolution of averaged solution quantities. Ne-

glecting the time for the simulation of the coarse prop-

agator, this translates to a theoretical speedup of 22×
when 50 processing cores are used. Again, a time-splitting

method is utilized, presumably with first-order splitting

error. Mercerat et al. [98] applied the parareal algo-

rithm to acoustic wave propagation, gaining a speedup

of 5× with 50 processing cores. They explored a combi-

nation of Newmark schemes and time-DG methods [80]

for the time advance. Schmitt et al. [115] show that

a semi-Lagrangian discretization for the coarse propa-

gator provides convergence benefits for parareal when

applied to the 1D viscous Burgers equation, but does

not report speedups. They conduct various experiments

using second-order RK methods and first-order IMEX

methods. Liu and Hu [93] applied the parareal algo-

rithm to solve the Princeton Ocean Model and observed

speedups of 5× with 201 processing cores because of

stability restrictions imposed by the coarse and fine

grid. The time advance involves a mode-splitting tech-

nique for computational efficiency. Parareal has also

been applied to solve reduced plasma models (e.g., in

1 We will do the same regarding the convergence of the
other iterative methods (multigrid, waveform, and domain
decomposition).

the long wavelength limit) [113,112,111,4,5]. In this

setting, parareal offers speedups of between 5–10× us-

ing O(100) processors. The time advance in these imple-

mentations often uses a black-box stiff solver available

via the VODPK package, which uses backward differ-

entiation formulas of variable order. In [1], parareal is

used to quickly plan robotic movements, with the goal

of providing improved real-time commands for robotic

movement. Explicit Euler integrators are used for the

coarse and fine physics models. Bast et al. [3] solve

for the steady-state of induction machines with a pe-

riodic parareal algorithm using an implicit Euler inte-

grator and observe speedups of up to 28× using 80–128

processors. In a related work on dynamos, Clarke et

al. [22] model time independent Roberts and time de-

pendent Galloway-Proctor dynamos and see a speedup

of roughly 300× with 1600 processors. Various combina-

tions of first-, second-, and third-order IMEX methods

are used as the fine solvers.

More recently, the asymptotic parareal method [66]

was designed for nonlinear problems with a linearly os-

cillatory component. This work considers a nonlinear

rotating shallow water equation model problem, with

the goal to eventually solve problems such as weather,

ocean, climate, and seismic models. A key innovation

was to factor out the linearly oscillatory component

(which is difficult for parareal to converge) when con-

structing new coarse time-grid equations. The coarse

time-grid is then based on a time-averaged slow prob-

lem. The result is that parareal now converges quickly

for the model problem, which it previously failed to

effectively solve. This approach was further refined in

[107], where the authors prove convergence for finite

time-scale separation. In the numerical experiments, a

second-order Strang splitting method is used for both

the coarse and fine solves. Another related approach

which formulates a new set of coarse time-grid equa-

tions, is the micro/macro parareal model [88]. In this

work, the authors consider singularly perturbed ODEs,

and the coarse (macroscopic) model is essentially the

fine-scale (microscopic) model with the fast components

removed. In the numerical experiments, an explicit Eu-

ler discretization is used. In [114], the micro/macro

parareal model is applied to a climate model with dis-

continuous non-monotone coefficients, where the coarse-

grid (macroscopic) model is a 0D approximation of the

original fine-grid (microscopic) 1D model. The authors

state that a theoretical performance gain of up to 10

is possible. The odepack library is used to solve the

coarse macroscopic and fine microscopic models, where

the library automatically switches between variable or-

der multi-step schemes for integrating non-stiff prob-
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lems, and variable order BDF formulas for integrating

stiff problems.

Similarly, Blumers et al. [10] used a parareal type

idea to solve the Navier-Stokes equations with stochas-

tic microscopic properties. The coarse propagator used

is an inexpensive continuum solver to capture macro-

scopic behavior. The fine solver is a Lagrangian inte-

grator that resolves microscopic details. Good parallel

efficiency is observed for each iteration – 65% efficiency

with 1024 processing cores. Depending on the number

of iterations required, some parallel speedup can be an-

ticipated. If K parareal iterations are required for con-

vergence, the overall parallel efficiency of the time in-

tegrator will be 65
K %.

3 Methods Based On Waveform Relaxation

and Domain Decomposition
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Fig. 3 Methods based on waveform relaxation decompose a
space-time domain spatially to obtain a collection of coupled
space-time subproblems.

Another class of parallel-in-time methods are itera-

tive methods that arise from applying domain decom-

position in a different way, the so-called waveform re-

laxation (WR) approach. WR methods were first intro-

duced as a theoretical tool to study existence of a so-

lution of an ODE [108]. Instead of solving v′ = f(t, v),

Picard proposed to study

vn(t) = v(0) +

∫ t

0

f
(
τ, vn−1(τ)

)
dτ, (3)

for some initial guess v0 and proved contraction to a

fixed point, and thus existence and uniqueness of so-

lutions to ODEs. A year later, Lindelöf [90] gave the

famous super-linear convergence estimate for eq. (3).

WR methods created an important engineering contri-

bution by yielding a practical method for solving inte-

grated circuit simulations [89]. WR methods were sub-

sequently applied to solve parabolic PDEs [55,138,82,

75,51,56]. In this setting, the WR idea is to first decom-

pose in space (Figure 3) to obtain a collection of coupled

space-time subproblems. Each iteration then consists of

exchanging interface information between the Ωi over

the entire time domain, and then solving the subprob-

lems independently in parallel. There is extensive liter-

ature analyzing interface conditions for a wide range of

PDEs, for example see [8,23,24,44]. In addition to the

decomposition of the space-time domain, WR methods

offer a further direction for parallelism-in-time: multi-

ple waveform iterates can be simultaneously computed

in a pipeline parallel fashion [55,138], provided one is

willing to exchange coupling conditions at the inter-

faces more frequently. Implementations of the pipeline

Schwarz WR was recently explored [103] and extended

to Neumann-Neumann and Dirichlet-Neumann WR vari-

ants [105]. An adaptive WR variant was recently pro-

posed and analyzed [84] when a theta-method is used

for the time integration. It was shown that even for sim-

ple diffusion models, the speedup that can be obtained

from using WR saturates at a relatively low number

of time-parallel tasks: a speedup of 10× using 32 time-

parallel tasks. The opportunity for exploring this area

of time parallelization is vast – much of the research fo-

cus has been on developing and analyzing spatial cou-

pling conditions in multiple dimensions, e.g., solutions

to Schrödinger’s equation [95] and the viscous shallow

water equations [9].

One can combine multiple-shooting type methods

with WR type methods, for example, parareal Schwarz

WR methods have been proposed with a variety of first-

order and higher-order RK methods used as fine solvers

[46,15,92,47,48]. Consider a decomposition of a space-

time domain as in Figure 4. One seeks to iteratively cal-

culate increasingly accurate initial and boundary condi-

tions for each space-time domain. This is accomplished

by using a parareal approximation for the initial condi-

tions of each space-time domain, and a Schwarz wave-

form relaxation algorithm for the boundary conditions.
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T

Fig. 4 Parallelism for Hybrid Parareal – Waveform Relax-
ation and for Space-Time Multigrid.
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4 Multilevel Methods

This class of methods includes various multilevel ap-

proaches including the Parallel FAS2 in Space-Time

(PFASST) approach by Minion and Emmett [99,28]

(section 4.1), space-time multigrid methods (section 4.2)

and multigrid-in-time approaches (section 4.3). The ef-

fectiveness of these iterative approaches is due to the

hierarchy of ever-coarser time grids that accelerate con-

vergence to the solution on the finest time grid.

To describe these methods, take eq. (1) and write

down a single step discretization,

un+1 = Φ(un, Tn) + gn+1, u(0) = u0, (4)

where Tn again satisfies 0 = T0 < T1 < · · · < TN = T ,

un is the discrete state at time Tn, Φ represents the ap-

plication of a time-stepping scheme, and gn represents

any forcing terms. When eq. (4) is viewed as a global

space-time system in the linear case (although many

of the multilevel methods also extend to the nonlinear

setting), the following block (N + 1)× (N + 1) system

is produced

H u =


I

−Φ I

−Φ I
. . .

. . .

−Φ I




u0
u1
u2
...

uN

 =


u0
g1
g2
...

gN

 . (5)

4.1 PFASST

The PFASST approach uses a spectral deferred correc-

tion (SDC) [27] time integrator to define Φ. SDC in-

tegrates in time by spectrally computing the integral

form of the initial value problem (Picard form in equa-

tion (3)). Specifically, SDC is an iterative scheme for

computing a high-order collocation solution to equa-

tion (3), where each iteration is a correction sweep us-

ing a low-order time-stepping method. For example,

consider computing an individual time-step from Tn−1
to Tn, and let this nth time-step be represented as

a state vector at m + 1 high-order collocation points

τn,(0) < τn,(1) < · · · < τn,(m), where Tn−1 = τn,(0) and

Tn = τn,(m). The state vector is

Un = [un,(0), un,(1), . . . , un,(m)].

Thus, un,(0) = un−1,(m). Let Un, 0 be an analogous vec-

tor, but with each entry equal to un,(0), and

K(Un) = [f(un,(0), τn,(0)), . . . , f(un,(m), τn,(m))]

2 FAS [12] is the full approximation scheme multigrid cy-
cling strategy commonly used for nonlinear problems.

represent the ODE right-hand-side evaluated at each

collocation point. Then the nonlinear collocation prob-

lem to be solved is

Un = Un, 0 +∆t Q K(Un), (6)

where ∆t = Tn+1−Tn, and Q is an integration matrix.

SDC solves equation (6) with a fixed-point iteration,

where Q is preconditioned by the application of a lower-

order integration scheme, such as backward or forward

Euler. This makes the method relatively easy to im-

plement, in that only a low-order integration scheme is

needed. Next, we write the kth fixed-point iteration for

solving (6) as

U
k

n = F (U
k−1
n , Un, 0), (7)

where the initial guess U
0

n can be computed with for-

ward or backward Euler propagating un,(0) forward to

each collocation point. For typical cases when using for-

ward or backward Euler to precondition, the order of

the approximation can be shown to increase by one, for

each iteration of (7).

Next following the compact PFASST description from

[41], we consider the following SDC algorithm.

1 uK0,(m) = u0
2 for n = 1 : N

3 Initialize U
0

nwith Euler on [Tn−1, Tn]
4 for k = 1 : K
5 Un, 0 = [uKn−1,(m), . . . , u

K
n−1,(m)]

6 U
k

n = F (U
k−1
n , Un, 0)

Line 1 sets the initial condition with u0 from equation

(4). Line 2 is the loop over time-steps. Line 3 initializes

U
0

n with Euler by propagating un−1,(m) forward to u at

each collocation point un,(i) in [Tn−1, Tn]. Line 4 loops

over the K SDC iterations. Line 5 sets Un, 0 for use in

equation (6). Line 6 carries out a fixed-point step.

The above algorithm is sequential, i.e., the SDC iter-

ations in line 4 to compute time-step n require time-step

n−1 to be complete. To make it parallel, a key insight of

PFASST is to replace the index K with a lower-case k

in line 5, first done in [99]. This allows for the SDC

loop to be executed concurrently on many intervals

[Tn−1, Tn], i.e., on many processors. This modified algo-

rithm is now inexact and forms the relaxation scheme

for the FAS multigrid cycling that is PFASST. Each

multigrid level is a successively coarser space-time dis-

cretization, where the order of the integration scheme

typically drops by 1 when moving to a coarser level. For

full PFASST pseudocode, see [28].

From the perspective of equation (5), the equation

(6) forms the time-stepping scheme Φ, with the inexact
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SDC sweeps forming the relaxation scheme on equa-

tion (5). For an example multilevel hierarchy, the finest

time-level could use an order 4 SDC scheme, followed

by three successively cheaper time-levels using order

3, 2, and 1 schemes, respectively. Thus the four time-

levels are each associated with a system of the form (5),

where the order of the time-integrator Φ changes be-

tween levels. Each coarser-level system is still of block-

size (N + 1) × (N + 1), but each block is shrinking in

size, as the number of collocation points shrinks. Impor-

tantly, each visit to a level in the hierarchy typically

requires only one relaxation SDC sweep at each time

point. This feature allows for good parallel efficiency

for PFASST. For linear problems, the authors in [11]

show the equivalence of PFASST to multigrid.

PFASST has been used in a variety of application

areas. Regarding parabolic problems [28,100], the more

recent work [100] observed speedups of 6×–9× with 24

processors in time for the heat equation, while using

second- and fourth-order methods in space and in time

with SDC. In [28], speedups of roughly 8× with 16 pro-

cessors in time were observed for the the viscous Burg-

ers equation, while using an 8th-order SDC method in

time with a pseudo-spectral discretization in space. The

work [100] reported parallel efficiencies (relative to se-

quential SDC integration) for the heat equation of over

60–70% when using 2 processors in time, going down

to roughly 25% for 24 processors in time. Several addi-

tional strategies have been proposed to increase parallel

efficiency [29,126,124].

PFASST has been coupled with the parallel Barnes-

Hut tree code PEPC (Pretty Efficient Parallel Coulomb

Solver [142]); speedups of 5×–7× with 32 processors in

time and 105 to 4× 106 particles in space are observed

in [127], while using an 8th-order SDC method in time.

The same idea is applied to vortex methods for solv-

ing the Navier–Stokes equations based on a Lagrangian

particle discretization. The authors observed strong po-

tential for speedup when using 104 particles in space

[128] and 4th-, 8th-, and 12th-order SDC methods in

time.

The field of PDE-constrained optimization is an-

other promising area for PFASST (and parallel-in-time

in general). Such problems often require repeated solves

both forwards-in-time (for the primal variables) and

backwards-in-time (for the adjoint variables), which can

lead to prohibitively long time-serial run times. To ad-

dress this, PFASST was applied to both the forwards-

in-time and backwards-in-time equations for problems

with parabolic PDE constraints [57,58]. Additional strate-

gies to increase efficiency include reusing information

from previous optimization iterations (warm restarts),

solving the state and adjoint equations simultaneously,

and a new mixed approach that takes advantage of the

linearity of the adjoint equation. As a result, the work

[58] observed a speedup of roughly 6× for the overall

optimization procedure with 20 processors in time and a

heat equation constraint, while using an 8th-order SDC

method in time and a pseudo-spectral discretization in

space. Furthermore, a speedup of roughly 8× with 32

processors in time was observed when using the nonlin-

ear Nagumo equation as constraint, a 16th-order SDC

method in time, and pseudo-spectral discretization in

space.

The authors in [64] developed a multilevel SDC (MLSDC)

approach for the rotating shallow water equations (RSWE),

with a spherical harmonic spatial discretization that al-

lows for efficient and effective spatial coarsening. The

target applications here are weather, climate, and ocean

models, which correspond to small viscosity values in

the RSWE and thus historically difficult problems for

parallel-in-time. This MLSDC work laid the foundation

for application of PFASST to the RSWE. Thus, the au-

thors in [65] went on to apply these concepts in par-

allel with PFASST for a suite of RSWE test problems,

where speedups of 3×–10× were observed when using

16 processors in time and an 8th-order SDC method in

time. Lastly by using the data redundancies in a multi-

level setting, fault-tolerant extensions of PFASST were

explored in [125].

4.2 Space-Time Multigrid

We categorize the following multigrid methods as either

space-time multigrid or multigrid in time methods. The

space-time multigrid methods apply multigrid to the
full space-time problem (5), demanding the ability to

access and coarsen each space-time degree of freedom

in H. Here, techniques from classical spatial multigrid

[133] must be appropriately modified before an efficient

algorithm is obtained for the target problems, which

are usually parabolic. First, the space-time matrix is

recursively coarsened down to a trivially sized prob-

lem, where care must be taken to coarsen according to

the level of anisotropy present in the space-time sys-

tem, e.g., semi-coarsen in time, x, or y. For example, if

the algebraic coupling in time is stronger than in space,

then semi-coarsening in time is done. Multigrid interpo-

lation techniques, such as constant in time or linear in

space, move information between coarse and fine space-

time grids. Again care must be taken to interpolate with

respect to the level anisotropy, e.g., if semi-coarsening

in time is done between two levels, then the interpola-

tion could be constant in time, with no interpolation

in space, as in [74]. Second, standard multigrid cycling

is used to solve (5) with point-wise relaxation, such as
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red-black Gauss-Seidel. In terms of parallelism, the do-

main is partitioned as in Figure 4, where each processor

owns a space-time domain patch and is responsible for

coarsening, interpolation, and point-wise relaxation on

its local space-time domain patch.

Space–time multigrid was applied to parabolic prob-

lems by Hackbusch [63] in 1984, and then later in the

1990s [73,137,136,74]. However, these methods have

enjoyed a renewed interest in recent years [141], in part

because they are among the fastest parallel-in-time solvers

available. For instance, the method by Horton and Van-

dewalle [74] enjoyed a 325× speedup for a model parabolic

problem when using 16,384 processors in space-time,

backward Euler in time, and second-order finite-differencing

in space [31]. This speedup is computed as the compari-

son of a space-time parallel simulation using [74] against

time-sequential, but spatially parallel, simulation.

The space-time multigrid method by Gander and

Neumüller [50] for parabolic problems exhibited near

perfect strong and weak scalability up to 262,144 cores,

with a P1 linear finite element discretization in space

and 3rd-order discontinuous Galerkin method in time.

The authors also conducted non-parallel experiments

with arbitrarily high-order DG discretizations in time,

and verified that the multigrid method converges for

various polynomial degrees (in time) up to order 45.

The solver relies on multigrid components such as a

parallel block Jacobi smoother with optimal damping

factor introduced and analyzed in [50], and standard

multigrid interpolation in space. The coarsening in space

and time alternates (similarly to [74]) in order to main-

tain a balance between the spatial and temporal mesh

spacings.

Space-time multigrid was applied to the time-periodic

incompressible Navier-Stokes equations [7], where a lower-

order preconditioner is used as a Vanka-style multigrid

smoother [140]. The discretization uses fourth-order finite-

differencing in space and time on a staggered 3D spa-

tial grid. The speedup observed was approximately 50×
when using 64 processors. As a prelude to expanding

this solver to space-time linear systems with discontin-

uous Galerkin discretizations of the heat equation, the

spectral symbol for diffusion matrices was derived [6].

Space-time multigrid solvers for parabolic problems

discretized with isogeometric analysis began at least in

[72] and were further developed in [71]. Here, higher-

order space-time discretizations are considered (quadratic

for the primary variable and cubic and quartic for the

auxiliary variables). The same smooth higher-order splines

are used to represent the computational domain and

discretize the PDE. The space-time cylinder is decom-

posed into time-slices which are connected with a DG

technique. A key contribution of this method is the

smoother, which is an inexact damped block Jacobi.

The method is verified on a linear parabolic model prob-

lem on a complicated, uniformly refined domain, al-

though the paper [86] provides guaranteed error bounds

and local indicators for local adaptivity. The authors

observe nearly grid-independent convergence and en-

joy good weak scaling out to 512 cores, with speedups

of 1.5× and 10× reported for their two test problems.

However, the excellent weak scaling indicates these speedups

could significantly improve.

The authors in [129] consider both classical and

modern algebraic multigrid (AMG) components for solv-

ing adaptively refined 4D linear finite element discretiza-

tions in space and time of a model parabolic equation.

The lack of symmetry in the discretized system leads

to the use of a GMRES outer iteration and Kaczmarcz

relaxation. When GMRES is used, the number of iter-

ations is either relatively flat, or modestly increasing,

depending on the chosen AMG solver. The work [130]

extends the above to consider more solvers such as clas-

sical algebraic multigrid, smoothed aggregation multi-

grid [139], and compatible relaxation multigrid [13,94].

The recent work [35] uses standard multigrid coars-

ening in both time and space, but explores different

smoothing options, developing an adaptive smoothing

strategy based on the degree of anisotropy in the dis-

crete operator on each level. When the anisotropy is

strong in the time dimension, a zebra relaxation order-

ing is used in space, and when the anisotropy is strong

in space, a zebra relaxation ordering is used in time. For

model parabolic equations fast, grid-independent multi-

grid convergence is observed when using backward Eu-

ler or Crank-Nicholson in time and second-order finite-

differencing in space,

In an effort to compare all the various multigrid ap-

proaches, the authors in [31] compared the efficiency

of space-time multigrid, with waveform multigrid, and

multigrid reduction in time. All implementations were

done through the hypre package [81] in an effort to pro-

vide uniform results. The test problem was the heat

equation, discretized with backward Euler in time and

second order finite-differencing in space. The result was

that the speed of space-time multigrid was far superior

to the other variants, often by 1 to 2 orders of magni-

tude.

The time-fractional heat equation offers a challeng-

ing opportunity for parallel-in-time, in part because

standard discretizations here yield dense matrices. Nev-

ertheless, the authors in [53] develop a multigrid method

with waveform relaxation (line-relaxation in time) while

exploiting the Toeplitz-like structure of the matrix to

achieve nearly optimalO(NM log(M)) complexity, where

M is the number of time steps and N is the number of
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T0

C0

T1 T2
· · · Tm

C1

TN

CNC

∆tC = m∆t

∆t

Fig. 5 MGRIT coarsening for a uniformly spaced grid with
fine-grid points Ti (F-points), coarse-grid points Ci (C-
points), and coarsening factor m. The Ci form the coarse-
grid, while the F-points and C-points together form the fine-
grid.

spatial grid points. The typical direct method would

of course be cubic O((NM)3). The discretizations con-

sidered are backward Euler or Crank-Nicholson in time,

with second order finite-differencing in space. The com-

plexity and good convergence are confirmed with a semi-

algebraic mode analysis. The authors in [79] extend this

by exploiting H matrix properties to further reduce

storage.

Lastly, while the above space-time methods all fo-

cused on parabolic problems, the recent effort by Man-

teuffel, Ruge, and Southworth [97] extended space-time

multigrid methods to transport dominated problems,

e.g., the time-dependent advection-diffusion equation,

with very small (or no) diffusion. A key novelty here

is that a local approximation to the so-called ideal re-

striction operator3 is used. While no speedup numbers

are given, the method does converge in a nearly grid-

independent fashion for a model time-dependent recir-

culating flow problem. The discretization considered is

backward Euler in time with streamline upwind Petrov-

Galerkin (SUPG) in space and linear or quadratic finite

element basis functions. This method has recently been

implemented in parallel in the benchmark linear solver
library hypre [81].

4.3 Multigrid in Time

An alternative multigrid approach is the multigrid re-

duction in time (MGRIT) method by Falgout et al. [36,

30], which applies multigrid only to the time-dimension

(i.e., not space-time). MGRIT coarsens in time by coars-

ening the block rows in eq. (5). For example, if a coars-

ening factor of 2 in time were used, then the first coarse-

level would yield a system similar to (5), only with N/2

block rows. For a general coarsening factor of m, an

3 Ideal restriction (R) and interpolation (P ) are defined to
yield a Schur Complement coarse-grid operator with RAP .

“ideal” coarse level operator would be

HC =


I

−Φm I

−Φm I
. . .

. . .

−Φm I

 , (8)

where HC has NC block rows and NC = N/m (for sim-

plicity we assume N divides evenly by m). This coarsen-

ing by m corresponds to a partitioning of the fine level

time-points into F-points and C-points, as depicted in

Figure 5 for a uniform time-grid. The C-points (Ci)

form the coarse time-grid and correspond to the block

rows in HC , whereas the union of the F- and C-points

correspond to the block rows in H. Now, inverting HC

would be as expensive as inverting H, in terms of Φ

applications, and would yield the exact solution at C-

points. Thus, HC is called “ideal.” However, MGRIT

makes a key approximation, substituting Φm with a sin-

gle coarse time-step operation called ΦC . For instance,

Φ could be backward Euler with step size ∆t, whereas

ΦC would use a step size of m∆t. With this substitu-

tion, inverting HC is now relatively cheap, compared to

inverting H.

We now describe a two-level MGRIT cycle, and note

that a recursive application of the method on the coarse-

level yields a multigrid V-cycle. The two-level cycle cor-

responds to (1) relaxation, followed by (2) coarse-grid

correction. Relaxation is an unweighted block-Jacobi

method. F-relaxation sets the residual equal to zero at

all the block rows corresponding to F-points in equa-

tion (5), and C-relaxation does the same at C-point

block rows. MGRIT typically uses an alternating FCF-

relaxation.

After relaxation, the coarse-grid correction comes.

The fine level solution is injected to the coarse level,

where an error correction is computed based on the

FAS formulation with HC as the coarse level operator.

This error correction is then interpolated to the fine

level, where it is added to the current solution guess. In-

terpolation is injection, followed by F-relaxation. This

interpolation is called “ideal”, as well, because if the

error correction is exact at C-points, then the interpo-

lated solution at F-points will also be exact.

MGRIT is able to use existing time-stepping code

because the individual space-time matrix entries are not

required during this process, and the internals of Φ re-

main opaque to MGRIT. Only the ability to take a

time-step with Φ on each time-level is required, similar

to parareal. The nonlinear multigrid cycling is again

handled with an FAS formulation.

In parallel, the domain is partitioned as in Figure

2, with each processor owning a set of time-values. For
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further parallelism, coarsening and parallelism in the

spatial dimension is also possible with the extensions in

[31]. This yields a parallel decomposition as in Figure 4.

MGRIT has been used in a variety of application

areas. Eddy-current problems for electromechanical en-

ergy converters was simulated using MGRIT [37]. A

speedup of about 3× was observed when using 128 pro-

cessors and either parareal or MGRIT with backward

Euler in time and low-order finite elements in space. For

parabolic problems [30,33,31], the more recent work

[31] showed speedups for the heat equation of up to

53× when using 16,384 processors in space and time.

The considered discretization was backward Euler in

time and second-order finite-differencing in space. For

the case of moving meshes and the heat equation, the

work [34] successfully solved for both mesh points and

solution values simultaneously in space and time, but

did not report speedups. The discretization again was

backward Euler and second-order finite-differencing in

space.

The compressible Navier-Stokes equations with Reynolds

number 100 was used to solve the classic problem of

vortex shedding over a cylinder problem [32]. The ob-

served speedup was 7× when using 4096 processors

in time, with backward Euler in time and third-order

finite-differencing in space. For a linearized elasticity

problem, MGRIT was applied to model a linear beam

attached to a wall [69]. The authors observed a speedup

of 5× for 192 processors in time when using backward

Euler in time and inf-sup stable Q1-Q2 Taylor-Hood el-

ements in space. The work [78] solved the 1D inviscid

Burgers equation with a novel adaptive spatial coars-

ening algorithm applied to the low-order discretization

of backward Euler in time and first-order upwinding in

space. The observed speedups go up to 6× and are the

first observed speedups for MGRIT and pure advec-

tion, although the efficiencies are low, sometimes be-

low 1%. The following work [131] considers only the

linear case and carefully builds the coarse-level prob-

lem to optimize the MGRIT convergence estimate in

[25]. The authors observed improved speedups of up

to 18× for a model 1D advection equation when using

1024 processors in time. The considered discretizations

ranged widely, including explicit Runge-Kutta methods

of order 1–5 and singly diagonally implicit Runge-Kutta

methods of order 1–4, coupled with finite-differencing in

space of order 1–5. Looking forward, improved MGRIT

performance for hyperbolic problems will likely remain

an active research area.

Similar to PFASST, MGRIT can also be used to

accelerate PDE-constrained optimization problems, by

solving both the forwards- (primal) and backwards-in-

time (adjoint) equations [59,60]. For greater efficiency,

these works also developed a warm restart strategy that

reuses information from previous optimization itera-

tions, and explored the application of simultaneous op-

timization, which allows for inexact concurrent primal

and adjoint solves. As a result, the work [60] observed

speedups of up to 19× with 256 processors in time when

solving an inverse design problem subject to a diffu-

sion dominated PDE constraint that mimics flow past

a cylindrical bluff body at low Reynolds number. The

considered discretization was Crank-Nicholson in time

and second-order finite-differencing in space. Such opti-

mization approaches can be extended to ODE-inspired

deep neural networks [62], where each layer in the net-

work corresponds to a time-step. In this ODE neural

network setting, the work [61] showed deep neural net-

work training speedups of 4×–8× for various test prob-

lems when using 128 and 256 processors in time, re-

spectively.

Moving to differential algebraic equations, MGRIT

has been applied to power grid simulations [87,119],

with the more recent work [119] showing a speedup of

roughly 50× for a Western United States (WECC 179)

model powergrid problem with scheduled events (i.e.,

discontinuities), while using RK4 and BDF2 in time.

Lastly, MGRIT and parareal have been applied to

time-fractional heat equations [144], with observed speedups

of 2×–5× when using 512 processors in time and lin-

ear space-time finite elements. The work [39] provides

a performance model for the MGRIT methods, rela-

tive to its implementation in the open source XBraid

package [143]. MGRIT methods have been extensively

analyzed in [38,25,70,123] for parabolic and hyperbolic

problems, and in multilevel settings.

4.3.1 Connection to Parareal

The multigrid approach to parallel in time has much

in common with the methods in Sections 2 and 3. The

work [52] showed equivalence between parareal and a

two-grid nonlinear (FAS) multigrid method with a spe-

cific relaxation scheme. Given this connection, one can

then state that parareal is equivalent to MGRIT with

so-called F-relaxation. This connection between parareal

and MGRIT is further investigated in [49] where the

more powerful so-called FCF-relaxation in MGRIT is

shown to be equivalent to parareal with an overlapping

Schwarz relaxation. It has been shown that in some

cases (but not all) this extra relaxation can be benefi-

cial [25].
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5 Direct Time-parallel Methods

Direct time parallel solvers comprise the last group of

methods that we survey. Unlike the multiple shooting,

multigrid and waveform relaxation ideas, these meth-

ods are non-iterative in nature. An early example of

this approach is by Miranker and Liniger [101]. They

transformed the predictor-corrector formula,

ypn+1 = ycn +
h

2

(
3f(ycn)− f(ycn−1)

)
,

ycn+1 = ycn +
h

2

(
f(ypn+1) + f(ycn)

)
,

which is sequential in nature, into the modified formula

ypn+1 = ycn−1 + 2h f(ypn),

ycn = ycn−1 +
h

2

(
f(ypn + f(ycn−1)

)
,

which can be evaluated in parallel to give second- and

third-order schemes. Similar predictor-corrector approaches

resulting in parallel, iterated high-order RK methods

were studied in [135,77,76,122]. Building on these ideas,

a family of integral deferred correction methods [19,21,

106,20] was adapted to create arbitrary high-order par-

allel time integrators for multicore architectures. The

key advance is a moving difference stencil which facili-

tates solving multiple error IVPs in parallel with high

efficiency. These parallel-in-time integrators were used

to solve parabolic PDEs, in combination with domain

decomposition for spatial parallelism in [18,68]. It has

been noted that these parallel integral deferred correc-

tion methods can be used for semi-Lagrangian Vlasov

simulations [17], moving mesh PDEs [134], and simula-

tions of vesicle suspensions [109]. A software release for

this family of parallel time integrator is available [104].

Unlike the previously discussed parallel time integrators

based on multiple shooting, multigrid or waveform re-

laxation methods, parallel RK and RIDC methods only

offer small-scale parallelism of up to 12 time-parallel

tasks.

Sheen, Sloan and Thomée [120] introduced a parallel-

in-time method for parabolic problems based on con-

tour integral representation and quadrature. Consider

IVPs of the form

ut +Au = 0, u(0) = u0. (9)

Taking the Laplace transform of eq. (9) with parameter

s gives

sû+Aû = u0 =⇒ û = (sI +A)−1u0. (10)

Applying the inverse Laplace transform of eq. (10) gives

u(t) =
1

2π i

∫
Γ

estû(s) ds.

This integral can be approximated with a quadrature

formula with nodes sj . This computation is completely

independent and can be computed on separate pro-

cessors. Some higher-order extensions are discussed in

[121,132]. Lai [85] introduced transformation methods

to further improve the parallel properties. Higher-order

schemes for the Laplace transformations are considered

in [26].

Another class of direct time-parallel methods lever-

ages the tensor-product structure of space-time solvers

[96]. Suppose ut = Lu is discretized using the backward

Euler integrator and time-step sizes ∆ti, such that

B :=



(
1
∆t1
− L

)
− 1
∆t2

(
1
∆t2
− L

)
. . .

. . .

− 1
∆tN

(
1

∆tN
− L

)

 ,

u :=


u1
u2
...

uN

 , and f :=


f1 + 1

∆t1
u0

f2
...

fN

 = f,

which yields the equation

B u = f. (11)

If the matrix B is diagonalizable, i.e., B = SDS−1,

then we can solve eq. (11) in three steps:

S g = f,

(
1

∆tn
− L

)
wn = gn, S−1u = w.

If the time steps are all equal, then B is not diagonal-

izable. This begs the question how one should choose

∆tj? In [45], the authors introduce a geometric mesh,

where each ∆tn = (1 + ε)n−1∆t1, then show that the

solution can be computed by diagonalization using this

geometric mesh, and finally analyzed the error that

arises from this choice of mesh. An optimized variant

(i.e., choice of ε) is proposed by balancing the round-

off and truncation error. They further generalize this

parallel-in-time approach to solving the wave equation

using a second-order Newmark time integration scheme

[40].

In [42], the authors describe a new method, Para-

Exp, for the parallel integration of linear IVPs of the

form u′(t) = Au(t) + g(t). They observe that the orig-

inal problem can be decomposed into decoupled inho-

mogeneous and homogeneous subproblems. The solu-

tion to the homogeneous IVP w′(t) = Aw(t) can be

given in terms of a matrix exponential; this computa-

tion can be parallelized efficiently by using a rational
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Krylov approximation to the matrix exponential. Bor-

rowing ideas from nonlinear PDE analysis, ParaExp can

be extended to solve non-linear IVPs [43]. The authors

show that the nonlinear variant converges in a finite

number of steps, and that the nonlinear ParaExp algo-

rithm can be interpreted as a parareal algorithm, if the

coarse integrator solves the linear part of the evolution

problem.

The REXI methods (rational approximation of ex-

ponential integrators) are another group of methods

based on rational approximations, and they provide two

levels of parallelism. First, the computation of the expo-

nential approximation decouples into many terms that

may be computed independently in parallel, and sec-

ond, this level of parallelism could be combined with

parareal-like parallelism. The REXI approach in [67]

was designed for hyperbolic problems, such as the clas-

sical wave equation and linearized shallow water equa-

tion. The work [67] then formed the basis for [117],

where REXI was studied and applied to solve the lin-

earized rotating shallow water equations with large ob-

served speedups of approximately 188× for spectral meth-

ods and 1503× speedup for finite-difference methods.

However, these speedups do not consider the nonlin-

ear terms present in the target weather, ocean, and cli-

mate models. Further REXI work in [116] solves the

linearized shallow water equations on a rotating sphere,

where the method provides a supported time step size

increase from 100 seconds to one day and significant

speedups. A Cauchy contour integral REXI (CI-REXI)

is used in [118] to integrate the linear parts of the

full nonlinear shallow water equations on the rotat-

ing sphere, with an approximately 3× parallel speedup.

The target applications for these REXI methods ap-

plied to shallow water equations are weather, climate,

and ocean models.

6 Outlook

As modern supercomputers continue to increase their

capability through increased concurrency, the need for

time-parallel integration is expected to manifest itself

across a broad range of evolutionary computational sci-

ence problems. Time-parallel integration is indeed a

very active field of research, evidenced by the grow-

ing number of publications in this research area 4 and

the increased attendance at the annual parallel-in-time

workshop. Although this survey article attempts to sum-

marize recent applications of parallel time integration

and their varying levels of success in achieving paral-

lel speedup, a systematic apples-to-apples comparison

4 http://parallel-in-time.org

of the various approaches is still lacking, and caution

should be taken when directly comparing speedup num-

bers across methods and implementations. In particu-

lar, some of the speedup and efficiency numbers are

only theoretical in nature, and many of the presented

parallel time methods do not address the storage or

communication overhead of the parallel time integra-

tor.
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Repiquet, K.: An optimized Schwarz waveform re-
laxation algorithm for micro-magnetics. In: Do-
main decomposition methods in science and engineer-
ing XVII, Lect. Notes Comput. Sci. Eng., vol. 60,
pp. 203–210. Springer, Berlin (2008). DOI 10.
1007/978-3-540-75199-1 22. URL https://doi.org/

10.1007/978-3-540-75199-1_22

45. Gander, M.J., Halpern, L., Ryan, J., Tran, T.T.B.: A
Direct Solver for Time Parallelization. In: T. Dick-
opf, M.J. Gander, L. Halpern, R. Krause, L.F. Pavarino
(eds.) Domain Decomposition Methods in Science and
Engineering XXII, pp. 491–499. Springer International
Publishing (2016). DOI 10.1007/978-3-319-18827-0 50

46. Gander, M.J., Jiang, Y.L., Li, R.J.: Parareal Schwarz
waveform relaxation methods. In: Domain decompo-
sition methods in science and engineering XX, Lect.
Notes Comput. Sci. Eng., vol. 91, pp. 451–458. Springer,
Heidelberg (2013). DOI 10.1007/978-3-642-35275-1 53.
URL https://doi.org/10.1007/978-3-642-35275-1_

53

47. Gander, M.J., Jiang, Y.L., Li, R.J.: Parareal Schwarz
Waveform Relaxation Methods. In: R. Bank, M. Holst,

O. Widlund, J. Xu (eds.) Domain Decomposition Meth-
ods in Science and Engineering XX, Lecture Notes in
Computational Science and Engineering, vol. 91, pp.
451–458. Springer Berlin Heidelberg (2013). URL http:

//dx.doi.org/10.1007/978-3-642-35275-1_53
48. Gander, M.J., Jiang, Y.L., Song, B.: A superlinear

convergence estimate for the parareal schwarz wave-
form relaxation algorithm. SIAM Journal on Scien-
tific Computing 41(2), A1148–A1169 (2019). DOI
10.1137/18M1177226. URL https://doi.org/10.1137/

18M1177226
49. Gander, M.J., Kwok, F., Zhang, H.: Multigrid interpre-

tations of the parareal algorithm leading to an overlap-
ping variant and mgrit. Computing and Visualization in
Science (2018). DOI 10.1007/s00791-018-0297-y. URL
https://doi.org/10.1007/s00791-018-0297-y

50. Gander, M.J., Neumüller, M.: Analysis of a new space-
time parallel multigrid algorithm for parabolic prob-
lems. SIAM Journal on Scientific Computing 38(4),
A2173–A2208 (2016)

51. Gander, M.J., Stuart, A.M.: Space-Time Continuous
Analysis of Waveform Relaxation for the Heat Equa-
tion. SIAM Journal on Scientific Computing 19(6),
2014–2031 (1998). URL http://dx.doi.org/10.1137/

S1064827596305337
52. Gander, M.J., Vandewalle, S.: Analysis of the Parareal

Time-Parallel Time-Integration Method. SIAM Journal
on Scientific Computing 29(2), 556–578 (2007). URL
http://dx.doi.org/10.1137/05064607X

53. Gaspar, F.J., Rodrigo, C.: Multigrid waveform relax-
ation for the time-fractional heat equation. SIAM
Journal on Scientific Computing 39(4), A1201–A1224
(2017). DOI 10.1137/16M1090193. URL https://doi.

org/10.1137/16M1090193
54. Gear, C.W.: Parallel methods for ordinary differential

equations. CALCOLO 25(1-2), 1–20 (1988). URL http:

//dx.doi.org/10.1007/BF02575744
55. Gear, C.W.: Waveform methods for space and time

parallelism. In: Proceedings of the International Sym-
posium on Computational Mathematics (Matsuyama,
1990), vol. 38, pp. 137–147 (1991)

56. Giladi, E., Keller, H.B.: Space-time domain decompo-
sition for parabolic problems. Numer. Math. 93(2),
279–313 (2002). DOI 10.1007/s002110100345. URL
https://doi.org/10.1007/s002110100345

57. Götschel, S., Minion, M.L.: Parallel-in-time for
parabolic optimal control problems using PFASST. In:
P.E. Bjørstad, S.C. Brenner, L. Halpern, H.H. Kim,
R. Kornhuber, T. Rahman, O.B. Widlund (eds.) Do-
main Decomposition Methods in Science and Engineer-
ing XXIV, pp. 363–371. Springer International Publish-
ing (2018). DOI 10.1007/978-3-319-93873-8 34. URL
https://doi.org/10.1007/978-3-319-93873-8_34

58. Gotschel, S., Minion, M.L.: An efficient parallel-in-time
method for optimization with parabolic pdes. SIAM
Journal on Scientific Computing 41(6), C603–C626
(2019)

59. Günther, S., Gauger, N.R., Schroder, J.B.: A non-
intrusive parallel-in-time adjoint solver with the XBraid
library. Computing and Visualization in Science 19(3-
4), 85–95 (2018)

60. Günther, S., Gauger, N.R., Schroder, J.B.: A non-
intrusive parallel-in-time approach for simultaneous op-
timization with unsteady PDEs. Optimization Methods
and Software 0(0), 1–16 (2018)

61. Günther, S., Ruthotto, L., Schroder, J.B., Cyr, E.C.,
Gauger, N.R.: Layer-parallel training of deep residual

https://doi.org/10.1016/j.amc.2017.08.043
http://www.osti.gov/scitech/servlets/purl/1073108
http://www.osti.gov/scitech/servlets/purl/1073108
http://dx.doi.org/10.1109/PMBS.2016.8
http://dx.doi.org/10.1109/PMBS.2016.8
https://doi.org/10.1137/17M1148347
http://dx.doi.org/10.1007/978-3-319-23321-5_3
http://dx.doi.org/10.1007/978-3-319-23321-5_3
http://dx.doi.org/10.1137/110856137
https://doi.org/10.1007/978-3-540-75199-1_22
https://doi.org/10.1007/978-3-540-75199-1_22
https://doi.org/10.1007/978-3-642-35275-1_53
https://doi.org/10.1007/978-3-642-35275-1_53
http://dx.doi.org/10.1007/978-3-642-35275-1_53
http://dx.doi.org/10.1007/978-3-642-35275-1_53
https://doi.org/10.1137/18M1177226
https://doi.org/10.1137/18M1177226
https://doi.org/10.1007/s00791-018-0297-y
http://dx.doi.org/10.1137/S1064827596305337
http://dx.doi.org/10.1137/S1064827596305337
http://dx.doi.org/10.1137/05064607X
https://doi.org/10.1137/16M1090193
https://doi.org/10.1137/16M1090193
http://dx.doi.org/10.1007/BF02575744
http://dx.doi.org/10.1007/BF02575744
https://doi.org/10.1007/s002110100345
https://doi.org/10.1007/978-3-319-93873-8_34


14 Benjamin W. Ong, Jacob B. Schroder

neural networks. SIAM Journal on Mathematics of Data
Science 2(1), 1–23 (2020). DOI 10.1137/19M1247620.
URL https://doi.org/10.1137/19M1247620

62. Haber, E., Ruthotto, L.: Stable architectures for deep
neural networks. Inverse Problems 34(1), 014004 (2017)

63. Hackbusch, W.: Parabolic multigrid methods. In: Com-
puting methods in applied sciences and engineering, VI
(Versailles, 1983), pp. 189–197. North-Holland, Amster-
dam (1984)

64. Hamon, F.P., Schreiber, M., Minion, M.L.: Multi-level
spectral deferred corrections scheme for the shallow wa-
ter equations on the rotating sphere. Journal of Com-
putational Physics 376, 435 – 454 (2019)

65. Hamon, F.P., Schreiber, M., Minion, M.L.: Parallel-
in-time multi-level integration of the shallow-water
equations on the rotating sphere (2020). DOI
https://doi.org/10.1016/j.jcp.2019.109210. URL
http://www.sciencedirect.com/science/article/

pii/S0021999119309155

66. Haut, T., Wingate, B.: An asymptotic parallel-in-time
method for highly oscillatory PDEs. SIAM Journal on
Scientific Computing 36(2), A693–A713 (2014). URL
http://dx.doi.org/10.1137/130914577

67. Haut, T.S., Babb, T., Martinsson, P.G., Wingate, B.A.:
A high-order time-parallel scheme for solving wave prop-
agation problems via the direct construction of an ap-
proximate time-evolution operator. IMA Journal of Nu-
merical Analysis 36(2), 688–716 (2015)

68. Haynes, R.D., Ong, B.W.: MPI-OpenMP algorithms
for the parallel space-time solution of time dependent
PDEs. In: Domain Decomposition Methods in Sci-
ence and Engineering XXI, Lecture Notes in Compu-
tational Science and Engineering, vol. 98, pp. 179–
187. Springer International Publishing (2014). URL
http://dx.doi.org/10.1007/978-3-319-05789-7_14

69. Hessenthaler, A., Nordsletten, D., Röhrle, O., Schroder,
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