MA 1600 Course Summary

Benjamin Ong ongbw@mtu.edu

Department of Mathematical Sciences Michigan Technological University

April 22, 2015

1/14

Course Aims

From the syllabus:

- Understanding approximations and their implications.
- Appreciating sequences and their implications.
- Experience using mathematics & computers to gain insight into real-life problems.

Understanding Approximations ...

- Accuracy: how close is your approximation to the true solution? <u>Precision</u>: how many digits of your approximation do you trust?
- To quantify error:

$$error = |true_solution - approximation|$$

Many sources of error: measurement error, model error, truncation error, round-off error, discretization error, human error . . .

- round-off error: occurs because of finite-precision
 - Computer stores numbers in memory cells called bits
 - loss of precision: subtracting too almost equal numbers
 - amplification of error: dividing by a small number

3 / 14

Understanding Approximations ...

• To quantify precision: significant digits / scientific notation.

$$3.1415 \times 10^{0}$$

Understanding Approximations ...

Approximating data using polynomials.

 polynomial interpolation is useful, because polynomials are easy to evaluate, integrate and differentiate.

$$p(x) = \sum_{i=0}^{n} f_i L_{n,i}(x)$$

where
$$L_{n,i}(x) = \prod_{\substack{j=0 \ j \neq i}}^{n} \frac{(x - x_j)}{(x_i - x_j)}$$

$$= \frac{(x - x_0)}{(x_i - x_0)} \frac{(x - x_1)}{(x_i - x_1)} \cdots \frac{(x - x_{i-1})}{(x_i - x_{i-1})} \frac{(x - x_{i+1})}{(x_i - x_{i+1})} \cdots \frac{(x - x_n)}{(x_i - x_n)}$$

5 / 14

Understanding Approximations ...

Once you have the polynomial interpolant

- can evaluate polynomial at x^* to compute an interpolated value
- can take derivative of polynomial, and evaluate $p'(x^*)$ to approximate rate of change of data. Leads to difference formulas.
- can integrate polynomial, $\int_a^b p(x)$ to approximate integral of data on [a, b]. Leads to quadrature rules

Understanding Sequences and their implications ...

When we compute approximate solutions, we are interested in

- how accurate / precise is our approximation
- if we are using an iterative algorithm, how quickly are we converging to an accurate/precise solution

Let x_1, x_2, x_3, \ldots be a sequence obtained from an iterative algorithm. We say that $\{x_k\}$ converges to the solution x if

$$\lim_{k\to\infty} x_k = x$$

or equivalently

$$\lim_{k\to\infty}e_k=\lim_{k\to\infty}|x_k-x|=0$$

7 / 14

Understanding Sequences and their implications ...

bisection algorithm:

$$error = \frac{\text{size of interval bracketing root}}{2}$$

Each iteration, error goes down by a factor of 2: <u>linear</u> convergence.

• finite difference approximations:

$$\left. \frac{dy}{dx} \right|_{x_i} \approx \frac{y(x_i + h) - y(x_i - h)}{2h}$$

second order convergence:

$$\lim_{h\to 0}e_h=\mathcal{O}(h^2)$$

Understanding Sequences and their implications ...

Rate of convergence computed by finding slope of best fit line to loglog data. In this example, rate of convergence = 3.

9/14

Real-Life Problems I

- Mortgage payments root finding
 - bisection method
 - requires bracketing a root (f(a)f(b) < 0)
 - always converges to one of the roots in the defined bracket
 - slow convergence
 - modified bisection
 - newton's method:
 - uses information about the derivative (slope)
 - might diverge if function is non-smooth
 - if it converges, converges at second order
 - hard to find starting iterate which leads to convergence
 - secant method:
 - finite difference approximation to the derivative
 - might diverge if function is non-smooth
 - if it converges, converges at $\frac{1+\sqrt{5}}{2}$
 - hard to find starting iterate which leads to convergence

Real-Life Problems II

- Modeling Apple stock interpolation / extrapolation / least squares
 - split data into training / validation set.
 - extrapolation is unstable
 - high-order polynomial interpolation is oscillatory
 - least squares to "best-fit" data
- game of life deterministic systems
 - Final system state only dependent on initial condition
 - Deterministic systems: no randomness involved in the future state of the system.
 - from random initial conditions, formation of structures, patterns

11 / 14

Real-Life Problems III

- Random Walks (Brownian Motion)
 - estimating probability and expectation
 - random number generation
 - slow convergence. turns out: convergence looks like $\frac{1}{\sqrt{N}}$, where N is the number of experiments.
 - First example of a Markov chain: the state X_n depends only on X_{n-1} .
- Agent Based models
 - Robots in 2D.
 - Also a Markov chain system.
 - increasing intelligence
 - effect of noise and fuzzy logic

Real-Life Problems IV

- Solving Ordinary Differential Equations.
 - consists of a differential equation
 - initial condition
- Types of ODEs modeled:
 - Gravity with and without drag
 - Population Growth/Decay
 - Harmonic Oscillators
 - Volterra equations predator-prey models
- We worked on:
 - forward Euler (first-order)
 - improved Euler (second-order)
 - Runge-Kutta. (RK4: fourth order)
- built-in MATLAB routines: ode45

13 / 14

Real-Life Problems V

- Heat Equation Solving PDEs
 - Partial Differential Equations consist of:
 - equation that describes physics of interest
 - Domain of interest
 - Initial Conditions
 - Boundary Conditions
 - apply (centered) finite difference approximations (in space) to get a system of ODE's
 - use forward Euler to solve ODE's.
 - observed first order convergence in time, second order in space
- Continuous Optimization Steepest Descent Algorithms
 - iterative method
 - Move in direction of negative gradient (slope)
 - if stepsize is too large, shrink stepsize iteratively until small enough

Create the Future