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Course Aims

From the syllabus:

Understanding approximations and their implications.

Appreciating sequences and their implications.

Experience using mathematics & computers to gain insight
into real-life problems.
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Understanding Approximations . . .

Accuracy: how close is your approximation to the true
solution? Precision: how many digits of your approximation
do you trust?

To quantify error:

error = |true solution − approximation|

Many sources of error: measurement error, model error,
truncation error, round-off error, discretization error, human
error . . .

round-off error: occurs because of finite-precision

Computer stores numbers in memory cells called bits
loss of precision: subtracting too almost equal numbers
amplification of error: dividing by a small number
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Understanding Approximations . . .

To quantify precision: significant digits / scientific notation.

3.1415× 100
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Understanding Approximations . . .

Approximating data using polynomials.

polynomial interpolation is useful, because polynomials are
easy to evaluate, integrate and differentiate.

p(x) =
n∑

i=0

fiLn,i (x)

where

Ln,i (x) =
n∏

j=0
j 6=i

(x − xj)

(xi − xj)

=
(x − x0)

(xi − x0)

(x − x1)

(xi − x1)
· · · (x − xi−1)

(xi − xi−1)

(x − xi+1)

(xi − xi+1)
· · · (x − xn)

(xi − xn)
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Understanding Approximations . . .

Once you have the polynomial interpolant

can evaluate polynomial at x∗ to compute an interpolated
value

can take derivative of polynomial, and evaluate p′(x∗) to
approximate rate of change of data. Leads to difference
formulas.

can integrate polynomial,
∫ b
a p(x) to approximate integral of

data on [a, b]. Leads to quadrature rules
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Understanding Sequences and their implications . . .

When we compute approximate solutions, we are interested in

how accurate / precise is our approximation

if we are using an iterative algorithm, how quickly are we
converging to an accurate/precise solution

Let x1, x2, x3, . . . be a sequence obtained from an iterative
algorithm. We say that {xk} converges to the solution x if

lim
k→∞

xk = x

or equivalently

lim
k→∞

ek = lim
k→∞

|xk − x | = 0
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Understanding Sequences and their implications . . .

bisection algorithm:

error =
size of interval bracketing root

2

Each iteration, error goes down by a factor of 2: linear
convergence.

finite difference approximations:

dy

dx

∣∣∣∣
xi

≈ y(xi + h)− y(xi − h)

2h

second order convergence:

lim
h→0

eh = O(h2)
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Understanding Sequences and their implications . . .
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Rate of convergence computed by finding slope of best fit line to
loglog data. In this example, rate of convergence = 3.
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Real-Life Problems I

Mortgage payments – root finding
bisection method

requires bracketing a root (f (a)f (b) < 0)
always converges to one of the roots in the defined bracket
slow convergence

modified bisection
newton’s method:

uses information about the derivative (slope)
might diverge if function is non-smooth
if it converges, converges at second order
hard to find starting iterate which leads to convergence

secant method:

finite difference approximation to the derivative
might diverge if function is non-smooth

if it converges, converges at 1+
√
5

2

hard to find starting iterate which leads to convergence
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Real-Life Problems II

Modeling Apple stock – interpolation / extrapolation / least
squares

split data into training / validation set.
extrapolation is unstable
high-order polynomial interpolation is oscillatory
least squares to “best-fit” data

game of life – deterministic systems

Final system state only dependent on initial condition
Deterministic systems: no randomness involved in the future
state of the system.
from random initial conditions, formation of structures,
patterns
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Real-Life Problems III

Random Walks (Brownian Motion)

estimating probability and expectation
random number generation
slow convergence. turns out: convergence looks like 1√

N
,

where N is the number of experiments.
First example of a Markov chain: the state Xn depends only on
Xn−1.

Agent Based models

Robots in 2D.
Also a Markov chain system.
increasing intelligence
effect of noise and fuzzy logic
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Real-Life Problems IV

Solving Ordinary Differential Equations.

consists of a differential equation
initial condition

Types of ODEs modeled:

Gravity – with and without drag
Population Growth/Decay
Harmonic Oscillators
Volterra equations – predator-prey models

We worked on:

forward Euler (first-order)
improved Euler (second-order)
Runge-Kutta. (RK4: fourth order)

built-in MATLAB routines: ode45
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Real-Life Problems V

Heat Equation – Solving PDEs
Partial Differential Equations consist of:

equation that describes physics of interest
Domain of interest
Initial Conditions
Boundary Conditions

apply (centered) finite difference approximations (in space) to
get a system of ODE’s
use forward Euler to solve ODE’s.
observed first order convergence in time, second order in space

Continuous Optimization – Steepest Descent Algorithms

iterative method
Move in direction of negative gradient (slope)
if stepsize is too large, shrink stepsize iteratively until small
enough
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