MA1600 – Introduction to Scientific Simulations¹ Michigan Technological University Department of Mathematical Sciences Spring 2015

Instructor: Benjamin Ong

Fisher Hall Room 214 http://mathgeek.us ongbw@mtu.edu

Office Hours: By appointment

http://ongbw.youcanbook.me

Prerequisites: None ... but enthusiasm in mathematics and computing highly encouraged!

Textbook: Insight Through Computing

C. F. Van Loan and K. Y. Fan ISBN: 978-0-898716-91-7

Additional Reading: Excursions in Modern Mathematics (7th Edition)

P. Tannenbaum

ISBN: 978-0-321568-03-8

Software: MATLAB (available for download at https://downloads.it.mtu.edu/)

or you may use Python (iPython notebooks preferred)

Course Aims:

1. Experience using mathematics & computers to gain insight into real-life problems.

- 2. Understanding approximations and their implications.
- 3. Appreciating sequences and their implications.

Grading:

- 50% in class quizzes, assignments and projects
- 20% midterm
- 30% final/final project

¹Instruction using a flipped classroom methodology, see page 2

More information:

MA1600, "Introduction to Scientific Simulations", will be taught using a flipped classroom methodology. A good summary of why I'm choosing to flip the classrom can be found in this pdf. Simply put, classroom time will focus on group-learning, problem-solving exercises/projects, new material is taught via online resources, outside of classroom time.

Expectations for students:

- Students are responsible for viewing online resources (at their own pace) before the next class. A short in-class quiz at the beginning of a class will be used to ensure that material is being reviewed. Online resources may consist of streaming video, handouts, and exercises.
- Students are expected to actively participate in group exercises. Initially, groups and "roles" will be assigned. This will be revisited this after the first week. Each group should have a minimum of three members with different roles. Possible roles include:

• Since group-based activities are the foundation of this course, a large portion of the grade relies on punctuality, attendance and participation. Unfortunately, there is noway to "make up" for missing a session. However, extra credit projects will be available to everyone.

Expectations for the instructor:

- Create/gather online content / structure in-clas activity
- Update Banweb with grades regularly (usually after each class)
- Available to individual or groups http://ongbw.youcanbook.me

Course Topics:

- 1. Introduction to programming (conditional statements, loops, functions)
- 2. Introduction to visualization
- 3. Dealing with numbers
- 4. Root finding
- 5. Fitting curves through data (interpolation and extrapolation)
- 6. Advanced modules (to be decided, based on class interest)
 - (a) Gravitational motion
 - (b) Signal attenuation
 - (c) Image compression
 - (d) Random collisions
 - (e) The "Game of Life"
 - (f) Spread of infectious diseases
 - (g) Optimal control
 - (h) Clustering the Iris flower data set