Earth Science Institute II June 24, 2010 Day 4 Correlation of EarthComm Curriculum and HSCE's

EarthComm Curr	iculum Unit Code
EDG1 = Earth's Dynamic Geospheres:	ENR3 = Earth's Natural Resources:
Chapter 1, Volcanoes	Chapter 3, Water Resources
EDG2 = Earth's Dynamic Geospheres:	ESE1 = Earth System Evolution: Chapter
Chapter 2, Plate Tectonics	1, Astronomy
EDG2 = Earth's Dynamic Geospheres:	ESE2 = Earth System Evolution: Chapter
Chapter 3, Earthquakes	2, Climate Change
EFS1 = Earth's Fluid Spheres: Chapter 1,	ESE3 = Earth System Evolution: Chapter
Oceans	3, Changing Life
ENR1 = Earth's Natural Resources:	
Chapter 1, Energy Resources	

Locat	ion: Seismic Lab		
EarthC	Comm Connections	EDG2 = Earth's Dynamic Geospheres: Chapter	r 3,
		Earthquakes, Activity 2, p. G131, Activity 3, p.	G138,
		Activity 4, p. g147.	
Lear	ning Outcomes:		HSCE
0	Explain how scientis	ts infer that the Earth has interior layers with	E3.2B
	discernable propertie	es using patterns of primary (P) and secondary	
	(S) seismic wave arri	ivals.	
0	Explain how plate te	ctonics accounts for the features and processes	E3.3A
	(sea floor spreading,	mid-ocean ridges, subduction zones,	
	earthquakes and volu	canoes, mountain ranges) that occur on or near	
	the Earth's surface.		
0	Explain why tectonic	c plates move using the concept of heat flowing	E3.3B
	through mantle conv	ection, coupled with the cooling and sinking of	
	aging ocean plates th	at result from their increased density.	
0	Describe the motion	history of geologic features (e.g., plates,	E2.20
	Hawaii) using equati	ons relating rate, time, and distance.	E3.3C
0	Distinguish plate bou	induries by the pattern of depth and magnitude	E2 2D
_	of earthquakes.	of company lives and violation and to locate and	E3.3D
0	determine the types	of plate houndaries	E2 1 A
	Describe how the size	of plate boundaries.	EJ.4A
0	or characterized	es of earniquakes and voicanoes are measured	E3 /B
	Describe the effects	of earthquakes and volcanic eruptions on	E3.4D
0	humans	or carinquakes and volcanic cruptions on	F3 4C
	numans.		EJ.4C

Location: Peepsock Fault	
EarthComm Connections	EDG2 = Earth's Dynamic Geospheres: Chapter 2, Plate
	Tectonics, , Activity 2, p. G 74, Activity 3, p. G 85, Activity
	4, p. G 95

Learning Outcomes:	HSCE
• Describe natural processes in which heat transfer in the Earth	E2.2C
occurs by conduction, convection, and radiation.	
• Describe the interior of the Earth (in terms of crust, mantle, and	E3.2A
inner and outer cores) and where the magnetic field of the Earth	is
generated.	
 Explain how scientists infer that the Earth has interior layers with 	h E3.2B
discernable properties using patterns of primary (P) and seconda	ry
(S) seismic wave arrivals.	
• Describe the differences between oceanic and continental crust	E3.2C
(including density, age, and composition).	
 Explain how plate tectonics accounts for the features and process 	ses E3.3A
(sea floor spreading, mid-ocean ridges, subduction zones,	
earthquakes and volcanoes, mountain ranges) that occur on or ne	ar
the Earth's surface.	
• Explain why tectonic plates move using the concept of heat flow	ing E3.3B
through mantle convection, coupled with the cooling and sinking	g of
aging ocean plates that result from their increased density.	
 Describe the motion history of geologic features (e.g., plates, 	
Hawaii) using equations relating rate, time, and distance.	E3.3C
 Distinguish plate boundaries by the pattern of depth and magnitu 	ıde
of earthquakes.	E3.3D

Locati	ion: Hungarian Fall	S	
EarthC	Comm Connections	EDG2 = Earth's Dynamic Geospheres: Chapter	2, Plate
		Tectonics, , Activity 2, p. G 74, Activity 3, p. G	85, Activity
		4, p. G 95	
Learr	ning Outcomes:		HSCE
0	Describe natural pro-	cesses in which heat transfer in the Earth	E2.2C
	occurs by conduction	n, convection, and radiation.	
0	Describe the interior	of the Earth (in terms of crust, mantle, and	E3.2A
	inner and outer cores	s) and where the magnetic field of the Earth is	
	generated.		
0	Explain how scientis	ts infer that the Earth has interior layers with	E3.2B
	discernable propertie	es using patterns of primary (P) and secondary	
	(S) seismic wave arr	ivals.	52.20
0	Describe the differer	nces between oceanic and continental crust	E3.2C
	(including density, a	ge, and composition).	
0	Explain how plate te	ctonics accounts for the features and processes	E3.3A
	(sea floor spreading,	mid-ocean ridges, subduction zones,	
	the Earth's surface	canoes, mountain ranges) that occur on or near	
0	Explain why tectonic	a plates move using the concept of heat flowing	E3 3B
0	through mantle conv	ection coupled with the cooling and sinking of	LJ.JD
	aging ocean plates th	at result from their increased density	
0	Describe the motion	history of geologic features (e.g., plates.	

	Hawaii) using equations relating rate, time, and distance.	E3.3C
0	Distinguish plate boundaries by the pattern of depth and magnitude	
	of earthquakes.	E3.3D

Locat	ion: Kinzel House		
Earth	Comm Connections	ESE2 = Earth System Evolution: Chapter 2, Cli	imate
		Change, Activity 1, p. E64, Activity 4, p. E117	
		ESE3 = Earth System Evolution: Chapter 3, Ch	anging Life,
		Activity 2, p. E156, Activity 5. p.E182	
		ENR1 = Earth's Natural Resources: Chapter 1,	Energy
		Resources, Activity 1. p.R4, Activity 8, p. R72	
Learı	ning Outcomes:		HSCE
0	Explain the natural r	nechanism of the greenhouse effect, including	E5.4A
	comparisons of the r	najor greenhouse gases (water vapor, carbon	
	dioxide, methane, ni	trous oxide, and ozone).	
0	Describe natural med	chanisms that could result in significant	E5.4B
	changes in climate (e	e.g., major volcanic eruptions, changes in	
	sunlight received by	the earth, and meteorite impacts).	
0	Analyze the empiric	al relationship between the emissions of carbon	E5.4C
	dioxide, atmospheric	carbon dioxide levels, and the average global	
	temperature over the	past 150 years.	
0	Based on evidence o	f observable changes in recent history and	E5.4D
	climate change mode	els, explain the consequences of warmer oceans	
	(including the results	s of increased evaporation, shoreline and	
	estuarine impacts, or	ceanic algae growth, and coral bleaching) and	
	changing climatic zo	nes (including the adaptive capacity of the	
	biosphere).		
0	Describe the Earth's	principal sources of internal and external	E2.2A
	energy (e.g., radioac	tive decay, gravity, solar energy).	
0	Identify differences	in the origin and use of renewable (e.g., solar,	E2.2B
	wind, water, biomas	s) and nonrenewable (e.g., fossil fuels, nuclear	
	[U-235]) sources of	energy.	F2 20
0	Describe natural pro	cesses in which heat transfer in the Earth	E2.2C
	occurs by conduction	n, convection, and radiation.	E2 4 4
0	Describe renewable	and nonrenewable sources of energy for numan	E2.4A
	consumption (electri	blude everall easts and benefits	
-	Explain how the imm	nuce overall costs alle belieflits.	E2 4B
0	L'Aprain now the Imp	hir pollution coral reef destruction) can be	12.40
	understood through t	the analysis of interactions between the four	
	Farth systems		
	Darm Systems.		

Location: Mt. Horace Gre	eley
EarthComm Connections	ENR1 = Earth's Natural Resources: Chapter 1, Energy
	Resources, Activity 8, p. R72

Learn	ning Outcomes:	HSCE
0	Describe the Earth's principal sources of internal and external	E2.2A
	energy (e.g., radioactive decay, gravity, solar energy).	
0	Identify differences in the origin and use of renewable (e.g., solar,	E2.2B
	wind, water, biomass) and nonrenewable (e.g., fossil fuels, nuclear	
	[U-235]) sources of energy.	
0	Describe natural processes in which heat transfer in the Earth	E2.2C
	occurs by conduction, convection, and radiation.	
0	Describe renewable and nonrenewable sources of energy for human	E2.4A
	consumption (electricity, fuels), compare their effects on the	
	environment, and include overall costs and benefits.	
0	Explain how the impact of human activities on the environment	E2.4B
	(e.g., deforestation, air pollution, coral reef destruction) can be	
	understood through the analysis of interactions between the four	
	Earth systems.	

Locatio	on: Kinzel House		
EarthCo	omm Connections	ESE2 = Earth System Evolution: Chapter 2, Cl	imate
		Change, Activity 1, p. E64, Activity 4, p. E117	
		ESE3 = Earth System Evolution: Chapter 3, Ch	anging Life,
		Activity 2, p. E156, Activity 5. p.E182	
		ENR1 = Earth's Natural Resources: Chapter 1,	Energy
		Resources, Activity 1. p.R4, Activity 8, p. R72	
Learn	ing Outcomes:		HSCE
0	Explain the natural r	nechanism of the greenhouse effect, including	E5.4A
	comparisons of the r	najor greenhouse gases (water vapor, carbon	
	dioxide, methane, ni	trous oxide, and ozone).	
0	Describe natural me	chanisms that could result in significant	E5.4B
	changes in climate (e	e.g., major volcanic eruptions, changes in	
	sunlight received by	the earth, and meteorite impacts).	
0	Analyze the empiric	al relationship between the emissions of carbon	E5.4C
	dioxide, atmospheric	c carbon dioxide levels, and the average global	
	temperature over the	past 150 years.	
0	Based on evidence o	f observable changes in recent history and	E5.4D
	climate change mode	els, explain the consequences of warmer oceans	
	(including the result	s of increased evaporation, shoreline and	
	estuarine impacts, or	ceanic algae growth, and coral bleaching) and	
	changing climatic zo	ones (including the adaptive capacity of the	
	biosphere).		
0	Describe the Earth's	principal sources of internal and external	E2.2A
	energy (e.g., radioac	tive decay, gravity, solar energy).	
0	Identify differences	in the origin and use of renewable (e.g., solar,	E2.2B
	wind, water, biomas	s) and nonrenewable (e.g., fossil fuels, nuclear	
	[U-235]) sources of	energy.	
0	Describe natural pro	cesses in which heat transfer in the Earth	E2.2C
	occurs by conduction	n, convection, and radiation.	

0	Describe renewable and nonrenewable sources of energy for human consumption (electricity, fuels), compare their effects on the environment, and include overall costs and benefits.	E2.4
0	Explain how the impact of human activities on the environment (e.g., deforestation, air pollution, coral reef destruction) can be understood through the analysis of interactions between the four Earth systems	E2.4I