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While suspended in Earth’s atmosphere, fi ne 
ash infl uences radiative transfer, weather, and 
climate (e.g., Newhall and Self, 1982). Sulfate 
aerosol, also in volcanic ash clouds, dominates 
atmospheric effects, having stratospheric resi-
dence times of months to years (Robock, 2000), 
so large eruptions may have widespread con-
sequences (Robock et al., 2009). During the 
eruptions in Iceland (Eyjafjallajökull in 2010, 
and Grimsvötn in 2011), and Chile (Puyehue-
Cordon Caulle in 2011), operational ash-cloud 
forecast models have over-estimated far-fi eld 
atmospheric ash concentrations compared to 
aircraft and satellite observations (Schumann 
et al., 2011; Stohl et al., 2011). These models 
do not account for fi ne-ash (<63 μm) particle 
aggregation, which results in under-prediction 
of proximal fi ne-ash sedimentation and over-
prediction of distal (hundreds to thousands of 
kilometers) fi ne-ash sedimentation. This over-
sight can result in the closure of airspace, that 
would otherwise be safe.

Very fi ne ash particles (<30 μm diameter) 
have terminal settling velocities of the order 
10−1 to 10−3 m s−1 and would remain suspended 
for days or weeks as simple particles. However, 
volcanologists observe the very fi ne ash fraction 
mostly falling out in <1 day even for large ash 
eruptions injected at the level of the tropopause 
(Guo et al. 2004), thus fi ne-ash fallout involves 
more than the application of Stokes Law for 
single particle settling.

Although aggregation of ash is observed in 
deposits (Fig. 1) and is recognized as important 
(Gilbert and Lane, 1994), the understanding 
needed for ash-fall modeling has been elusive 
because it is challenging to observe ash fallout 
in situ. Aggregation mechanisms are inferred 
from the study of aggregates in deposits, 
which allows quantifi cation of settling veloc-
ity and drag coeffi cients. Rapid fallout of fi ne 
ash in hours was also measured from satellite 
remote sensing during the Eyjafjallajökull erup-
tion (Pavolonis, 2010). Taddeucci et al. (2011, 
p. 891 in this issue of Geology) present a sig-
nifi cant breakthrough, and describe a variety 
of direct observations of aggregate formation 
using a high-speed imaging camera to observe 
the aggregation process in the fi eld during the 
2010 Eyjafjallajökull eruption.

In addition to the Iceland events that para-
lyzed air traffi c in Europe and led to several sci-

entifi c studies (e.g., Zehner, 2010; Bonadonna 
et al., 2011), additional relatively small-scale 
eruptions such as Okmok and Kasatochi in 
Alaska (Prata et al., 2010), and Chaitén (Carn 
et al., 2009) and most recently Puyehue-Cor-
don Caulle in Chile have also highlighted the 
fate and transport of ash. The Puyehue-Cordon 
Caulle eruption in June 2011 caused an ash veil 
that circumnavigated the Earth and persisted 
for weeks, and impacted aviation as far afi eld 
as Australia. Ash specialists assist Volcanic 
Ash Aviation Centers around the world with 
near real-time ash mitigation efforts (Prata and 
Tupper, 2009). Detection of ash via satellites 
maps distal, ash-bearing clouds, but hazard miti-
gation requires what ash levels are dangerous to 
aircraft (an industry engineering problem more 
than a scientifi c one). 

At least several questions remain unanswered.
 (1) How and when is very fi ne ash created in 

eruptions? Some eruptions generate little or no 
very fi ne ash. More energetic silicic eruptions 
create more fi nes (Alidibirov and Dingwell, 
1996), the interaction of magma and surface 
water creates fi ne ash (Wohletz, 1983), and mill-
ing or comminution may be important (Rose 
and Durant, 2009). 

(2) What is the best way to initialize vol-
canic cloud dispersal and fallout model con-
ditions (Mastin et al., 2009)?  An integrated 
observation approach is required, as individual 
methodologies have limitations and no one 
technique can measure the characteristics of 
the full size range of volcanic ash.  Stohl et 
al. (2011) combine satellite retrievals with an 
inversion model to improve eruption source 
parameter specifi cation. Although insensitive 
to very fi ne ash, ground-based radar systems 
offer near real-time data on initial cloud char-
acteristics and heights, if they are in range of 
the volcano (Marzano et al., 2010), and radar is 
a vital part of the most advanced ash mitigation 
efforts (Scollo et al., 2009). 

(3) Is ash aggregation mainly driven by 
hydrometeor formation? And how do cloud 
microphysical processes (Textor et al., 2006) 
and especially ice (Rose et al., 1995; Durant 
et al., 2008) infl uence aggregate formation and 
fallout? There have been only a few very illu-
minating direct observations of aggregation in 
ash fallout (e.g., Sorem, 1982). Background 
atmospheric conditions, including the availabil-
ity of atmospheric water for precipitation, are all 
highly relevant for aggregation models. 

(4) How is electrical charging in volcanic 
clouds (Harrison et al., 2010) linked to aggrega-
tion? And to what extent does this process infl u-
ence particle clustering and binding? 

(5) Are ashy aggregates possibly falling at 
velocities greater than terminal velocity? As ash 
falls from the stratosphere to the ground through 
changing atmospheric conditions, many cloud 
processes could infl uence fallout: phase changes 
with latent heat, virga, collision-coalescence, 
Bergeron process, and presumably aggregate 
break-up (Kostinski and Shaw, 2009). The high-
speed video provided by Taddeucci et al. directly 
observes aggregate break-up during ash fall.

The broadest area of future focus, which chal-
lenges volcanologists, is how does meteorology 
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Figure 1. Detail from swept surface of ashfall 
deposit, Atitlan Caldera, Guatemala. Note 
the circular aggregates within a very fi ne 
grained deposit of volcanic ash. These are 
called accretionary lapilli, and are frequently 
seen in deposits. They are thought to rep-
resent hydrometeor/ash features, similar to 
hail, which fall from vertically developed vol-
canic clouds. Photo by A.J. Durant.
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infl uence formation and dispersal of volcanic 
clouds and the resulting ash aggregation and fall-
out? The fi rst modeling study to address aggre-
gation, and consider atmospheric infl uences, 
had success in reproducing observed fallout 
from the Mount St. Helens 1980 eruption (Folch 
et al., 2010; Costa et al., 2010). Without real-
time meteorological data, ash cloud models lack 
a robust meteorological data linkage. Thus they 
refl ect isolation from many potentially impor-
tant phenomena such as turbulence (Boden-
schatz et al., 2010), mammatus cloud processes 
(Schultz et al., 2006), or overseeding (Durant et 
al., 2008). Continued interaction between the 
meteorological and volcanological communi-
ties can lead to advances in understanding of the 
fundamentals of ash aggregation. Even without 
the effects of volcanic ash, atmospheric physi-
cists are challenged by the understanding of the 
fundamentals of cloud formation (Feingold and 
Siebert, 2009). In summary, the use of high-
speed imaging instruments for investigations of 
all clouds presents exciting possibilities.

Measurements reported by Taddeucci et al. 
were made on the ground, where environmental 
conditions (temperature, pressure, water phase 
stability, turbulence) differ from an ash cloud at 
upper tropospheric and/or lower stratospheric 
altitudes. It would be advantageous to use this 
technology from an aerial platform, such as used 
by Siebert et al. (2006).  Laboratory applications 
could include high-speed imaging cameras in 
experimental cloud chambers that allow condi-
tions of the high altitude and turbulent lower 
stratosphere to be produced, where ash fallout 
from large events often begins. A new multi-
phase turbulent reaction cloud chamber is cur-
rently being designed and fabricated at Michi-
gan Technological University (R.A. Shaw, 2011, 
personal commun.), and taking motivation from 
the Taddeucci et al. study, it might be possible 
to observe volcanic ash aggregate formation in 
situ, under stratospheric conditions. Overall, this 
research fi eld is having a surge of activity.
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