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Abstract

We report here the first observations of NO2 emission from Mt. Erebus, a volcano with an active lava lake located on

Ross Island, Antarctica. Erebus generates a persistent plume, which is entrained at an altitude of about 4 km above sea

level. Its NO2 flux, measured by scattered light ultraviolet spectroscopy in December 2003, was equivalent to

�0.6Gg (N) yr�1. The total reactive nitrogen supply may be significantly higher than this since other NOy species are

likely to have been present in the plume. We believe the NO2 is generated by thermal fixation of atmospheric nitrogen at

the hot lava surface, forming NO, which then reacts rapidly with oxidants including ozone to yield NO2. Erebus

volcano has displayed lava lake activity for many decades and may, therefore, play a significant long-term role in

Antarctic tropospheric chemistry, and represent an important source of nitrogen deposited to the ice surface.

r 2005 Elsevier Ltd. All rights reserved.

Keywords: Troposphere; Plume; NOx; DOAS
1. Introduction

Nitrogen oxides (NOx ¼ NO+NO2) as well as

reactive odd nitrogen (NOy ¼ NOx, HONO2, HONO,

NO3, N2O5, HNO4, peroxyacetyl nitrate (PAN), etc.)

play crucial roles in tropospheric chemistry, nutrient

cycles, and, indirectly, the Earth’s radiation budget

(Bradshaw et al., 2000). In Antarctica, where there are

limited contributions from the main global NOx sources

(fossil fuels, biomass burning, lightning and soils),

tropospheric nitrogen chemistry appears surprisingly

complex (e.g., Chen et al., 2001; Crawford et al., 2001;

Davis et al., 2001) and is receiving increasing attention
e front matter r 2005 Elsevier Ltd. All rights reserve
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(e.g., Davis, 2004) because of its significance for under-

standing the oxidising potential of the polar atmosphere,

and for interpretation of glaciochemical records.

Molecular nitrogen is a trace constituent of volcanic

emissions (e.g., Zimmer et al., 2004) but comparatively

little is known about the nitrogen chemistry of volcanic

plumes. Some consideration has been given to strato-

spheric nitrogen chemistry in the presence of volcanic

sulphate aerosol (Rinsland et al., 2003), and it is

increasingly apparent that nitrogen species are present

in tropospheric volcanic emissions: in dilute plumes

from explosive volcanism (Hobbs et al., 1991, 1982;

Bandy et al., 1982; Hunton et al., 2005), above lava

flows (Huebert et al., 1999), and in plumes associated

with open-vent degassing (Mather et al., 2004a, b;

Uematsu et al., 2004). While NOx detected in explosively

produced plumes may originate from volcanic lightning
d.
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generated by ash charging (Sobral et al., 2004), reactive

nitrogen above active lava bodies has been attributed to

the reaction between atmospheric oxygen and nitrogen

at the high prevailing temperatures (Huebert et al., 1999;

Mather et al., 2004a, b).

Here, we report on simultaneous detection of SO2 and

NO2 in the plume emitted by Mt. Erebus, Antarctica

(summit altitude 3794m above sea level). The measure-

ments were obtained by ground-based ultraviolet (UV)

differential optical absorption spectroscopy (DOAS)

using scattered Sunlight. Erebus is renowned for its

long-lived lava lake of anorthoclase phonolite composi-

tion (Fig. 1a), and is routinely monitored despite its

remote location (Aster et al., 2004). During the summer

field seasons, emission rates of SO2 have been measured

repeatedly (Kyle et al., 1990, 1994), and supplemented

by more sporadic measurements of CO2 and CO

(Wardell et al., 2004), halogens and other species

(Zreda-Gostynska et al., 1993, 1997). The motivation

for these studies has been, in part, to understand the

impacts of the Erebus plume (Fig. 1b), which typically

drifts at an altitude of 4 km, on the atmospheric and
Fig. 1. Photographs of (a) the lava lake (dimensions

�45� 35m) taken from summit crater rim on 7 December

2003, and (b) the plume (altitude typically �4 km above sea

level) on 11 December 2003.
cryospheric environments. During our fieldwork in

November–December 2003, the lava lake area was

�1200 m2. Based on thermal infrared observations,

much of its crusted surface was at temperatures above

850K, hotter than the crust found on lava lakes

elsewhere (e.g., Oppenheimer et al., 2004a). The hottest

parts of the lake, exposed in regions of magma upwelling

and fissured crust, must approach the estimated mag-

matic temperature of �1270 K (Kyle et al., 1992). For

detailed information on the volcano and its environ-

ment, the Mount Erebus Volcano Observatory website

is worth consulting (http://www.ees.nmt.edu/Geop/

mevo/mevo.html).
2. Methods

SO2 and NO2 column measurements were made using

a small Ocean Optics USB2000 UV spectrometer

(described in Galle et al., 2003). The spectrometer was

coupled across a 50 mm entrance slit by fibre optic

bundle to a simple two-lens telescope (full plane field of

view 8 mrad). The spectrometer spanned the spectral

interval 228–379 nm with a resolution of 0.65 nm

(FWHM), and the telescope was mounted on a rotating

platform so as to scan the plume as it rose vertically

from the crater. Based on observed rise rates, we

estimate that the age of the plume at the point of

measurement was around 1 min. Individual spectra were

recorded for exposure times varying between 80 and

100ms. Up to 100 individual spectra were composited to

improve the signal-to-noise ratio. Observations were

made from Lower Erebus Hut, �2100 m from the

summit crater.

NO2 and SO2 columns were retrieved following

standard DOAS procedures outlined in Platt (1994),

McGonigle et al. (2004) and Oppenheimer et al. (2004b)

as follows: (i) subtraction of the dark spectrum from all

measured spectra, including the background (out-of-

plume) spectrum; (ii) normalisation of all spectra,

including those recorded within the plume, by the

background spectrum; (iii) removal of the low-frequency

component of the spectrum by either a binomial high-

pass filter or ninth-order polynomial; (iv) calculation of

the logarithm of each ratio, yielding the differential

absorption spectrum of the plume, which was then

smoothed by a binomial low-pass filter; (v) fitting the

resulting spectrum, i.e. the differential optical density

(Fig. 2), by scaling the differential reference spectrum

using both linear and non-linear least-squares algo-

rithms, and thereby evaluating the SO2 and NO2 column

amounts. The optimal fitting windows (309.2–334.5 nm

for SO2 and 330.7–349.0 nm for NO2) were found by

obtaining a near random fit residual structure with

minimal standard deviation. The reference spectra for

both gases were obtained by convolving high-resolution

http://www.ees.nmt.edu/Geop/mevo/mevo.html
http://www.ees.nmt.edu/Geop/mevo/mevo.html
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Fig. 2. Removal of the low-frequency component of the

absorbance spectrum (solid line) by a ninth-order polynomial

(dashed line). The strong oscillations below 320 nm result from

absorption by SO2, whereas the weaker structure at longer

wavelengths is due to NO2. The inset shows the ratio of the

measured absorbance and the polynomial fit within the range of

NO2 absorption. Arrows indicate the positions of strongest

NO2 absorption bands.
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spectra for NO2 (from Vandaele et al., 1998) and SO2

(from Rufus et al., 2003), with the instrument line shape

(FWHM 0.65 nm), and then removing the low-frequency

component.

SO2 fluxes were estimated on several days during the

field campaign by traversing beneath the plume (by

helicopter or snowmobile), with the spectrometer view-

ing the zenith sky. The observed SO2 column amounts

were projected on to the plane perpendicular to the

plume transport direction (each spectrum was located

from a continuous GPS record). The SO2 emission rate

was then obtained from the product of the integrated

SO2 column amounts across this plane and the plume

speed. We measured plume speed using two spectro-

meters collecting scattered light from the zenith sky, and

spaced about 100 m apart, beneath and parallel to the

plume axis (i.e., the wind direction). By determining the

correlation function between the two high-temporal-

resolution records of SO2 column amount obtained, and

knowing the horizontal separation of the instruments

(determined using laser ranging binoculars), the appar-

ent plume speed was calculated. This apparent speed

provides an upper limit for the true drift speed of the

plume allowing for some discrepancy between the vector

between the two instruments and the wind vector. We

focus on measurements from 11 December 2003 when

meteorological conditions were particularly favourable.

Two sets of spectra were analysed for NO2 (as well as

SO2): Set ‘A’ was acquired between 22:14 and 22:19

UTC, and Set ‘B’ between 23:05 and 23:25 UTC. Based

on retrieved SO2 column amounts, the spectra in each

set were separated into two groups: one represents

measurements within the plume; the other represents

‘background’ observations outside the plume. A linear
fit was then applied to the time-series of background

spectra (both SO2 and NO2) so as to characterise any

baseline drift, and to determine significance thresholds

(based on twice the standard deviation of the retrieved

column amounts).
3. Results and discussion

The full time-series of data, corrected for baseline

trend, are shown in Fig. 3. For each set of spectra

(A and B), two scatter plots were then derived,

one (Figs. 4a and 5a) for all the reliable data, the other

(Figs. 4b and 5b) a subset of retrieved SO2 and NO2

columns that exceeded the significance thresholds. The

correlation between SO2 and NO2 (Figs. 4 and 5)

indicates a molar SO2/NO2 ratio of �7–12 in the plume.

The observation that the correlation is clear but not

strong is expected, since NO2 is not a direct volcanic gas

emission whose column amount would then scale

linearly with SO2. Instead, the likely origin of NO2 in

the plume is thermal fixation of atmospheric and/or

magmatic N2 at the lava lake surface to generate NO

(Huebert et al., 1999; Mather et al., 2004a, b):

O2 þ M ! 2O þ M; (1)

O þ N2 ! NO þ N; (2a)

N þ O2 ! NO þ O; (2b)

followed by in-plume oxidation of the nitric oxide to

NO2 (e.g., Atkinson et al., 2004),

NO þ O3 ! NO2 þ O2; (3)

NO þ HO ! HONO; (4a)

HONO þ HO ! NO2 þ H2O; (4b)

NO þ O ! NO2; (5)

NO þ HO2 ! HO þ NO2: (6)

It is also conceivable that combustion of reduced

magmatic gas species (e.g., CO, H2S and H2) results in

additional nitrogen fixation, though temperatures would

need to be around 2000 K for this to be significant. Over

timescales of weeks or longer, a loose correspondence

between SO2 and NO2 might prevail due to proportion-

ality between magmatic gas and thermal fluxes from lava

lakes (Kyle et al., 1994; Oppenheimer et al., 2004a).

The SO2 emission rate on 11 December, determined

from 13 airborne UV spectrometer traverses and the

apparent plume speed (5.1 m s�1), was 0.8670.20 kg s�1

(R74717Mg per day; dispersion indicates the stan-

dard deviation of the 13 measurements). Taking the

SO2/NO2 molar ratio as �10 (Figs. 4 and 5) indicates an
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(b)

Fig. 3. Time-series of SO2 and NO2 column amount measurements made on 11 December 2003 for (a) Set A (100ms exposure time

and four consecutive co-added spectra), and (b) Set B (80 ms exposure time and 100 consecutive co-added spectra). Each cycle

represents alternating scans back-and-forth across the vertically rising plume (clearest in the SO2 record). The plume width was

estimated as 350–500m. The horizontal lines indicate the significance levels for each dataset. Note that for Set B the measured column

amounts do not return to zero (in the SO2 record) as the scanner has not rotated far enough for the field of view to exit the plume.
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NO2 flux of �60 g s�1 (�2Gg yr�1), which is equivalent

to �20 g (N) s�1 (�0.6 Gg (N) yr�1).

From the known scanning rate (�8mrad s�1) of the

rotating platform used for the NO2 measurements

and the plume profiles (Fig. 3), we estimate that the

width of the vertically rising plume was �350–500 m.

Assuming that the peak NO2 column amounts (�0.3–

0.5molec cm�2 from Figs. 4 and 5) correspond to the full

plume width, then the corresponding mean mixing ratio

of NO2 in the plume is �30–50 ppbv. This range is

several orders of magnitude higher than background

values for the Antarctic troposphere (e.g., Jones et al.,

1999, 2000; Weller et al., 2002). It is comparable,

however, to the expected mixing ratio of ozone

(�30 ppbv; e.g., Crawford et al., 2001). It is possible,

therefore, that we have effectively measured the titrated

amount of ozone (Eq. (3)) in which case, there was likely

to be remaining NO in the plume. If the apparent

modest excess of NO2 over ozone is real (rather than due

to underestimating the plume width), it could reflect
formation of NO2 by other mechanisms, such as

reaction with volcanogenic HOx (e.g., Gerlach, 2004),

or combustion at the lava lake surface.

The estimated NO2 flux from the summit crater of

Erebus (60 g s�1, or the equivalent 0.6Gg (N) yr�1) is

modest compared to some sources. For example, NO2

fluxes of �250 g s�1 from a power station (McGonigle

et al., 2004), and of up to 240 g s�1 from agricultural

burns (Oppenheimer et al., 2004b) have been measured

using similar techniques. However, in the context of the

Antarctic free troposphere, it appears significant,

especially since it is likely that Erebus emits other

reactive nitrogen species that we have not measured.

Several sources contribute to the Antarctic tropospheric

NOx budget: (i) minor in situ anthropogenic emissions

from Antarctic bases and aircraft operations (Lyons

et al., 2000); (ii) long-range transport of PAN and

HONO2 (from the Southern Hemisphere mid-latitudes;

e.g., Jacobi and Schrems, 1999), which slowly release

NOx by photolysis (with the rate increasing with
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Fig. 4. Scatter plots for SO2 vs. NO2 for Set A spectra showing

(a) all reliable data, and (b) retrievals exceeding significance

thresholds (0.63� 1017 molec cm�2 for SO2 and 0.17�

1017 molec cm�2 for NO2). The dashed and dotted lines show

95% confidence limits and prediction bands of the regression,

respectively.
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Fig. 5. Scatter plots for SO2 vs. NO2 for Set B spectra showing

(a) all reliable data, and (b) retrievals exceeding significance

thresholds (0.43� 1017 molec cm�2 for SO2 and 0.27�

1017 molec cm�2 for NO2). The dashed and dotted lines show

95% confidence limits and prediction bands of the regression,

respectively.
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altitude); (iii) stratospheric HONO2, whose flux is

related to that of the ozone flux from the stratosphere

(e.g., Olsen et al., 2001); and (iv) photolysis of nitrate

(e.g., Chu and Anastasio, 2003; Cotter et al., 2003) and

pernitric acid (Slusher et al., 2002) in snow pack. The

NOx flux from nitrate photolysis for the whole of

Antarctica has been estimated as �7.6Gg (N) yr�1

(Jones et al., 2001). This is an order of magnitude

greater than our estimate of the point emission of

N(NO2) from Mt. Erebus. However, since NO, HONO2
and other species may be present in the plume (e.g.,

Mather et al., 2004b; Hunton et al., 2005), the

total reactive nitrogen flux may significantly exceed

our estimated NO2 emission rate. It is also worth

noting that the amount of reactive nitrogen reaching

the free troposphere from the snow pack source

appears limited (Huey et al., 2004) whereas the Erebus

plume emerges at �4 km above sea level (Fig. 1b).

A further contrast between the two sources is that,

if we have correctly surmised its origin, the NOx
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emission from Erebus is sustained throughout the

year.
4. Conclusions

Using UV spectroscopy, we have detected and

quantified NO2 in the volcanic plume emitted into the

free troposphere by Mount Erebus, Antarctica. The

source of NO2 is thought to be thermal fixation of

atmospheric and/or magmatic nitrogen close to the

surface of the active lava lake that is located within the

summit crater of the volcano, followed by in-plume

oxidation. The NO2 flux, estimated in December 2003,

was equivalent to �0.6Gg (N) yr�1. The plume is likely

to contain other reactive nitrogen species and the total

NOy emission rate may be significantly greater. Erebus

appears to have had an active lava lake since at least

the time of the first observations made by the Ross

expedition in 1841. We suggest, therefore, that the

volcano plays a significant role in Antarctic tropospheric

chemistry, and represents a sustained source of

nitrogen, as well as other species, deposited to the ice.

Further work is required to characterise the NOy

emission from Erebus, and to develop our under-

standing of the complex chemical environments of

young volcanic plumes.
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