Lesson 16 - Final Thoughts on Energy Methods

\[\text{Non-Prismatic Elements} \]

Def: Prismatic members = Members with constant cross-section along length

When members are non-prismatic, \(I \) becomes \(I(x) \) and must become part of the integral.

Tapered Beam:

\[\int_0^L \frac{M_0(x)M_0(x)}{EI(x)} \, dx \]

Stepped Beam:

\[\int_0^{L_1} \frac{M_0(x)M_0(x)}{EI_1} \, dx + \int_{L_1}^{L} \frac{M_0(x)M_0(x)}{EI_2} \, dx \]

\[I_1 \]

\[I_2 \]

\[\lambda \]

\[\lambda \]

Finite Summation - Approximate Method for Non-Prismatic Members

\[SQ = \sum_{i=1}^{N} \frac{M_0M_0}{EI} \Delta x_i \]

\(S = \# \text{ elements} \)

As \(N \to \infty \), \(\Delta x \to 0 \) we approach exact solution.

In principle, this is the idea behind many finite element method approaches used in civil engineering.
<table>
<thead>
<tr>
<th>STRUCTURE TYPE</th>
<th>Wq</th>
<th>Uq Axial</th>
<th>Uq Axial</th>
<th>Uq BUCK-Temp Change</th>
<th>Uq TEMP GEAR</th>
<th>Uq FAB, EVC/CHARGER</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRUSSES</td>
<td>QS</td>
<td>(\frac{F_0 F_a L}{AE})</td>
<td>(N = # \text{Members})</td>
<td>(\sum \Delta \theta)</td>
<td>(0)</td>
<td>(\varepsilon F_a (\Delta L))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No Moment in trusses</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEAMS</td>
<td>QS</td>
<td>(\frac{F_0 F_a L}{AE})</td>
<td>(\int_0^L \frac{M_a M_p}{EI} dx)</td>
<td>(F_a \Delta L)</td>
<td>(\frac{N^T \Delta T_a M_t}{\alpha C})</td>
<td>(F_a (\Delta L))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Often very small</td>
<td></td>
<td>Usually = 0</td>
<td></td>
<td>Usually = 0</td>
</tr>
<tr>
<td>FRAMES</td>
<td>QS</td>
<td>(\frac{N^T F_0 F_a L}{EI})</td>
<td>(\sum \frac{M_a M_p}{EI} dx)</td>
<td>(F_a \Delta L)</td>
<td>(\frac{Z^T \Delta T_a M_t}{\alpha C})</td>
<td>(\varepsilon F_a (\Delta L))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Often very small</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(N = # \text{Members})</td>
<td></td>
<td>(N = # \text{Members})</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>affected by temp. change</td>
<td></td>
<td>affected by temp. change</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Q = Dummy Load
\(\delta \) = Disp. At Q
\(\theta \) = Direction of FQ
Maxwell-Betti Law of Reciprocal Deformations

- Text derives it using virtual work
- Fundamental structural theorem

Requisites:
1) Stable structure
2) Elastic structure
3) No support movement
4) No temp. change

Statement:
A deflection produced at a point A, due to a unit load at point B, is equal in magnitude to the displacement at point B, due to the unit load at point A.

\[\delta_{AB} = \delta_{BA} \]

True for forces & displacements in beams, frames, & trusses.
Also true for moments & rotations in beams & frames.

Will look at the statement of reciprocity again in two weeks in the analysis of indeterminate structures.