- Sketching Deflected Shapes: Inflection Points

At points where the moment curve is zero, there exists a point at which direction of curvature changes, Inflection Point.

Example:

![Diagram of deflected shapes with inflection point]

Lesson 9:

Principle of Superposition:

For structures that behave in a linear-elastic fashion, forces & displacements due to a set of loads are equal to the sum of the forces and displacements due to each load individually.
Superposition Illustration

Equivalent to:

\[
\begin{align*}
20 \text{kN} & \cdot \text{m} \\
5 \text{kN/m} & \downarrow \\
12 \text{m} & \\
\end{align*}
\]

\[
\begin{align*}
20 \text{kN} & \cdot \text{m} \\
5 \text{kN/m} & \downarrow \\
12 \text{m} \\
\end{align*}
\]

\[
\begin{align*}
20 \text{kN} & \cdot \text{m} \\
5 \text{kN/m} & \downarrow \\
12 \text{m} & \\
\end{align*}
\]

Useful? Think about this beam:

\[
\begin{align*}
20 \text{kN} & \cdot \text{m} \\
5 \text{kN/m} & \downarrow \\
12 \text{m} \\
\end{align*}
\]

Limitations on Superposition:

- Linear systems only:
 - Not linear if deflections are large

\[
\begin{align*}
P_x & \rightarrow A_1 \\
\rightarrow \\
\rightarrow \\
\end{align*}
\]

\[
\begin{align*}
P_y & \rightarrow A_2 \\
\rightarrow \\
\rightarrow \\
\end{align*}
\]

\[
\begin{align*}
P_x & \rightarrow A_1 + A_2 \\
\rightarrow \\
\rightarrow \\
\end{align*}
\]

If \(\Delta \) is "large":

- Elastic systems only:
 - Not elastic if yield strain (stress) has been exceeded.

Material non-linearity:

Breaking \(\sigma_b > \sigma_y \rightarrow \) Inelastic. No superposition.
Superposition and Deflection:
- Deflected shape due to 2 loads:
 \[\bar{A} \quad \sqrt{P_2} \]
 ARBITRARY POINT, A
- Can be found by adding deflected shape from each load acting alone.

\[\Delta A = \Delta A_{P_1} + \Delta A_{P_2} \]

More
DIRECT COMPUTATION OF MOMENT DIAGRAM w/ SUPERPOSITION

Example

- 150 k-ft
- \[\frac{1}{2} (5)(15) = 37.5 k \]

Replace supports with fixed-end at right but keep reaction forces.

150 k-ft equals

\[M_t \]

plus

\[M_2 \]

\[M_2 = \frac{1}{2} (15)(15) = 187.5 \]

Ends Moment = -150 + 377.5 - 187.5 = 0

Why did this work?