Introduction to Electromagnetic Theory

Lecture topics

- Laws of magnetism and electricity
- Meaning of Maxwell's equations
- Solution of Maxwell's equations

Div, Grad, Curl

The Laplacian of a scalar function :

$$
\nabla^2 f = \vec{\nabla} \cdot \vec{\nabla} f = \vec{\nabla} \cdot \left(\frac{\partial f}{\partial x} , \frac{\partial f}{\partial y} , \frac{\partial f}{\partial z} \right)
$$

$$
= \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}
$$

The Laplacian of a vector function is the same, but for each component of *f*:

$$
\nabla^2 \vec{f} = \left(\frac{\partial^2 f_x}{\partial x^2} + \frac{\partial^2 f_x}{\partial y^2} + \frac{\partial^2 f_x}{\partial z^2} \right), \frac{\partial^2 f_y}{\partial x^2} + \frac{\partial^2 f_y}{\partial y^2} + \frac{\partial^2 f_y}{\partial z^2}, \frac{\partial^2 f_z}{\partial x^2} + \frac{\partial^2 f_z}{\partial y^2} + \frac{\partial^2 f_z}{\partial z^2} \right)
$$

The Laplacian tells us the curvature of a vector function.

Solving Maxwell's Equations (cont'd)

But (Equation 4):

$$
\vec{\nabla} \times \vec{B} = \mu \varepsilon \frac{\partial \vec{E}}{\partial t}
$$

Substituting for $\,\nabla\!\times\!B\,$, we have: $\vec{\nabla} \times \vec{B}$

$$
\vec{\nabla} \times [\vec{\nabla} \times \vec{E}] = -\frac{\partial}{\partial t} [\vec{\nabla} \times \vec{B}] \implies \vec{\nabla} \times [\vec{\nabla} \times \vec{E}] = -\frac{\partial}{\partial t} [\mu \varepsilon \frac{\partial \vec{E}}{\partial t}]
$$

assuming that μ and ε are constant

in time.

Or:

$$
\vec{\nabla} \times [\vec{\nabla} \times \vec{E}] = -\mu \varepsilon \frac{\partial^2 \vec{E}}{\partial t^2}
$$

19

Solving Maxwell's Equations (cont'd) Using the identity, $\vec{\nabla}$ becomes: Assuming zero charge density (free space; Equation 1): and we're left with: $\nabla^2 \vec{E} = \mu \varepsilon \frac{\partial^2 \vec{E}}{\partial \phi^2}$ ∇×[$[\vec{\nabla} \times \vec{E}] = -\mu \varepsilon \frac{\partial^2 \vec{E}}{\partial x^2}$ ∂*t*² $\overline{}$ ∇($\overline{}$ ∇⋅ $(\vec{E}) - \nabla^2 \vec{E} = -\mu \varepsilon \frac{\partial^2 \vec{E}}{\partial x^2}$ ∂*t*² \rightarrow ∇⋅ \overrightarrow{r} $E = 0$ ∂*t*² **Identity:** $\nabla \times [$ $\vec{\nabla} \times \vec{f}$] = $\vec{\nabla}$ (\rightarrow ∇⋅ \vec{f}) – $\nabla^2 \vec{f}$

Solving Maxwell's Equations (cont'd)

$$
\nabla^2 \vec{E} = \mu \varepsilon \frac{\partial^2 \vec{E}}{\partial t^2} \qquad \nabla^2 \vec{B} = \mu \varepsilon \frac{\partial^2 \vec{B}}{\partial t^2}
$$

The same result is obtained for the magnetic field B. These are forms of the 3D wave equation, describing the propagation of a sinusoidal wave:

$$
\nabla^2 u = \frac{1}{v^2} \frac{\partial^2 u}{\partial t^2}
$$

Where v is a constant equal to the propagation speed of the wave

So for EM waves,
$$
v = \frac{1}{\sqrt{\mu \varepsilon}}
$$

21

Solving Maxwell's Equations (cont'd) So for EM waves, $v = \frac{1}{n}$, Units of μ = T.m/A Need to convert to SI base units (m, s, A, kg, K) The Tesla (T) can be written as $kg A^{-1} s^{-2}$ So units of μ are kg m A⁻² s⁻² Units of ε = Farad m⁻¹ or A^2 s⁴ kg⁻¹ m⁻³ in SI base units So units of με are m⁻² s² Square root is m^{-1} s, reciprocal is m s⁻¹ (i.e., velocity) ε_0 = 8.854188×10⁻¹² and μ_0 = 1.2566371×10⁻⁶ Evaluating the expression gives 2.998×10^8 m s⁻¹ Maxwell (1865) recognized this as the (known) speed of light – confirming that light was in fact an EM wave. µε

EM waves carry energy – how much?

e.g., from the Sun to the surface of the Earth….

The energy flow of an electromagnetic wave is described by the **Poynting vector:**

$$
\vec{S} \equiv \frac{1}{\mu_0} \vec{E} \times \vec{B}
$$

The intensity (*I*) of a time-harmonic electromagnetic wave whose electric field amplitude is *E*0, measured normal to the direction of propagation, is the average over one complete cycle of the wave:

$$
I = \frac{P}{A} = S_{\text{avg}} = \frac{1}{2c\mu_0} E_0^2 = \frac{c\epsilon_0}{2} E_0^2
$$
 WATTS/M²

 $P = Power$; $A = Area$; $c = speed of light$

Key point: intensity is proportional to the *square* of the amplitude of the EM wave

NB. **Intensity = Flux density (F) = Irradiance (***incident)* **= Radiant Exitance (***emerging)*

