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Lecture topics

• Laws of magnetism and electricity
• Meaning of Maxwell’s equations
• Solution of Maxwell’s equations

Introduction to Electromagnetic Theory

1

Electromagnetic radiation: wave model

• James Clerk Maxwell (1831-1879) – Scottish 
mathematician and physicist

• Wave model of EM energy

• Unified existing laws of electricity and magnetism 
(Newton, Faraday, Kelvin, Ampère)

• Oscillating electric field produces a magnetic field 
(and vice versa) – propagates an EM wave

• Can be described by 4 differential equations

• Derived speed of EM wave in a vacuum

• ‘Speed of light’ measured by Fizeau and Foucault 
between 1849 and 1862 € 
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Electromagnetic radiation

• EM wave is:

• Electric field (E) perpendicular to magnetic field (M) 

• Travels at velocity, c (~3×108 m s-1, in a vacuum)
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Dot (scalar) product

A�B = |A||B| cos θ
If A is perpendicular to B, the dot product of A and B is zero
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Cross (vector) product

a x b = [(a2b3-a3b2), (a3b1-a1b3), (a1b2-a2b1)]

a×b = |a||b| sin θ n
If a is parallel to b, the cross product of a and b is zero
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Div, Grad, Curl

Types of 3D vector derivatives:

The Del operator:  

The Gradient of a scalar function f (vector):

The gradient points in the direction of steepest ascent.
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Div, Grad, Curl 

The Divergence of a vector function (scalar):
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The Divergence is nonzero if 
there are sources or sinks.

A 2D source with a 
large divergence: x
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Div, Grad, Curl
The Curl of a vector function 
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Functions that tend to curl around have large curls.

http://mathinsight.org/curl_idea
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http://mathinsight.org/curl_idea


1/17/24

5

Div, Grad, Curl
The Laplacian of a scalar function :

The Laplacian of a vector function is the same, 
but for each component of f:
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The Laplacian tells us the curvature of a vector function.
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Maxwell’s Equations

• Four equations relating electric (E) and 
magnetic fields (B) – vector fields

• e0 is electric permittivity of free space (or 
vacuum permittivity - a constant) – capability 
of an electric field to permeate a vacuum

• ε0 = 8.854188×10-12 Farad m-1

• µ0 is magnetic permeability of free space (or 
vacuum permeability - a constant) – ability of 
a vacuum to support formation of a magnetic 
field 

• µ0 = 1.2566×10-6 T m A-1 (T = Tesla; SI 
derived unit of magnetic field)
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Note: Ñ• is ‘divergence’ operator and Ñ× is ‘curl’ operator
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Biot-Savart Law (1820)
• Jean-Baptiste Biot and Felix Savart (French physicist and 

chemist)

• The magnetic field B at a point a distance R from an 
infinitely long wire carrying current I has magnitude:

• Where µ0 is the magnetic permeability of free space or the 
magnetic constant

• Constant of proportionality linking magnetic field and 
distance from a current 

• Magnetic field strength decreases with distance from the 
wire

• µ0 = 1.2566x10-6 T m A-1 (T = Tesla; SI derived unit of 
magnetic field)

€ 

B =
µ0I
2πR
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Coulomb’s Law (1783)
• Charles Augustin de Coulomb (French physicist)

• The magnitude of the electrostatic force (F) between two point electric 
charges (q1, q2) separated by distance r is given by:

• Where ε0 is the electric permittivity or electric constant

• Like charges repel, opposite charges attract

• ε0 = 8.854188×10-12 Farad m-1

€ 

F =
q1q2
4πε0r
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Maxwell’s Equations (1)

• Gauss’ law for electricity: the electric flux out of any closed surface is 
proportional to the total charge enclosed within the surface; i.e. a charge will 
radiate a measurable field of influence around it.

• E = electric field, ρ = net charge inside, e0 = vacuum permittivity (constant)

• Recall: divergence of a vector field is a measure of its tendency to converge on 
or repel from a point.

• Direction of an electric field is the direction of the force it would exert on a 
positive charge placed in the field

• If a region of space has more electrons than protons, the total charge is 
negative, and the direction of the electric field is negative (inwards), and vice 
versa.
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Maxwell’s Equations (2)

• Gauss’ law for magnetism: the net magnetic flux out of any closed surface is 
zero (i.e. magnetic monopoles do not exist)

• B = magnetic field; magnetic flux = BA (A = area perpendicular to field B)

• Recall: divergence of a vector field is a measure of its tendency to converge 
on or repel from a point.

• Magnetic sources are dipole sources and magnetic field lines are loops – we 
cannot isolate N or S ‘monopoles’ (unlike electric sources or point charges –
protons, electrons)

• Magnetic monopoles could theoretically exist, but have never been observed

0=•Ñ B

14



1/17/24

8

Maxwell’s Equations (3)

• Faraday’s Law of Induction: the curl of the electric field (E) is equal to the 
negative of rate of change of the magnetic flux through the area enclosed 
by the loop

• E = electric field; B = magnetic field

• Recall: curl of a vector field is a vector with magnitude equal to the 
maximum ‘circulation’ at each point and oriented perpendicularly to this 
plane of circulation for each point. 

• Magnetic field weakens è curl of electric field is positive and vice versa

• Hence changing magnetic fields affect the curl (‘circulation’) of the electric 
field – basis of electric generators (moving magnet induces current in a 
conducting loop) 
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Maxwell’s Equations (4)

• Ampère’s Law: the curl of the magnetic field (B) is proportional to the electric 
current flowing through the loop. J = current density (current per unit area).
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∇ × B = µ 0J
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AND to the rate of change of the electric field.     ç added by Maxwell
• B = magnetic field; J = current density (current per unit area); E = electric field

• The curl of a magnetic field is basically a measure of its strength

• First term on RHS: in the presence of an electric current (J), there is always a 
magnetic field around it; B is dependent on J (e.g., electromagnets)

• Second term on RHS: a changing electric field generates a magnetic field.

• Therefore, generation of a magnetic field does not require electric current, only 
a changing electric field. An oscillating electric field produces a variable 
magnetic field (as δE/δt changes)
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Putting it all together….
• An oscillating electric field produces a variable magnetic field. A changing 

magnetic field produces an electric field….and so on.

• In ‘free space’ (vacuum) we can assume current density (J) and charge (ρ) are 
zero i.e. there are no electric currents or charges

• Equations become:
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Solving Maxwell’s Equations

Take curl of:

Change the order of differentiation on the RHS:
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Solving Maxwell’s Equations (cont’d)

But (Equation 4):   

Substituting for             , we have:

Or:
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and e are constant 
in time.
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Solving Maxwell’s Equations (cont’d)

Using the identity,   

becomes:     

Assuming zero charge density (free space; Equation 1):

and we’re left with:
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Solving Maxwell’s Equations (cont’d)

The same result is obtained for the magnetic field B.
These are forms of the 3D wave equation, describing the propagation 

of a sinusoidal wave:

Where v is a constant equal to the propagation speed of the wave

So for EM waves, v =           
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Solving Maxwell’s Equations (cont’d)
So for EM waves, v =           , 

Units of μ = T.m/A
Need to convert to SI base units (m, s, A, kg, K)
The Tesla (T) can be written as kg A-1 s-2

So units of μ are kg m A-2 s-2

Units of ε = Farad m-1 or A2 s4 kg-1 m-3 in SI base units
So units of με are m-2 s2

Square root is m-1 s, reciprocal is m s-1 (i.e., velocity)
ε0 = 8.854188×10-12 and μ0 = 1.2566371×10-6

Evaluating the expression gives 2.998×108 m s-1

Maxwell (1865) recognized this as the (known) speed of 
light – confirming that light was in fact an EM wave.

€ 

1
µε

22



1/17/24

12

e.g., from the Sun to the surface of the Earth….

The energy flow of an electromagnetic wave is described by the Poynting
vector:

EM waves carry energy – how much?

The intensity (I) of a time-harmonic electromagnetic wave whose electric field 
amplitude is E0, measured normal to the direction of propagation, is the 
average over one complete cycle of the wave:

WATTS/M2

Key point: intensity is proportional to the square of the amplitude of the EM wave

NB. Intensity = Flux density (F) = Irradiance (incident) = Radiant Exitance
(emerging)

P = Power; A = Area; c = speed of light
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Intensity and electric field of a laser pointer
Helium-Neon (He-Ne) Laser

Power output: 1 milliWatt (0.001 W), diameter 1 mm.

Calculate intensity (I) = Power (P) / Area (A)

How big is the electric field near the aperture (E0)?

A = πr2 = π(5x10-4)2 m2
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Summary
• Maxwell unified existing laws of electricity and magnetism
• Revealed self-sustaining properties of magnetic and electric 

fields
• Solution of Maxwell’s equations is the three-dimensional 

wave equation for a wave traveling at the speed of light
• Proved that light is an electromagnetic wave

• EM waves carry energy through empty space and all 
remote sensing techniques exploit the 
modulation of this energy
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Summary
• EM wave propagation:
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